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The behavior of flagellated bacteria swimming in non-Newtonian media remains an
area with contradictory and conflicting results. We report on the behavior of wild-type
and smooth-swimming E. coli in Newtonian, shear-thinning, and viscoelastic media,
measuring their trajectories and swimming speed using a three-dimensional real-time
tracking microscope. We conclude that the speed enhancement in Methocel solution at
higher concentrations is due to shear thinning and an analytical model is used to support our
experimental result. We argue that shear-induced normal stresses reduce wobbling behavior
during cell swimming but do not significantly affect swimming speed. However, the normal
stresses play an important role in decreasing the flagellar bundling time, which changes the
swimming-speed distribution. A dimensionless number, the “strangulation number” (Str)
is proposed and used to characterize this effect.
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I. INTRODUCTION

Many microorganisms live in various aquatic environments and propel themselves by rotating
effectively rigid helical flagella [1] or undulating flexible cilia [2,3]. Most of these cells live in
biological fluids, such as mucus, which can exhibit complex non-Newtonian properties [4], and one
issue that has received recent attention to resolve is how and why non-Newtonian effects change
cell swimming characteristics.

Experimental studies of swimming in viscous and non-Newtonian fluids have reported different,
apparently contradictory results. Berg and Turner [5] measured the rotational speed of wild-type
tethered E. coli and discovered a nonmonotonic change in rotational speed as a function of the
viscosity. In addition, the rotational speed was different in solutions of Ficoll, a branched polymer
with Newtonian characteristics, and Methocel, a long-chain, unbranched polymer with viscoelastic
and shear-thinning properties. These differences were evident even when the media exhibited the
same bulk viscosity. Berg and Turner concluded the difference was due to the interactions between
flagellar filaments and the quasirigid polymer networks.

Two non-Newtonian effects are likely to influence the mechanics of flagellar swimming: shear
thinning and the presence of normal stresses. Shear thinning, in which the high rotation rate of
the flagella decreases the effective viscosity, has been proposed several times including in the
original Berg and Turner experiments [5] as well as more recently by Martinez et al. [6]. Theoretical
models based on resistive force theory (RFT) and a two-viscosity model applied to the cell body
and flagellum, respectively, have also been presented to support these data [6]. In addition, Gomez
et al. [7] argued that although the swimming speed is enhanced in a shear-thinning fluid, it should
be explained by a result of viscosity gradient rather than by a two-viscosity model assuming a
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constant-speed motor, which differs from the motor behavior of bacteria E. coli [8], in power-law
fluid with varying indices. The results appear to be dependent on the details of the motion, for
example, as demonstrated by Montenegro-Johnson et al. [9], who found that the swimming speed
of an idealized two-dimensional (2D) undulating sheet in a shear-thinning fluid could be either
enhanced or hindered, depending on the details of the flagellar kinematics.

Other studies have argued that non-Newtonian normal stresses might also be responsible for
the observed speedup in polymeric swimming. Patteson et al. [10] tracked wild-type E. coli in
viscoelastic polymer solutions and found that the cells swam faster and in a straighter path as
the polymer concentration increased. They argued that normal stresses introduced by the elastic
properties of the fluid reduced the cell-body wobble, explaining both of these observations.
However, the effect of cell precession (wobble) on swimming speed is not at all clear. While Darnton
and Patteson both observed an anticorrelation between wobble and swimming speed [10,11], Liu
et al. [12] argued, based on measurements of wild-type C. crescentus and a modified RFT, that cell
precession generates thrust and increases swimming speed. However, unlike E. coli, C. crescentus is
a uniflagellated bacteria with a crescent-shaped cell body which swims using a “run-reverse-flick”
strategy, and these differences, particularly the cell geometry, may lead to differences in the role of
wobble in swimming speed.

Non-Newtonian stresses are also known to both increase and decrease the propulsive speed of
a single rotating helical filament, depending on the helix geometry and the Deborah number, De,
where the Deborah number is the product of the rotational speed, ω, and the elastic relaxation time,
τ . Experiments using a model helical filament in a non-shear-thinning viscoelastic (Boger) fluid
[13] demonstrated increased swimming speeds, while computations conducted over a wider range
of geometric and flow parameters [14] showed both accelerated and retarded speeds due to the
non-Newtonian fluid properties.

