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The dynamic evolution of a highly underexpanded transient supersonic jet at the exit of
a pulse detonation engine is investigated via high-resolution time-resolved schlieren and
numerical simulations. Experimental evidence is provided for the presence of a second
triple shock configuration along with a shocklet between the reflected shock and the
slipstream, which has no analog in a steady-state underexpanded jet. A pseudo-steady
model is developed, which allows for the determination of the postshock flow condition for
a transient propagating oblique shock. This model is applied to the numerical simulations
to reveal the mechanism leading to the formation of the second triple point. Accordingly,
the formation of the triple point is initiated by the transient motion of the reflected shock,
which is induced by the convection of the vortex ring. While the vortex ring embedded
shock move essentially as a translating strong oblique shock, the reflected shock is rotating
towards its steady-state position. This results in a pressure discontinuity that must be
resolved by the formation of a shocklet.

DOI: 10.1103/PhysRevFluids.5.073401

I. INTRODUCTION

Supersonic transient underexpanded compressible jets can be found in many applications such as
rocket propulsion, shock tubes, pulse detonation engines, etc. The transient supersonic jet is also of
interest in the field of safety and security management, e.g., in case of an accidental release of a gas
from a high-pressure reservoir or volcanic blasts. The characterization of such a flow field has been
the subject of research in some detail for many years. The first stage of the jet evolution is the well
known shock-diffraction phenomenon, which has been investigated numerically, experimentally and
analytically by many researchers [1–4]. The next stage is the dynamic evolution of a highly transient
supersonic trailing jet behind the leading shock, which has also received significant attention
[5–11]. However, both the numerical and experimental study of the flow at this stage is inherently
challenging [12,13] due to the short timescales and large dynamic ranges involved. The last stage
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of the transient supersonic jet evolution is simply the steady underexpanded jet, which has been
extensively investigated in the last few decades [14].

While the structures in a transient underexpanded jet evolve in time, many of the salient flow
features are analogous to those observed in the more classical steady underexpanded jet. An
expansion fan originating from the nozzle exit accounts for the mismatch in pressure between the
jet and the surroundings. The expansion fan reflects as compression waves from the sonic lines.
These compression waves converge to an oblique shock wave, which reflects as a shock wave at the
jet centerline. This reflected shock again reflects at the sonic line and results in new expansion
waves. A series of reflected shock and expansion waves result in the characteristic shock cell
structure or “shock diamonds” of underexpanded jets. Highly underexpanded jets are characterized
by a strong Mach disk as a result of a Mach reflection at the jet centerline. As the pressure ratio
decreases, the Mach disk becomes smaller. It was originally thought that for weak underexpanded
jets there are no Mach reflections but only regular reflections. However, it was shown that a regular
reflection of a shock from an axis of symmetry is impossible, and therefore all reflections at the
centerline of an axisymmetric jet must be Mach reflections [15]. The flow downstream of the Mach
disk becomes subsonic, while the flow downstream of the oblique shocks remains supersonic. A
mismatch in temperature, entropy, and velocity occurs between the boundary of these two regions.
A shear layer produced by the slipstream between the low-speed core and high-speed annulus
results in vortical structures, which persist across multiple shock cells [16]. In the steady-state jet
these aforementioned structures are well understood; however, during the initial development of a
transient jet their temporal evolution is far more complex yet has received less attention.

To introduce the flow structures relevant to the discussion to follow, a time series of schlieren
images capturing key points in the early-stage evolution of a transient supersonic jet are presented
in Fig. 1, for a shock wave with a Mach number of Ms = 1.76 exiting from a circular tube. These
images are separated by a uniform time interval of 50 μs; the time τ given above the images is
nondimensionalized τ = (t Ms a0)/D, where t is the time after the shock wave leaves the tube
exit, D is the tube exit diameter, and a0 is the speed of sound ahead of the leading shock. The
corresponding experimental setup is discussed in Sec. II.

The first stage of the jet evolution, the shock diffraction, is shown in Fig. 1(a). This image
captures the moment immediately after the shock wave exits the tube. Towards the radial edge
the shock wave has already undergone a three-dimensional diffraction as indicated by the partially
curved shock; both diffracted and undisturbed leading shocks are clearly visible. The exhaust flow
of the tube expands through a pseudo-steady Prandtl-Meyer expansion fan (PM) centered at the
tube exit’s sharp corner. The leading characteristic (LC) of these waves marks the separation point
(SP) between the undisturbed leading shock and the diffracted shock. The same flow features have
been observed first by Skews [1] at a plane-walled convex corner for a diffracting shock wave. The
information about the area expansion travels along the LC toward the jet centerline leading to a fully
curved leading shock wave [Fig. 1(b)]. Since the pressure at the tail of the PM expansion waves is
lower than the pressure transmitted back by the leading shock wave, a second shock arises to match
the two phases. Friedman [17] has shown that this second shock occurs due to the over-expansion
caused by the increase of the volume, which does not arise in one-dimensional studies. Figure 1(b)
captures the moment as this second shock is just being formed at the outer region of the jet next
to the barrel shock. The upper and lower second shock waves, highlighted in Fig. 1(b) propagate
toward the jet centerline to form a single shock wave. As these shocks coalesce, a single curved
shock wave is formed [Fig. 1(c)]. The curved shock wave transforms to a disk-shaped shock wave
shortly after, as can be seen in Fig. 1(d). This is the origin of the well-known Mach disk of a steady
underexpanded jet.

Besides the Mach disk, several other features are visible in Fig. 1 that have been reported in
the literature. The leading shock sets the gas inside the tube in motion by compressing the flow
while propagating through the tube. Following the leading shock, a highly transient jet establishes
itself at the outlet of the tube. Elder and De Haas [18] initiated the studies of transient supersonic
jets of an open-end shock tube using spark schlieren measurements. They reveal the presence of a
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FIG. 1. Dominant features of a starting transient underexpanded jet. A time series of six ∂ρ

∂y schlieren
images shows the early stage of the exhaust flow for Ms = 1.76. The x and y coordinates are normalized
by the tube diameter, D. The origin of the axis corresponds to the point on the tube centerline at the tube exit.

vortex ring in the trailing jet for Mach numbers Ms = 1.12 and 1.32, which grows nonlinearly with
time and distance. In a systematic study Brouillette and Hebert [19] found three different types of
flow fields of the trailing jet depending on the leading shock Mach number. Accordingly, there is a
shock-free vortex ring characterized by a very thin core for Ms < 1.43. For higher Mach numbers the
vortex ring contains an embedded shock, the so-called vortex-ring-embedded shock (VRES) [also
visible in Fig. 1(c)]. Brouillette and Hebert [19] found the occurrence of counter-rotating vortex
rings (CRVRs) for Ms > 1.6 [Fig. 1(f)]. The primary vortex ring can also contain an additional
shock wave, the so-called vortex-induced shock as indicated in Fig. 1(d). These flow features can be
seen more clearly in Fig. 2, where an overview of the dominant flow features at τ = 6.13 is given.