In live-cell experiments, two complicating factors have arisen that make comparisons between
different experiments and theory challenging. First, most of the experiments have observed the
behavior of wild-type E. coli cells [5,6,10], which exhibit a “run-and-tumble” style of motility [1].
This is problematic because, as mentioned above, the flagellar bundling process of a wild-type
swimmer is quite sensitive to changes in viscosity [15], and this affects the average run speed as
well as the distribution of speeds observed over many run-tumble cycles. Although it has not yet
been studied, the bundling process is also likely to be affected by non-Newtonian fluid affects.

Second, another factor that makes experimental observations difficult to compare stems from
the composition of the base media. Recent studies [6,15] have demonstrated that short chain
fragments in the polymer solutions have a strong effect on the activity level of the cells, increasing
the average run speed. A consensus has arisen that only by dialyzing the solutions to remove
the polymer fragments are reliable comparisons of swimming in baseline (nonpolymer) versus
enhanced (polymer) media achievable.

Finally, we note differences in defining the speed enhancement. Several reports have compared
the speed in a non-Newtonian solution to the speed in a Newtonian solution with an identical shear
viscosity [7,13,14] and have reported an increase in speed. However, it is known that the swimming
speed of a cell (with constant torque motor) decreases with increased shear viscosity [16], which
could lead to an overall decreasing trend if absolute swimming speed is studied as a function of the
viscosity in a non-Newtonian solution. However, such enhancements have been observed in several
experimental studies [6,10,15].

For all these reasons, the results from theoretical, numerical, and experimental perspectives
remain controversial and there is still no clear understanding of the relative importance of different
non-Newtonian effects on cell swimming behavior. With this study, we hope to resolve these issues
and we present results on the swimming behavior of both wild-type and smooth-swimming E. coli
in a variety of fluid media: a Newtonian motility buffer with a range of viscosities (Ficoll 400)
and different concentrations of a viscoelastic, shear-thinning medium (Methocel). In all cases, the
fluid media are dialyzed to remove any polymer fragments. Smooth swimmers do not tumble, thus
providing a means to measure the pure swimming effectiveness of cells. Data on the behavior of both
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FIG. 1. Mean swimming speed of smooth swimmers in Ficoll (red symbols) and Methocel (black symbols)
solutions. The viscosity is the shear viscosity measured at 200 s−1. The swimming speed decreases with
increased viscosity in Ficoll solutions but increases with increased viscosity in Methocel solutions. Calculated
swimming speeds, using a shear-dependent RFT model [6], are plotted using light- and dark-blue symbols, for
flagellar shear rates of γ̇ f = 7000 and 4000 s−1, respectively.

smooth-swimming and wild-type cells thus provide us a means to separate the swimming mechanics
from the bundling mechanics. Our experimental technique (Secs. V A–V D) tracks individual cells
over long periods of time using a 3D tracking microscrope which accounts for cell-to-cell variations
(due to variations in cell geometry, etc).

In the following section (Sec. II), we present our measurements of the swimming speed and
speed distribution of both wild-type and smooth-swimming cells in the different fluid media. In
Sec. III we then use a range of arguments and analyses to tease apart the roles of shear thinning
and non-Newtonian normal stresses on swimming speed, cell-body wobble, and flagellar bundling.
Section IV reports our conclusions, and Sec. V is devoted to Materials and Methods.

II. RESULTS

A. Swimming behavior of smooth swimmers in both Newtonian and non-Newtonian solutions

Using 3D real-time tracking of multiple cells, the behavior of smooth swimmers was observed
in Ficoll and Methocel solutions of varying concentration. The average swimming speeds from at
least 25 individuals under each experimental condition are shown in Fig. 1. Sample trajectories of
two typical swimmers, one in motility buffer (Newtonian; viscosity, 0.98 cP) and one in Methocel
solution (viscoelastic; bulk viscosity, 17.80 cP), are shown in Fig. 2.

B. Swimming behavior of wild-type cells in non-Newtonian solutions

The swimming behaviors of wild-type E. coli in Methocel solutions at various concentrations
were also observed and analyzed. As previously suggested by Qu et al. [15], the skewness of an
individual cell’s swimming-speed distribution provides a good measure of the swimming behavior
and the relative amounts of time spent during run-and-tumble phases. The tumble behavior was
defined by a sudden change in orientation and can be measured experimentally from the swimming
trajectory. With increased viscosity, E. coli spends an extended time recovering from tumble to
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FIG. 2. The 2D projection of the swimming trajectories of two individual swimmers. (A) In 0.500%
Methocel solution. (B) In motility buffer. It is clearly shown that the trajectory in the Methocel solution is
faster and smoother than the trajectory in the motility buffer.

run due to an elongated bundling process. The speed distribution of a wild-type swimmer in buffer
solution (low viscosity) is highly asymmetric because it spends most of the time running (high
speed) and a short time tumbling (low speed). The skewness quantifies the asymmetry of the
distribution, and is zero for a symmetric distribution. For wild-type E. coli, the skewness of the
speed distribution is negative, but becomes close to zero at increased viscosities due to the effect of
the longer bundling time. Moreover, a characteristic run speed can be estimated using the individual
speed skewness and mean. It is noted by Qu et al. [15] that at a given characteristic run speed, the
mean speed of wild-type E. coli cells is proportional to the skewness of the speed distribution. The
characteristic run speed is difficult to measure experimentally, especially when the solution viscosity
is so high that run behavior at full speed is rarely maintained.

Here, the skewness, averaged over all individuals, and tracked as a function of the viscosity, is
shown in Fig. 3(a), while the characteristic run speed as a function of the shear viscosity, calculated
using the analysis described by Qu et al. [15], is shown in Fig. 3(b).

III. DISCUSSION

It is observed that the average swimming speeds (averaged characteristic run speeds) of both
wild-type and smooth-swimming cells are enhanced significantly in Methocel solutions with
increased shear viscosity [Fig. 1, black symbols, and Fig. 3(a)], which is in sharp contrast to the
decreasing trend of mean swimming speed in Newtonian solutions (Fig. 1, red symbols). This
phenomenon has been observed previously [6,10,13] but has been explained using different reasons
including the shear-induced normal stress, which reduces cell wobble [10], viscoelastic stresses
[13], and shear thinning of the polymer solutions [6,7]. To understand different effects on the
swimming speed, we first focus our analysis on smooth-swimming cells, since this isolates the
swimming mechanics from any effects associated with flagellar bundle formation and breakup.

A. Flagellar motor torque-speed behavior

We start with characterization of the smooth-swimmer flagellar motor behavior. As shown in
Fig. 1 (red symbols), the mean swimming speeds in Ficoll (Newtonian) solutions decrease as the
solution viscosity rises, and although the decline is monotonic throughout the range of viscosities
tested, there is an increase in the rate at which the speed decreases for μ > ∼5 cP. At the higher
concentrations the speed decreases as 1/μ, suggesting that in this regime the torque of the motor is
constant. This has been previously observed experimentally [8,15] and modeled analytically [15,16].
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FIG. 3. (a) Averaged skewness of swimming-speed distribution of wild-type cells in Methocel (black
symbols) and Ficoll (red symbols) solutions at various viscosities. The skewness increases monotonically in
Ficoll solutions with increased viscosity. In Methocel solutions, the averaged skewness increases from negative
to 0 and then starts to decay. (b). Averaged characteristic run speed of wild-type cells in Methocel (black
symbols) and Ficoll (red symbols) solutions at various viscosities. The speed decreases in Ficoll solutions with
increased viscosity but increases with increased viscosity in Methocel solutions. (Ficoll results reproduced
from Qu et al. [15]).

In contrast, the swimming-speed trend at lower viscosities implies that the torque of the motor is
increasing with respect to its rotational speed [8,15].