Besides the shock waves associated with the vortex ring, the trailing jet can also contain a number
of additional shock systems. Ishii et al. [7] exhibited the presence of a Mach disk and a triple shock
configuration in the trailing jet for high-Mach-number leading shock flow. Figure 1(e) shows the
corresponding shock system, which consists of the barrel shock, the reflected shock, and the Mach
disk. The reflection of the barrel shock from the jet centerline as an axis of symmetry must be a Mach
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FIG. 2. Overview of the main flow features at τ = 6.13.

reflection in the same manner as for a steady underexpanded jet [15]. The corresponding slipstream
downstream of the triple point can be recognized in Fig. 1(e). Unlike the steady underexpanded
jet the slipstream is inclined towards the jet boundary in radial direction. A number of CRVRs are
apparent in Fig. 1(f). These vortices are generated by Kelvin-Helmholtz (KH) instabilities of the
shear layers along the slipstream [7]. Dora et al. [8] showed that the evolution of CRVRs is driven
by the same physical mechanism as for the Mach reflection. They claim that the shear layer along
the slip stream grows spatially due to the eddy pairing. In accordance to that, the close-up views in
Fig. 3 reveal a number of eddies along the slipstream growing in both size and strength. Moreover,
the image sequence shows clear evidence for the pairing process confirming the observations of
Dora et al. [8]. As shown by Kleine et al. [20], the CRVRs wraps around the vortex ring at a later
time. In a recent study, Zhang et al. [21] demonstrated that the interaction of the CRVRs with the
vortex ring increases the instability of the primary vortex ring.

The features observed in Figs. 1(a)–1(e) have been described in the previous studies of Dora et al.
[8], Kleine et al. [20], and Zhang et al. [21]. There is, however, an additional feature in Fig. 1(f) that

FIG. 3. ∂ρ

∂y schlieren images showing the pairing of two eddies for Ms = 1.76.
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FIG. 4. Sketch of the experimental setup showing (a) the pulse detonation engine, pressure sensors, and
ion probes, (b) the schlieren setup, and (c) the total pressure probe.

has received far less attention: a transient shocklet formed at the intersection of the reflected shock
and the VRES resulting in a second triple point [see also Fig. 2 (10)]. This feature has no analog
in steady-state jets yet has received little consideration in past research on transient jets. Thus,
this paper presents an experimental and numerical investigation of the shock evolution in a highly
underexpanded jet. The paper is laid out as follows. A general description of the facility, as well
as the schlieren methodology is given in Secs. II A and II B, respectively. Section II D presents the
numerical methodologies and the setup for the conducted simulations. Section III A considers the
formation and evolution of the second triple point and its associated shock structure. Section III B
provides a proposed mechanism for the formation of the second triple point by applying a developed
model for determination of postshock flow condition.

II. METHODOLOGY

A. Experimental facility and instrumentation

In the current study a pulse detonation engine (PDE) is used to generate a shock wave. A PDE
is, in its simplest form, a tube filled with a combustible mixture. Two different reactive waves can
be generated using a PDE: a supersonically propagating combustion front, which is known as a
detonation wave, and a subsonically propagating front, which is referred to as a deflagration wave.
A schematic of the PDE and its instrumentation is presented in Fig. 4. The PDE consists of two
sections, the deflagration-to-detonation transition (DDT) section and the detonation tube. Hydrogen
is injected through eight circumferentially distributed fuel lines at the rear end of the tube. Air is
injected directly upstream of the DDT section. Once the tube is filled with a combustible mixture
a spark plug is used to initiate combustion. Orifices installed in the DDT section accelerate the
flame. By varying the mixture volume and equivalence ratio the operation mode of the PDE can be
adjusted. In the current study we are interested in the transient supersonic jet of a shock-induced
flow, and, therefore, we want to minimize the impact of combustion on the exhaust flow. Hence,
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the tube is only partially filled with a rich mixture prior to ignition to allow for the shock wave
to decouple from the reaction front. The decoupling ensures a time gap between the arrival of the
shock wave and combustion products at the tube exit.

The key governing parameter for the shock-induced flow is the Mach number of the shock wave
propagating through the tube. To achieve comparability between the experimental and the numerical
results we matched the respective Mach numbers of the leading shock waves at the tube exits,
ensuring a similar flow field at the initial stage of the transient starting jet. The leading-shock Mach
number for the schlieren and numerical results discussed in Sec. III A is Ms = 2.15.

Piezoelectric pressure sensors (PCB112A05) are used to measure the leading shock wave
velocity using the time of flight model. Three pressure sensors are flush-mounted in the DDT section
and five in the detonation tube. The last pressure sensor is mounted 4D upstream the tube end. The
combustion front is tracked inside the tube by using ion probes flush-mounted in the opposite side
to the pressure probes within the detonation tube. These sensors are used to ensure the decoupling
of the leading shock wave from the combustion front. For measurements of total pressure at the
tube exit a piezoresistive Kulite XCE-062 transducer is placed at x/D = −0.3 on the jet centerline,
as shown in Fig. 4(c). A frequency response correction of the signal is applied by using a Kulite
KSC-2 signal conditioner [22]. Two type-K thermocouples measure the temperature of air and
hydrogen. The pressure in both the hydrogen and air supply lines is measured using Festo pressure
transducers (SPTW-P10R). The mass flows of air and hydrogen are measured using Coriolis mass
flow meters and are controlled using proportional valves. The data from ionization and pressure
probes are collected on 11 channels using a National Instruments MXI-Express DAQ system at
1 MHz sampling rate.