Since we remain in the low-Re-number (Re ∼ 10−4) regime [17,18], resistive force theory for
the cell and helical bundle [15,16] is used to estimate the torque-speed characteristics of the motor
(Fig. 4). The geometry of the cell [6,16,19] is included in Supplemental Table SI1 [20]. The behavior
is consistent with previous measurements [8,11,15,21], although the “knee speed” of the motor is a
little slower and the stall torque a little larger than those found in previous observations of wild-type
cells. With this reassurance that the cells studied are “typical” we address two hypotheses to explain
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FIG. 4. Smooth-swimmer flagellar motor torque behavior calculated using resistive force theory. The knee
speed of the motor is about 100 Hz, which is a bit lower than that found in wild-type cells [8,15].
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FIG. 5. Averaged local curvature of all swimming trajectories at different viscosities. Red symbols show
the results in Ficoll solutions, and black symbols the results in Methocel solutions.

the increased swimming speed observed: (i) the reduction in the cell wobble, or precession; and (ii)
the shear-thinning behavior of the Methocel medium.

B. Shear-induced normal stress reduces the wobbling effect

Patteson et al. [10] measured the averaged wobbling angle and discovered that it decreased with
respect to increases in polymer concentrations (viscosity). They also qualitatively demonstrated that
the swimming trajectories were straighter and smoother in non-Newtonian solutions compared with
Newtonian solutions. We also observe smoother swimming trajectories in our viscoelastic solutions
(Fig. 2) and quantify this by computing the average curvature (Sec. V F) of the cell trajectories as a
function of the bulk viscosity (Fig. 5).

In Newtonian solutions, the curvature remains roughly constant over a range of viscosities
increasing from 0.98 to 10.5 cP. In contrast, the average trajectory curvature in the non-Newtonian
solutions decreases as the bulk viscosity rises. A likely reason for the reduction in precession
(wobble) has been previously explained [10] to be the role of shear-induced normal stresses
generated by the rotating cell body, an explanation that remains appealing. However, although the
trajectories indeed become straighter, we believe that this phenomenon plays only a subtle role in
changing the swimming speed. To estimate the effect of cell-body precession on swimming speed,
a modified RFT [11,16,22–24] (see Supplemental Material [20]) is used to estimate the swimming
speed subject to different wobbling angles, φ. Assuming a constant-torque motor, the calculated
swimming speed changes only about 10% as φ changes from 0 to π/2 (Supplementary Fig. SI1
[20])—far less than the observed changes in swimming speed. Furthermore, despite this analysis,
and as mentioned earlier, it is not clear that the cell precession reduces the swimming speed. Both
Liu et al. [12] and Constantino et al. [25] argued that such motion may, under some conditions,
enhance the swimming efficiency of bacteria. For these reasons, we argue that the change in cell
precession due to shear-induced normal stress, although present, is likely insufficient to explain the
speed enhancement observed (Fig. 1).

C. Shear thinning enhances swimming speed

Elasticity of polymer solutions has been shown to enhance the speed of helical swimmers over a
range of Deborah numbers, De ∼0–2 [13,14] (the Deborah number compares the flagellar rotation
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TABLE I. Consistency index, m, and exponent, n, of Methocel solutions using the power-law model.

Concentration (%)

0.063 0.125 0.188 0.250 0.375 0.500

m 0.001 0.003 0.005 0.009 0.034 0.103
n 0.989 0.955 0.923 0.885 0.803 0.736

rate with the characteristic relaxation time, τ , of the fluid), and the highest enhancement happens at
De ∼ 0.7. Our estimated De number remains in the range of 0.01–0.50 according to the measured
relaxation time τ (Table II) and calculated flagellar rotation rate ω f , which lies in the enhancement
region. However, the results from both Spagnolie et al.’s numerical study [14] and Liu et al.’s [13]
experiments show that the largest increase in swimming speed is less than 20% of the speed achieved
in a Newtonian solution with the same viscosity. The significant speed enhancement observed in the
present experiment seems to be too high to be explained solely by the viscoelastic behavior of the
non-Newtonian medium.