B. Schlieren diagnostic

The flow at the open end of the PDE is investigated using time-resolved high-resolution schlieren
measurements. Figure 4(b) presents a schematic illustration of the schlieren setup. A standard z-type
configuration is used with two 6-inch parabolic f/8 mirrors for collimating and refocusing of light.
A pulsed LED is used as a light source as suggested by Willert et al. [23]. A very high-intensity light
pulse at a very short time span is generated using an overdriven-operated LED. An exposure time
of 1 μs has shown to be the best trade off between smearing of high-speed flow features and image
contrast. The schlieren images are captured at 20, 40, and 80 kHz with a Photron SA-Z camera.
The spatial resolution of 0.15 pixel per millimeter results in approximately 200 pixels per tube
diameter. The higher frame rates produce a smaller field of view, but the same spatial resolution.
In the Cartesian coordinate system the x coordinate corresponds to the jet axis and the y and z
coordinates to the radial directions. A razor blade aligned perpendicular and parallel to either the x
or y coordinate is used. The resultant images correspond to path-integrated density gradients in the

x direction ∂ρ

∂x and y direction ∂ρ

∂y , respectively.

C. Experimental repeatability

The repeatability of the experiments is investigated based on both schlieren and pressure
measurements. For this purpose a set of three measurement runs are conducted for the same
configuration. As a measure for the repeatability the axial distance of the Mach disk to the tube
exit on the jet center line is determined based on the schlieren images. The procedure is repeated
for five configurations with different fill fractions. The maximum difference between the location of
the maximum axial distance of the Mach disk is found to be 1.6%.

The repeatability of the experiments is also evaluated based on the total pressure measurements.
Figure 5 shows the total pressure at the combustor exit averaged over for four test runs and
the standard deviation, to evaluate the total pressure between the test runs. Moreover, the Mach
number of the shock wave at the combustor exit is determined for the same test runs using the
time-of-flight method. The values are given in the caption of Fig. 5 showing variations of less than
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FIG. 5. Mean and standard deviation of total pressure for four test runs with Ms = 1.968, 1.977, 1.983,
and 1.983 at x/D = −0.3.

1%. The remaining variations in the measured quantities between the experiments is mainly due to
the stochastic aspects of turbulent detonation to combustion process in the detonation tube (DDT
section).

D. Numerical simulations

1. Finite volume discretizations

The present numerical simulations are based on the three-dimensional Euler equations for an
ideal gas, and the one-dimensional reactive Euler equations for an ideal gas mixture. In describing
the respective numerical discretizations used, we will employ the following notation below: ρ is the
density, v the flow velocity vector, p the pressure, Y the species vector, E the total energy, I the
identity matrix, and γ the isentropic exponent of the mixture.

The three-dimensional Euler equations read

∂

∂t
ρ + ∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · [ρv ⊗ v + pI] = 0,

∂

∂t
(ρE ) + ∇ · [(ρE + p)v] = 0,

(1)

and we assume the equation of states for perfect gases

ρE = p

γ − 1
+ 1

2
ρv · v (2)

with γ = 1.4. To compute the numerical solution to (1) we use an explicit Godunov-type second-
order finite volume scheme with an exact Riemann solver. The intercell fluxes are computed by a
MUSCL reconstruction step on the conservative variables (ρ, ρv, ρE ) and the slopes used in this
step are limited by the van Leer limiter to control artificial oscillations at discontinuities (see, e.g.,
Ref. [24] for a textbook reference). Multidimensionality is handled using Strang splitting for the
spatial derivatives in (1), and this leads in total to a second-order accurate scheme in regions of
smooth solution behavior and to first-order nonoscillatory approximations near discontinuities and
extrema. This scheme is augmented by the cut-cell approach for the representation of solid wall
boundary conditions introduced by Klein et al. [25] and Gokhale et al. [26] which is compatible
with directional operator splitting. The cylindrical boundary of the combustion tube is represented
as a level set and is embedded in a regular Cartesian grid. We also make use of block-structured
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FIG. 6. Total pressure over time for Ms = 2.15 at x/D = −0.3.

adaptive mesh refinement techniques [27] to locally refine the grid in regions of interest, such as
shock waves or cut-cells.

The one-dimensional reactive gas flow simulations in the detonation tube are based on the one-
dimensional form of (1) with chemical reactions described by balance laws for the chemical species,

∂

∂t
(ρY) + ∇ · (ρuY) = −ρẎ. (3)

Furthermore, the energy equation of state is modified to account for a mixture of gases,

ρE = ρ

∫ T

T0

cv (τ, Y) dτ + ρQ0(Y) + 1

2
ρu2, (4)

where cv (τ, Y) is the specific heat capacity at constant value and the formation enthalpy at T = T0

is Q0(Y). In this study these functions, just as the reaction rate functions Ẏ(T, p, Y) are provided
by an H2-O2 reaction mechanism for high pressure combustion following Burke et al. [28].

The numerical scheme used here is described in Ref. [29]. It differs from the inert gas 3D solver
explained above by (1) the use of Strang splitting for the implementation of the chemical reaction
terms, and (2) the use of the HLLE approximate Riemann solver as a numerical flux function. The
HLLE solver is the version of the general HLL scheme of Harten et al. [30] with the numerical
signal speeds determined according to Einfeldt [31]. This flux function provides added robustness
and efficiency relative to the exact Riemann solver. Its advantages for detonation wave applications
have been discussed by Berndt [32].

2. Initial data and boundary conditions for the approximate representation of the experiment

The combustion tube in the experiment is only partially filled with the combustible mixture, but
its fill fraction and equivalence ratio along the tube is not known. Although we are given measured
pressure data over time at the tube outlet in addition to the Mach number for the leading shock
wave, a complete description of the thermodynamic quantities is not experimentally available. To
approximate inflow boundary conditions into the three-dimensional simulation domain at the outlet
of the combustion tube, we perform a series of one-dimensional simulations of H2-O2 detonations
and compared the results with the measurements. Varying the equivalence ratio of the combustible
mixture and the fill fraction of the tube we found a one-dimensional solution within the tube that
matches the Mach number of the leading shock as well as the total pressure over time (Fig. 6) rather
accurately.

Even if the flow states in the combustion tube can be well approximated by cross-sectional
averages of the conserved quantities, thereby allowing for a one-dimensional approximation, the
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flow states next to the tube exit are always affected nontrivially by multidimensional effects. To
properly capture these, the three-dimensional simulations cover the entire length of the PDE in
addition to a large flow domain beyond the tube exit. Initial conditions within the tube are given
by the solution from the one-dimensional computation at a point in time right after the combustible
mixture is entirely consumed, but before the leading shock wave has reached the tube exit. Outside
the combustion tube we initially assume air at rest at atmospheric conditions.

III. THE EARLY-STAGE EVOLUTION OF THE TRANSIENT SUPERSONIC JET

In the following the formation and evolution of the second triple point and its associated shock
structure are discussed based on both experimental and numerical results. Finally a proposed
mechanism for the second triple point is presented.

A. Formation and evolution of the shocklet

In Fig. 2 we noted the presence of a second triple point at the intersection of the reflected shock
and the vortex ring. Unlike the first triple point and its associated system of shocks, this second
triple point is not observed in a steady underexpanded jet. While the shocks associated with this
second triple point are visible in some published work, as of yet there has been no discussion of the
mechanism by which it forms. The triple point is formed at the intersection of the reflected shock,
the VRES, and a new transient shock structure which, due to its transient nature, we will refer to as
a shocklet. The shocklet and its associated triple point are only present for a short time during the
early evolution of the transient jet.

Figure 7 presents a series of numerical and experimental snapshots spanning this early evolution
period. Experimental schlieren images are compared with numerical schlieren images produced
by path integration through the three-dimensional simulation data. The numerical schlieren images
display grayscales of the quantity

S(x, y) =
∫ z1

z0

∂ρ

∂x
(x, y, z) dz.

In addition, a planar representation of the early evolution of the underexpanded jet is given in Fig. 7
by contour plots of the Mach number at z = 0. Subsonic and supersonic region of the jet cross
section are color-coded with blue and red, respectively. There is very good agreement between the
numerical and experimental schlieren results regarding the position and size of the large-scale flow
features such as the vortex ring, the Mach disk, and the reflected shock. As a quantitative measure for
the agreement of the numerical and experimental results, the Mach disk location on the jet centerline
as well as the position of the triple point are compared frame by frame. The averaged discrepancy
is found to be 4.2 and 3.0 % for the Mach disk and the first triple point locations, respectively.
Figures 7(a)–7(c) show the leading shock wave and a triple point configuration consisting of the
barrel shock, the Mach disk, and the reflected shock. Up to this time (τ � 4.08) the reflected
shock and the VRES are simply the same shock wave, and the size and position of this shock
wave is primarily dictated by the strong vortex in which it is embedded. As the vortex propagates
farther downstream, the upstream boundary condition for the shock is instead dictated by the Mach
reflection arising from the incident shocks generated at the lip. At larger radial positions however,
the shock is still very much a function of the velocity field induced by the vortex ring. At τ = 5.43,
while the shock still forms a contiguous surface, the angle set by the triple point is significantly
different to that required in the vortex ring. This disparity increases as the vortex ring propagates
farther from the nozzle, and while the shock surface remains contiguous, by τ = 6.79 a sharp kink
forms on this surface, separating the the VRES from the reflected shock [Figs. 7(g)–7(i)]. As the
vortex ring moves farther downstream at τ = 8.15, the kink becomes a triple point, and a second
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FIG. 8. Schematic illustration of the jet structure for the transient and steady underexpanded jet.

triple shock configuration occurs [Figs. 7(j)–7(m)]. The shocklet is clearly visible between the
reflected shock and the CRVRs in both experimental and numerical data as shown in Figs. 7(j)–7(m).

To facilitate a clearer description of the formation of the shocklet, Fig. 8 presents a schematic
comparison between the structures in the transient jet and those in its steady-state counterpart. The
illustration in Fig. 8(a) corresponds approximately to the flow state shown in Figs. 7(j)–7(m). A
triple point configuration as a result of a Mach reflection can be observed for both steady and
transient jet. This shock system consists of the barrel shock, the Mach disk, the reflected shock, and
the triple point (TP1). In case of the steady underexpanded jet, the reflected shock of the primary
shock system reflects as expansion waves from the sonic line [Fig. 8(b)]. However, for the transient
jet the sonic line is significantly distorted by the presence of the vortex ring, and a simple reflection
does not occur. Instead, a second triple shock configuration occurs, as illustrated in Fig. 8(a). This
shock system consists of the reflected shock, the VRES and the shocklet, intersecting at a second
triple point TP2.

The subsequent evolution of the second shock system is shown in Fig. 9 based on a time series
of five schlieren images. No further tilting of the reflected shock toward the jet center line can
be observed; the initial angle of the reflected shock has reached an approximate steady state. In
contrast, the vortex ring and its embedded shock (VRES) move farther downstream, with the VRES
decreasing continuously in size. Therefore, the triple point TP2 translates downstream and radially
outwards [Figs. 9(a)–9(d)]. As the vortex ring convects further, the sonic line shifts inwards, and
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FIG. 9. ∂ρ

∂y schlieren images for Ms = 1.76 showing the evolution of the second triple point configuration.
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FIG. 10. Sequence of pressure contours determined from numerical simulations for a Riemann problem
with Ms = 1.71. The yellow dashed line indicates the formation of a pressure gradient that potentially leads to
the formation of the shocklet.

a portion of the reflected shock must become propagative; this upstream-propagating wave rapidly
decays into an acoustic wave, in a manner analogous to the shock leakage process of jet screech [33].
The conversion of this part of the reflected shock into an upstream-propagating wave effectively
terminates the second triple point [Fig. 9(e)]. While the second triple shock configuration and
its corresponding slipline terminate, small vortex rings along the slipline separate from the triple
point (TP2), as shown in Fig. 9(d). Finally, the impingement point of the reflected shock upon
the jet shear layer appears as a wavy line in the schlieren image, representing the rim of the first
shock cell. Also evident in Fig. 9 is an interaction between the primary and second triple point
configuration. The upper bound of the shocklet is the triple point, its lower bound is the sonic line
associated with the internal shear layer generated by the first triple point. The shocklet undergoes
deformation via interaction with the CRVRs generated along the primary slipline [Figs. 9(b)–9(d)]
and the interaction produces lambda shocks close to the CRVRs [Fig. 9(b)]. Both the experimental
and numerical data show a second triple point configuration.