In addition to viscoelastic effects, the effect of shear-thinning behavior [26] has also been
proposed to explain the speed increase in flagellated bacteria swimming in polymer solutions
[6,7,27]. To preserve a torque-free system the cell-body rotation rate, ωc, is much lower than the
flagellar rotation rate, ω f , and the shear rate, γ̇ , near the flagella, which is estimated as γ̇ f = ω f R/r0

[6], reaches as high as 104 s−1. Here R and r0 are the radius of the flagellar bundle and filament,
respectively. In contrast, due to its lower rotation speed and larger size, the shear rate near the
cell body remains much lower: γ̇c ∼ 102 s−1. Adopting the modified RFT proposed by Martinez
et al. [6], which assumes different viscosities for the flow around the cell and the flagella, we
have theoretically calculated the swimming speed using the measured motor torque (Fig. 4) and
shear-thinning behavior of the non-Newtonian solutions (Table I) and assuming (i) a cell shear rate
of 200 s−1 and (ii) a flagellar shear rate ranging between 4000 and 7000 s−1. The result (Fig. 1,
blue symbols) shows a very good agreement with the experimental observations, with the range of
shear rates bracketing the measured swimming speeds. Shear thinning thus seems to have a much
stronger effect on swimming speed than viscoelastic effects have through cell precession or flagellar
propulsive efficiency.

D. Shear-induced normal stress reduces the flagellar bundling time

Even if the predominant influence on swimming speed appears to be shear thinning, shear-
induced normal stress nevertheless plays a role in cell motility. Here we demonstrate that this
non-Newtonian phenomenon affects the swimming behavior and the bundling mechanics of wild-
type cells that exhibit run-and-tumble behavior. Qu et al. argue [15] that the flagellar bundling
time is extended with increased viscosity in Newtonian solutions and they demonstrate that an
increased skewness in the distribution of swimming speeds reflects the change of bundling time in
viscous media. It is equally interesting to understand how non-Newtonian effects affect the flagellar
bundling process for wild-type cells. As shown in Fig. 3(a), changes in the average skewness of

TABLE II. Relaxation time of Methocel solutions at various concentrations (data from [38]).

Concentration τ (ms) De

0.063% 0.76 0.036
0.125% 1.88 0.080
0.250% 2.68 0.126
0.500% 9.09 0.466
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the wild-type-cell speed distribution as the Methocel concentration rises suggest that the bundling
time of E coli cells in Methocel initially increases with respect to the viscosity but then decreases at
higher polymer concentrations.

Understanding the mechanics of the bundling process is necessary to explain this phenomenon. It
has been experimentally established that the bundling process is a purely hydrodynamic process in
Newtonian solutions [28]. More recently, Man et al. [17] estimated the hydrodynamic interactions
between rotating adjacent elastic rods and clarified the force balance during the bundling process.
In Newtonian solutions, the hydrodynamic interactions are balanced by the viscous drag and the
bending rigidity (elastic force) of the flagellar filaments. Since we are in the low-Re-number regime,
the force balance on each filament is written as

fe + fh + fv = 0, (1)

where fe, fv , and fh refer, respectively, to elastic stress, viscous stress, and hydrodynamic interaction
acting on the filament. Two dimensionless numbers are used to describe the relations between these
three forces. The “sperm number,” Sp, quantifies the balance between viscous drag and elastic force
[28,29] and is defined as

Sp =
(

ξ⊥ω f L4

EI

)1/4

, (2)

where ξ⊥ is the viscous drag coefficient of a slender body in the perpendicular direction [2],
defined as

ξ⊥ = 4πμ

log(L/r0)
. (3)

EI is the bending modulus of the filaments [30] and L is the length of the flagellar filament. The
typical value of the Sp number of E. coli is of the order of 1 [17], indicating that the viscous
and elastic stresses are of the same order of magnitude. The “bundling number,” Bu, compares the
driving force (hydrodynamic interaction among the filaments) in the bundling process to the viscous
force [17] and is defined as

Bu = r2
0Sp4

c2
, (4)

where c is the separation of the filament. The range of the Bu number (with ω f ∼ 100 Hz) lies
within 0.1–1, confirming, not surprisingly, that there exists a balance between the viscous and the
bundling forces during the flagellar bundling process of E. coli.