B. A proposed mechanism for the formation of the second triple point

The formation of the second triple point in the transient jet has no equivalent in the steady jet, as
visualized in Fig. 8. Thus, the explanation for its formation must lie inherently in the dynamics of a
transient jet. The convection of the vortex ring and its associated shock structure is one such process,
and the temporal variation in upstream flow conditions within the tube is another. In order to separate
these processes, the numerical simulations were repeated with a constant inflow condition at the
tube exit. Also, a different shock Mach number of Ms = 1.71 is chosen, to rule out the impact of
the shock strength. The inflow conditions for the numerical simulations corresponds to the solution
of the Riemann problem for a planar shock wave propagating at a constant speed corresponding
to Ms = 1.71. The results are shown in Fig. 10, where the formation of the second triple point is
clearly visible. Hence, this suggests that the transient interaction between the first triple point and
the vortex ring are the likely explanation for the formation of the second triple point.

The consideration of the time series of pressure distributions shown in Fig. 10 demonstrates that
unlike the steady jet counterpart, the reflected shock is nonstationary for a time before the formation
of the second triple point. The reflected shock elongates and rotates, as the vortex ring and its
embedded shock move farther downstream. As the reflected shock tilts toward the jet centerline, a
strong pressure gradient parallel to the shock develops along its downstream face. This region of
negative pressure gradient, from the jet core to the jet shear layer, is marked as −∇p in Fig. 10.
Unlike for a steady jet, this region of negative pressure gradient grows in size and strength with time
for a transient jet. We suggest that it is the motion of the reflected shock, which results in a pressure
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FIG. 11. Schematic illustration of the transient oblique shock (TOS) model. Shown are a transient shock
wave at two time instances and the quantities used for the calculation of the postshock flow conditions of the
particle at t2.

gradient downstream of the reflected shock, that in turn leads to the formation of the shocklet and
the second triple point. In the following we develop a model to evaluate this hypothesis.

1. Transient oblique shock model (TOS)

To test the hypothesis that it is the unsteady motion of the reflected shock that gives rise to the
formation of the triple point, we develop a model for the effect of this motion. The model delivers
the postshock flow conditions for a transient, rotating oblique shock wave based on the preshock
flow conditions and the shock motion. The underlying assumption of the approach is that the moving
shock wave can be treated as a quasisteady problem by converting the flow velocity into a reference
frame that moves with the shock.

A schematic illustration of the problem is presented in Fig. 11. In a time period of �t = t2 − t1
a shock wave moves from C1D1 to C2D2. The objective of the model is to determine the postshock
condition for a particle upstream of the shock wave, which will be processed by the shock wave
after a certain time. The particle at t1 has already passed the shock wave at t2, since the flow velocity
v is higher than the corresponding shock velocity S.

A simple approach is used to estimate the shock velocity S. The intersection of v with C1D1 is
marked as a point I1 in Fig. 11. A perpendicular line from I1 to C2D2 intersect with C2D2 at a point
I2. The shock velocity S is approximated simply by the displacement of the shock I1I2 over the time
interval by S = I1I2

�t .
The determination of postshock properties for an oblique shock is an elementary gas-dynamics

problem, solved by the simple application of the Rankine-Hugoniot equations. The problem here,
however, involves a shock that is both translating and rotating. The proposed model is thus
essentially an attempt to produce an appropriate coordinate transformation to allow the application
of quasisteady one-dimensional conservation equations to a rotating shock. Therefore, the Mach
number in the absolute reference Ma1 = v

a must be converted into a reference frame that moves with
the shock. Taking the shock velocity into account, the Mach number in the shock reference frame
is simply Mas

1 = v−S
a . To apply the Rankine-Hugoniot equations for an oblique shock, the normal

component of Mas
1 is determined by considering the shock angle in the shock reference frame βs.

As shown in Fig. 11, β∗ is the cross angle between C1D1 and Mas
1. Assuming an infinitesimal |I1I2|,

the mean value of β and β∗ is taken as the shock angle βs. Hence, the normal Mach number in
shock reference Mas

n1 can be determined as Mas
n1 = Mas

1 sin βs. Finally, the postshock conditions

073401-14



DYNAMIC EVOLUTION OF A TRANSIENT SUPERSONIC …

TABLE I. TOS results for τ = 2.66 shown in Fig. 12(a).

Input Output

Ma1 p1 α Mas
n1 Mas

1 βs S [m/s] p2 [bar]

x1 2.22 0.43 9.7 1.60 1.62 79.9 188 1.2
x2 2.24 0.43 10.8 1.60 1.64 78.5 188 1.2
x3 2.28 0.4 12.5 1.63 1.68 76.2 188 1.2

are evaluated by applying the normal component of the Mach number in the Rankine-Hugoniot
equations:

Ma2
2 = 1 + γ−1

2 (Mas
1 sin βs)2

γ (Mas
1 sin βs)2 − γ−1

2

, (5)

p2

p1
= 1 + 2γ

γ + 1

[(
Mas

1 sin βs
)2 − 1

]
, (6)

ρ2

ρ1
= (γ + 1)

(
Mas

1 sin βs
)2

1 + (γ − 1)
(
Mas

1 sin βs
)2 , (7)

T2

T1
= p2

p1

ρ1

ρ2
. (8)

Here p, ρ, and T are the pressure, density, and temperature, respectively. In the following section,
this model is used to demonstrate the formation mechanism of the second triple point.

2. Formation mechanism of the triple point based on the TOS model

As previously stated, the formation of the secondary triple point must be linked to the transient
evolution of the jet, as only the first triple point appears in steady-state underexpanded jets. The
secondary triple point is made up of the reflected shock from the first triple point, the VRES, and
the shocklet, as shown in Fig. 8(a). Of these, the first two have been discussed in the literature at
some length; the shocklet is the component that has therefore gone undescribed. To establish why
the shocklet forms, we apply the TOS model to the motion of the reflected shock, with a starting
point well before the shocklet is observed. Initial observations suggest that the pressure gradient
parallel to the downstream face of the reflected shock is likely linked to the shocklet’s formation,
thus we seek to test whether this pressure gradient is a result of the motion of the shock.

The application of the TOS model involves analysis of a series of discrete points parallel to the
upstream face of the reflected shock (x1 to xn), as per Fig. 12. We use the early stages of evolution
before the formation of the shocklet to test the validity of the model. Thus we start our analysis
at τ = 2.66, where the reflected shock and VRES are essentially a single contiguous shock wave
[from TP1 to O in Fig. 12(a)]. Three discrete points x1 to x3 are selected just upstream of the reflected
shock for the TOS analysis. The changes in flow properties during passage through the shock wave
are considered for particles originating at these points using the TOS model. To this end, the motion
of the reflected shock is tracked for two snapshots (τ = 2.66 and τ = 2.90). A small time period of
�τ = 0.24 is chosen for the TOS analysis, as an infinitesimal shock displacement is the underlying
assumption of the model. The results of the TOS analysis are presented as several input and output
parameters in Table I. Here the input parameters, Ma1, p1, α are the Mach number, the pressure, and
the flow angle, respectively, extracted directly from the numerical results. The output parameters of
the TOS analysis, Mas

n1, Mas
1, βs, S, and p2 are the normal Mach number in shock reference, the

Mach number in shock reference, the shock angle, the shock velocity, and the pressure downstream
of the reflected shock, respectively.
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FIG. 12. (a) Pressure distribution at τ = 2.66 as derived from the numerical simulations at constant inflow
conditions with Ms = 1.71. TP1 and O represent the first triple point and the tail of the VRES. The TOS model
is applied for x1, x2, and x3. The result of the TOS analysis is given in Table I. (b) Pressure distribution at
τ = 3.15 shows a uniform pressure distribution downstream of the reflected shock.

Figure 12(b) presents the pressure distribution based on the numerical simulation, shortly after
the distribution in Fig. 12(a). This time interval �τ = 0.48 allows for the particle upstream of the
reflected shock at τ = 2.66 to be processed by the shock wave at τ = 3.15. For the TOS analysis
the calculated pressure downstream of the shock wave is given as p2 in Table I. The results show
a constant value of 1.2 bar for x1, x2, and x3, i.e., a uniform pressure distribution. In accordance,
the results from the numerical simulations confirm a uniform pressure distribution downstream
of the reflected shock in Fig. 12(b). Hence, the predicted uniform pressure distribution downstream
of the reflected shock based on the TOS analysis agrees qualitatively very well with the CFD results.
This agreement sustains for the entire conducted analysis, as pointed out in the reminder of this
section. Hence, the TOS model is considered as valid.

The pressure gradient is of course readily available from the numerical simulation; the purpose of
the model is to determine the source of this gradient. According to Eq. (6), the pressure downstream
of a moving shock, p2, is a function of Mas

n1 and p1. While p1 is fixed by the upstream flow
conditions, Mas

n1 can be highly affected by the displacement of the shock wave due to the shock
propagation velocity S. Figure 13 illustrates the impact of the shock displacement on S. While an

(a) orthogonal shock displacement (b) rotational shock displacement 

x1

t1

S1

S1 = S2 = S3 S1 < S2 < S3 

t1 t2t2

x2

x3

x1

x2

x3

S2

S3

S1

S2

S3

FIG. 13. Shock propagation velocity for (a) orthogonal and (b) rotational shock displacement.
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FIG. 14. (a) Pressure distribution at τ = 3.88 as derived from the numerical simulations at constant inflow
conditions with Ms = 1.71. TP1 and O represent the first triple point and the tail of the VRES. The TOS model
is applied for x1 to x4. The result of the TOS analysis is given in Table II. (b) Numerical pressure distribution
at τ = 4.36, showing a pressure gradient on the downstream face of the reflected shock.

orthogonal shock displacement results in an uniform S distribution [Fig. 13(a)], a rotational shock
displacement leads into a gradient in S along the shock wave [Fig. 13(b)]. Here we seek to test
whether the rotation of the shock is sufficient to explain the strength of the gradient observed in the
pressure data.

3. Evolution of the pressure distribution downstream of the reflected shock

The pressure distribution downstream of the reflected shock is uniform up to τ = 3.15
[Fig. 12(b)], since the motion of the reflected shock at this time point is primarily translation rather
than rotation; this translational motion is indicated by the constant S distribution in Table I. However,
as the vortex ring and its embedded shock translate farther downstream (t > 2.66), and pass the
Mach disk [Fig. 14(a)], the inner part of the reflected shock begins to tilt. The TOS model is applied
to four discrete points upstream of the tilted part of the reflected shock, as shown in Fig. 14(a). The
results of the TOS analysis for x1 to x4 are shown in Table II. The model suggests a decreasing
downstream pressure p2 from x1 → x4. Figure 14(b) exhibits the pressure field obtained from the
numerical simulation a short time later, at τ = 4.36. In accordance with the results of the TOS
analysis, a nonuniform pressure distribution can be observed downstream of the reflected shock.

TABLE II. TOS results for τ = 3.88, shown in Fig. 14(a).

Input Output

Ma1 p1 [bar] α Mas
n1 Mas

1 βs S [m/s] p2
p1

p2 [bar]

x1 2.33 0.37 −1.3 1.81 1.97 66.6 123 3.65 1.35
x2 2.36 0.36 0.2 1.77 1.97 64.3 134 3.51 1.27
x3 2.40 0.35 2.4 1.73 1.97 61 149 3.33 1.16
x4 2.44 0.33 4.2 1.69 1.99 58.3 161 3.18 1.06
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The aforementioned results indicate that the pressure gradient observed in the simulation data
can be caused purely by the rotation of the oblique shock. The next step is to determine a more
exact mechanism. Therefore, we consider next the spatial distribution of the flow between the jet
core and the jet shear layer [x1 → x4 in Fig. 14(a)]. According to Table II there is a declining
pressure ratio p2

p1
from x1 → x4, as p2

p1
(x1) >

p2

p1
(x2) >

p2

p1
(x3) >

p2

p1
(x4), which results in a pressure

gradient downstream of the shock wave. According to Eq. (6), the pressure ratio p2

p1
is a function

of Mas
1 and sin βs. The term sin βs can be linearized to βs under the small-angle approximation.

Therefore, in the context of the model, the negative pressure ratio from x1 → x4 can be ascribed
to either decreasing Mas

1, decreasing βs, or both. While Mas
1 remains almost uniform from x1 →

x4, a significant decrease for βs is evident, as shown in Table II. Consequently, if the mechanism
leading to the distribution of Mas

1 and βs is known, the formation of the nonuniform pressure region
downstream of the reflected shock can likewise be determined.