Since we have argued that shear-induced normal stress plays a role in reducing the cell
precession, resulting in straighter swimming trajectories, we also suspect that the changes in the
skewness of the speed distribution and the bundling dynamics might also be due to shear-induced
normal stress acting on the flagellar filaments. For bundling in a non-Newtonian system, the force
balance is rewritten schematically as

fe + fh + fv + fn = 0, (5)

where we have added fn as the shear-induced normal stress. We can estimate fn by assuming that
we can represent the elasticity of the fluid with a single relaxation time and using an Oldroyd-B
model [31] to estimate the forces on a rod of radius ro rotating at a fixed frequency, ω f , in a large
cylindrical container of radius R0. Assuming the form of the fluid velocity

u = v(r)θ̂, (6)

the rate of the strain tensor, A, is then given by

A =
(

∂v

∂r
− v

r

)
(θ̂r̂ + r̂θ̂). (7)
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The total viscosity of the solution is written as μ = μs + μp [32], where μs and μp are the solvent
and polymer viscosities, respectively. The stress tensor, S, in a polymer solution can be written as

S = μSA + Sp, (8)

where Sp is the stress due to the polymer contribution. Inserting this into the governing equation for
an Oldroyd-B model [31] we find that

S + τ
∇
S = μ

(
A + μs

μ
τ

∇
A

)
. (9)

Using this with the momentum balance,

∇p = ∇ · S, (10)

and the continuity equation,

∇ · u = 0, (11)

we can show that the velocity field is given by

v(r) = r2
0ω f

R2
0 − r2

r
(
R2

0 − r2
0

) , (12)

and the pressure field by

p = 2μτ

(
1 − μs

μ

)
ω2

f

r4
0R4

0

r4
(
R2

0 − r2
0

)2 . (13)

The torque per unit length is then given by∫ 2π

0
r0Srθ dθ = −4πμr0ω f (14)

and the normal stress is given by

fn = 2μτ

(
μs

μ
− 1

)
ω2

f

R4
0(

R2
0 − r2

0

)2 . (15)

In the case of R0 → ∞, fn is written as

fn = 2τ (μs − μ)ω2
f . (16)

The shear-induced normal stress acts like a “strangulation” around the filament. For a multifilament
system, which is the case of a wild-type E. coli during tumbling, the strangulation in all directions
forces all filaments to come together. Taking a two-filament (two slender rods separate in parallel)
case, for example, if each one experiences strangulation stress, the total force on this system is
pointing inwards to the center. As a result, this helps the flagella bundle more rapidly during a
tumble event.

To estimate this effect quantitatively, We define a dimensionless number, the “strangulation”
number (Str), which compares the shear-induced normal stress to the viscous stress during the
bundling process:

Str = 2τ (μ − μs)ω2
f

ξ⊥ω f
= 2τ (μ − μs)ω f

ξ⊥
= 2De(μ − μs)

ξ⊥
. (17)

For the current study, the De numbers of the low-concentration non-Newtonian solutions were
measured to be between 0.01 and 0.5 (Table II), leading to Str numbers that range between 0.01
at the lowest concentrations to 0.39 at the higher concentrations (using viscosity data at low shear
rates from Sec. V E and flagellum geometry [6,16,19] from Supplemental Table SI1 [20]). At
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low concentrations, the normal stresses can be neglected, and the observed rising skewness of
the speed distribution [Fig. 3(a)] is similar to that observed in the Newtonian fluid, reflecting the
longer bundling time driven by the increased bulk viscosity. However, in solutions with higher
concentrations, the Str number is nonnegligible, indicating that the shear-induced normal stresses
will play a part in the flagellar bundling process. Since the strangulation force tends to push the
filaments together, the normal stresses act to reduce the bundling time and this explains the observed
drop in the skewness at high polymer concentrations [Fig. 3(a)]. However, since the non-Newtonian
solution we used is also shear thinning, the actual viscosity experienced by the flagella could be
much lower. Using the viscosity measured at γ̇ = 104 s−1 (Sec. V E), the estimated Str numbers
range from 0.01 to 0.36, which shows no significant difference compared to the results estimated
using the viscosity measured at a low shear rate. Actually, from Eq. (17) we know that Str is
independent of the viscosity μ if μ � μs. Even if the shear-thinning behavior of the solution at
a high polymer concentration is quite strong, the viscosity at a high shear rate is still much higher
than the solvent viscosity μs.