To elucidate the mechanism responsible for the distribution of Mas
1 and βs, we consider the

displacement of the reflected shock; the corresponding shock propagation velocity S is given in
Table II. The significant increase of the shock velocity from x1 → x4 indicates a strong tilting
motion of the shock wave. The increase in the shock velocity S leads inherently to a decrease in
the relative Mach number in shock reference Mas

1, as Mas
1 = Ma1 − S

a . This correlation can also
be recognized visually from Fig. 11, which illustrates a tilting shock wave. As shown in Table II,
the approaching Mach number Ma1 increases from x1 → x4, which has the opposite effect on Mas

1,
as can be seen from the equation above. However, the uniform distribution of Mas

1 over x1 → x4

indicates, that the increase of S compensates for the increase of Ma1. Consequently, the uniform
distribution of Mas

1 is caused by the pronounced increase of S, i.e., due to the strong tilting of the
reflected shock. Moreover, the tilting motion of the reflected shock also affects the shock angle β.
The rotation of the shock results in an inherent reduction of the shock angle (βs < β) as can be
seen in Fig. 11. As shown in Table II, βs decreases from x1 → x4. Consequently, the tilting shock
wave results in a negative pressure gradient by reducing Mas

1 and βs from x1 → x4. Additionally, a
small decrease in upstream pressure p1 and an increase in α supports the formation of the pressure
gradient by simply decreasing β and therefore βs (Fig. 11). Hence, these results suggest that the
tilting motion of the reflected shock and the alteration of the flow angle upstream of this shock are
the primary mechanisms responsible for the reduction of Mas

1 and βs, and thereby for the formation
of the pressure gradient downstream of the reflected shock.

At later times, the vortex ring propagates farther downstream (see Figs. 15 and 16). Thus the
disparity in the angle dictated by the first triple point and that required by the VRES increases.
Hence, a kink forms gradually within the shock wave (marked as K in Figs. 15 and 16), separating
the reflected shock and the VRES. A dotted line in Figs. 15 and 16, originating from K separates
two regions A and B, downstream of the reflected shock and the VRES, respectively. The TOS
model is applied to three points for each region (Figs. 15 and 16). The corresponding results are
presented in Tables III and IV. We first evaluate the results for region A, before proceeding further
with region B. The comparison of the CFD pressure distribution at τ = 3.88 to τ = 6.30, shown in
Figs. 14–16, exhibits an increases of the gradient in −∇p region with time. In conformity with the
CFD pressure distribution, the TOS results predict an increase of the pressure gradient with time
downstream of the reflected shock; the pressure gradient p2(x1)/p2(x4) increases by approximately
8% between τ = 3.88 and τ = 4.60 and by 86% from τ = 4.60 to τ = 5.81 (Tables II to IV). A
comparison of the shock velocity S indicates that the tilting motion of the reflected shock becomes
significantly stronger as S(x4)/S(x1) increases with time. The quantity S(x4)/S(x1) increases by
approximately 4% from τ = 3.88 to τ = 4.60 and 1800% from τ = 4.60 to τ = 5.81 (Tables II
to IV). For the reasons indicated above, the strong tilting results in a stronger compression, as
	τ=5.81 > 	τ=4.60 > 	τ=3.88, where 	 = p2

p1
(x1)/ p2

p1
(x4). Hence, the gradient of the −∇p region

increases with time. The tilting of the shock is not the only mechanism by which the −∇p changes
as a function of time: there is also a small increase in the pressure gradient from x1 → x4 upstream
of the reflected shock, as p1(x1)/p1(x4) increases 11%, 17%, and 30% between τ = 3.88, τ = 4.60
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FIG. 15. (a) Pressure distribution at τ = 4.60 as derived from the numerical simulations at constant inflow
conditions with Ms = 1.71. TP1 and O represent the first triple point and the tail of the VRES. The TOS model
is applied for x1 to x7. The result of the TOS analysis is given in Table III. (b) Pressure distribution at τ = 5.09.

and τ = 5.81. Similarly, there is an increase in the flow angle α of 5.5◦, 8.3◦, and 16.6◦, respectively.
Nevertheless, the contribution of these mechanisms is relatively small compared to the gradients
induced by the motion of the shock; the tilting of the reflected shock is the main reason for a
pronounced pressure gradient downstream of the reflected shock wave.

FIG. 16. (a) Pressure distribution at τ = 5.81 as derived from the numerical simulations at constant inflow
conditions with Ms = 1.71. TP1 and O represent the first triple point and the tail of the VRES. The TOS model
is applied for x1 to x7. The result of the TOS analysis is given in Table IV. (b) Pressure distribution at τ = 6.30.
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TABLE III. TOS results for τ = 4.60, shown in Fig. 15(a).

Input Output

Ma1 p1 [bar] α Mas
n1 Mas

1 βs S [m/s] p2
p1

p2 [bar]

x1 2.23 0.42 −7.9 1.74 2.04 58.5 70 3.35 1.40
x2 2.29 0.41 −4.3 1.68 2.07 54.1 81 3.13 1.27
x3 2.37 0.37 −1.0 1.64 2.14 49.9 91 2.95 1.09
x4 2.4 0.35 0.4 1.61 2.17 48.1 95 2.87 1.02
x5 2.57 0.29 5.1 1.96 2.00 78.1 169 4.31 1.24
x6 2.63 0.27 7.1 1.97 2.04 75.3 177 4.36 1.16
x7 2.73 0.23 10.2 2.06 2.07 83.5 185 4.79 1.12

As seen by the TOS model and the numerical simulations both the size and strength of the −∇p
region grow with time. The flow evolution from τ = 4.60 to τ = 5.09 (Fig. 15) shows that the
reflected shock (TP1-K) elongates with time. Consequently, the −∇p region covers a wider area
downstream of the reflected shock, as shown in Fig. 15(b). However, the −∇p region occurs only
downstream of the reflected shock, from TP1 to K, and ends at the A-B interface. These observations
based on the CFD results agree again with the results from the TOS analysis, shown in Table III;
the −∇p region elongates from x1 to x4 [Fig. 15(b)], as the pressure p2 decreases from x1 → x4,
but there is a positive pressure gradient from A to B at their interface, as p2(x5) > p2(x4) shown in
Table III. This positive pressure gradient is the origin of a new shock wave, the shocklet, as will be
discussed in the following.