IV. CONCLUSIONS

The two principal effects of non-Newtonian fluids—shear thinning and viscoelasticity—have
long been suspected of affecting the speed and character of swimming flagellated bacteria. However,
separating these effects has been complicated by both the run-tumble behavior of wild-type
multiflagellated cells and the complex behavior associated with the polymeric solutions on the level
of cell activity. Although we were unable to clearly separate these two effects in our study because
finding a material which is harmless to cells and exhibits only one non-Newtonian behavior is
difficult, our experimental results for smooth swimmers suggest that shear thinning is the dominant
factor in the speed enhancement of E. coli in non-Newtonian fluid. The two-viscosity model [6]
(high viscosity near the cell body and low viscosity near the flagellum due to different shear rates)
explains our observed swimming-speed enhancement well. Viscoelastic effects, both in reducing the
cell precession and in increasing the propulsive effectiveness, contribute to faster swimming speeds
as well, but we argue that they are of lesser importance. In addition, from the results and analysis
of wild-type E. coli swimming in non-Newtonian fluid, we show that shear-induced normal stress
does change the run-tumble process and specifically can shorten the bundling time as reflected by
the change in speed distribution.

Although these results contribute to a better understanding of swimming in non-Newtonian solu-
tions, further work is needed. It is important to separate the non-Newtonian effects experimentally
to fully understand the role of each factor in the speed enhancement of flagellated bacteria. For
those looking at the complexities of multiflagellar motions, bundling, and unbundling, experiments
in non-Newtonian solutions visualizing the flagellar filaments [33,34] are particularly necessary. All
the theoretical work done in this study is still viscous analysis since the solutions we used are weakly
elastic and the two-viscosity model has been proposed before [6,16] for solving the swimming
problem in a shear thinning fluid. Nevertheless, a detailed theoretical study on how non-Newtonian
effects, especially elasticity, change bacterial swimming behavior is crucial in this area.

V. MATERIALS AND METHODS

A. Cell preparation

The cells used in the experiments were smooth-swimming E. coli (strain: K12 HCB1736) and
wild-type E. coli (strain: K12 AW405). The wild-type cell is known to have a “run-and-tumble”
motility [1], while the smooth-swimming cell does not tumble. The culturing procedure for both
strains was identical. A single colony was selected from an agar plate and cultured in 10 ml of
T-Broth (1 L water, 10 g Tryptone, and 5 g NaCl) by rotation at 200 rpm (Southwest Science,
Incu-Shaker Mini) for 16 h at 30◦C. Twenty microliters of bacterial suspension was cultured again in
10 ml of T-Broth for 4 h until the midexponential growing phase of E.c oli. The bacterial suspension
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was washed three times by centrifuging at 2000 rpm (Eppendorf, MiniSpin Plus) for 8 min and
resuspending in fresh motility buffer (1 L of water, 11.2 g K2HPO4, 4.8 g KH2PO4, 0.029 g EDTA,
3.9 g NaCl; pH 7–7.5). The final suspension was diluted threefold before conducting experiments.

B. Polymer solutions

Ficoll 400 and Methocel 90 HG were used to produce Newtonian and non-Newtonian polymer
solutions, respectively. A 15% (wt/vol) stock solution of Ficoll 400 (Sigma-Aldrich) and a 0.5%
(wt/vol) stock solution of Methocel 90 HG (Sigma-Aldrich) was prepared by dissolving the polymer
in deionized water and rotating the mixture overnight at 200 rpm (Southwest Science, Incu-Shaker
Mini). The polymer solution was dialyzed for 1 week (Spectra/Por 2 Dialysis Trial Kit; 1214-kD
MWCO, 23-mm flat-width membrane) to remove short chain polymer fragments. The final polymer
concentration was calculated by measuring the weight before and after evaporating the solvent for
6 h at 60◦C and placing the solution in vacuum for 4 h until the weight reached a constant value.

C. Test fixture

Cell motility was observed by placing a small volume of the cell suspension into a test fixture
consisting of a “swimming pool” cut from a 1.5-mm-thick film of polydimethylsiloxane (PDMS)
and sandwiched between a No. 1 glass slide and a No. 1.5 glass cover slide.