4. Evolution of the pressure distribution downstream of the VRES

The formation of a positive pressure gradient from A to B can be further examined by considering
the TOS results for the region B given in Table III. As shown in Fig. 15 and also indicated by the
shock velocity S for x5 to x7 in Table III, the VRES tilts barely but translates predominantly in the
axial direction. This is also the case for the approaching flow in region B, indicated by small α for
x5 to x7 in Table III. The combination of the vertical shock, moving in the axial direction and small
α results in significantly large shock angles β, leading to high-pressure ratios p2

p1
in region B (x5 to

x7 in Table III). Hence, the pressure in region B is higher than A in the vicinity of their interfaces;
there is a positive pressure gradient from A to B.

Figure 16(a) shows the flow evolution at a later stage in time for τ = 5.81 and τ = 6.30.
The corresponding TOS results for x1 to x7 at τ = 5.81 are given in Table IV. The evolution
of the −∇p region can be evaluated for an extended period of time based on the pressure

TABLE IV. TOS results for τ = 5.81, shown in Fig. 16(a).

Input Output

Ma1 p1 [bar] α Mas
n1 Mas

1 βs S [m/s] p2
p1

p2 [bar]

x1 2.09 0.46 −14.3 1.61 2.09 50.6 2 2.87 1.33
x2 2.05 0.59 −9.2 1.40 2.01 44.3 20 2.13 1.26
x3 2.31 0.42 −2.1 1.31 2.24 35.9 39 1.84 0.78
x4 2.52 0.32 2.3 1.24 2.43 30.6 51 1.62 0.52
x5 2.65 0.27 4.7 2.06 2.08 82.6 168 4.81 1.28
x6 2.73 0.24 6.6 2.09 2.12 80.0 178 4.91 1.18
x7 2.79 0.22 8.3 2.10 2.15 77.7 186 4.98 1.09
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distribution τ = 4.60 to τ = 6.30 shown in Figs. 15 and 16. It is evident that the −∇p region
enlarges further and its pressure gradient increases with time. Similar to the −∇p, the pressure
gradient in region B also becomes more distinctive with time. The TOS results confirm again
the CFD results, showing an increase in pressure gradient with time in both regions A and B, as
[p2(x1)/p2(x4)]τ=5.81 > [p2(x1)/p2(x4)]τ=4.60 > [p2(x1)/p2(x4)]τ=3.88 and [p2(x5)/p2(x7)]τ=5.81 >

[p2(x5)/p2(x7)]τ=4.60. Both, the CFD and the TOS results show the pressure gradients in both
regions A and B increase with time. The pressure gradient downstream of the reflected shock in
region A, from TP1 to K, is negative. In contrast, there is a positive pressure gradient in region B,
from O to K, as marked in Fig. 16(b). Hence, the increase in the pressure gradient in A and B results
in higher pressure ratio along the A-B interface. Based on the TOS results, shown in (Tables III and
IV), the pressure ratio p2(x5)/p2(x4) increases from τ = 4.60 to τ = 5.81 by 102%. The result of
this evolution can be observed in Fig. 16(b). The negative pressure gradient from TP1 to K and the
positive pressure gradient from O to K lead to an increase of the pressure within a very small region,
between the −∇p and +∇p regions (Fig. 16). As both pressure gradients intensify with time, an
abrupt pressure change occurs at the intersection of these regions. Consequently, the abrupt pressure
rise leads to the formation of a new shock wave.

Now the formation of the second triple point and the shocklet can be summarized. The abrupt
pressure rise, which necessitates the formation of the shocklet, is induced by the evolution of the
pressure distribution downstream of the reflected shock. The pressure downstream of the reflected
shock is highly affected by the displacement of this shock wave over time. This is due to two main
facts: first, the flow velocity upstream of the reflected shock is higher than the propagation velocity
of the shock wave. Consequently, the flow downstream of the shock wave is driven by the prior
motion of this shock wave. Second, the displacement of the reflected shock is nonuniform along the
shock wave with the reflected shock tilting toward the jet center line, driven by the convection of
the vortex ring. As the vortex ring moves farther away from the first triple point, the angle dictated
by the first triple point and the one required from the part of the shock wave, which is embedded
in the vortex ring (VRES), differ. Hence, a kink appears within the shock wave, which separates
the reflected shock from the VRES. Due to the rotational motion of the reflected shock, a negative
pressure gradient arises in the radial direction, from the jet core to the jet boundary. This pressure
gradient increases with time, as the reflected shock extends and rotates further. Hence, the pressure
becomes relatively low downstream of the reflected shock. Its minimum value occurs right below
the kink. In contrast, the pressure downstream of the VRES is relatively high. This is mainly due
to the nearly axial displacement of the shock wave, leading into large shock angles along the wave.
Consequently, the pressure above the kink becomes much higher than below the kink, resulting in
an abrupt pressure rise. As the abrupt pressure rise leads into the formation of a new shock wave
(shocklet), the kink becomes a triple point. Finally, the shocklet, the reflected shock and the VRES
forms the second triple point configuration of the transient supersonic starting jet.

IV. CONCLUSION

The dynamic evolution of a starting transient supersonic flow has been studied by utilizing
numerical simulations and high-resolution high-speed schlieren measurements. It has been shown
that for a sufficiently strong leading shock, the interaction of the secondary shock system with the
VRES will result in the formation a second triple point. Experimental evidence is provided for the
presence of a second triple shock configuration along with a shocklet between the reflected shock
and the slipstream, which results in the formation of further KH vortices.

A simple model was developed based on one-dimensional shock relations, in an attempt to
determine the source of pressure distributions in the flow which could give rise to the shocklet.
A comparison of the output of this model to the results of the numerical simulations suggested that
the shocklet forms due to a different mechanism than the classical Mach reflection responsible for
the first triple point.
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The formation of the second triple point is initiated by the transient motion of the reflected
shock, which is induced by the convection of the vortex ring. As the vortex ring overtakes the
Mach disk, the part of the reflected shock next to the core begins to tilt, while the outer part of
the shock propagates almost uniformly farther downstream. Consequently, a kink appears in the
reflected shock, separating the reflected shock from the vortex ring embedded shock. Downstream
of the reflected shock a negative pressure gradient in radial direction occurs, which is caused by
the rotational motion of the reflected shock wave. This pressure gradient region grows in size and
strength, as the reflected shock elongates and rotates further. Hence, the pressure just below the
kink decreases with time. In contrast, the pressure downstream of the vortex ring embedded shock,
particularly in the vicinity of the kink, is relatively high. Therefore, an abrupt pressure rise along
the kink takes place. The kink becomes a triple point, while the abrupt pressure rise results in the
formation of a new shock wave.
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