D. Real-time 3D digital tracking microscopy

A 3D digital tracking microscope was used to observe the swimming behavior of the cells. The
system was identical to that described by Qu et al. [15]. The cells were observed using a Nikon
TE200 inverted microscope with a CFI Plan Fluor20XMI objective and PCO edge 5.5 sCMOS
camera. A 2D translational stage (Prior) was used to move the fixture in the x-y plane, parallel to
the focal plane. A computer-controlled piezo objective holder (Physik Instrumente, PI P-725.4CL)
was used to rapidly change the location of the focal plane. A 320 × 240 pixel image was acquired at
80 fps, and a real-time algorithm, written in C++ and OpenCV, detected the position (centroid) of
a single cell in the image and moved the stage and objective to maintain the cell in focus and within
the field of view. The system was able to track the position of a motile cell with 1-μm precision.

E. Rheological behavior of polymer solutions

To quantitatively understand the rheological behavior of the polymer solutions, a cone-and-plate
rheometer (TA instrument, AR 2000) was used to measure the steady shear rheology of both
Methocel and Ficoll solutions at various shear rates, ranging from 500 to 20 000 s−1, using a 40-mm,
0.5◦ cone. The shear-dependent viscosity, shown in Fig. 6, demonstrates that the Methocel solution
exhibits strong shear thinning at high concentrations, while the viscosity of the Ficoll solution is
nearly shear independent. A nonlinear curve fitting using a power-law model [35] μ = mγ̇ n−1 was
applied to the shear viscosity measurements of the Methocel solutions. For an ideal Newtonian
solution, the power-law index n is 1, while for Methocel solutions, the shear-thinning index ranges
from 0.989 at low concentrations to 0.736 at the highest concentration tested (Table I).

The relaxation times of Methocel solutions at different concentrations were measured previously
using high-speed single-particle microrheology [36–38]. We tracked the dispersion of nanometer-
scale particles in Methocel and Ficoll solutions at various concentrations and measured the
displacement of all particles from frame to frame. The mean-squared displacement (MSD) of the
particles as a function of time was calculated using statistical particle tracking velocimetry [38,39].
The MSD increases linearly over time in Newtonian solutions [40] and this was observed in Ficoll
solutions, indicating no viscoelastic behavior. For the measurement done in Methocel solutions, a
nonlinear relation between MSD and time is observed [38]. Then the viscoelastic spectrum G(s) and
relaxation time τ were calculated using the method given by Manson et al. [36]. Results are reported

073103-11



ZIJIE QU AND KENNETH S. BREUER

102 103 104 105

Shear rate [1/s]

100

101

102

V
is

co
si

ty
 [c

P
]

0.50%
0.38%
0.25%
0.19%
0.12%
0.06%

102 103 104 105

Shear rate [1/s]

100

101

102

V
is

co
si

ty
 [c

P
]

15%
13%
10%
7.5%
5.0%
2.5%

(b)(a)

FIG. 6. Shear viscosity of polymer solutions. (a) Methocel solutions. (b) Ficoll solutions.

in Table. II. We also calculated the Deborah number, De = τ × ω f , and the results are included in
Table II. The flagellar rotation rates were computed with a modified RFT (the two-viscosity model)
at different polymer concentrations.

Note that the viscoelastic behavior measured using particle dispersion is at an almost-zero shear
rate. It is true that the relaxation time could be different given the actual experimental conditions.
However, for materials following linear viscoelastic models such as the Kelvin-Voight model,
the relaxation time depends solely on the viscosity and Young’s modulus under constant applied
stress [41] and a smooth-swimming cell exerts a roughly unchanged stress to the fluid since its
speed (flagellar rotation rate) is nearly constant. It has also been shown experimentally that the
relaxation time is measured to be constant under different strains and can be assumed constant for
bacteria swimming in viscoelastic fluid [10,42]. Thus, we used the relaxation time measured with
microrheology to estimate the De number.

F. Average curvature of the 3D swimming trajectory

The curvature of the swimming trajectory was measured and used to quantify the overall
wobbling effect. For an object moving in a 3D space, its position and curvature can be simply
described as r(t ) and κ (t ), respectively:

κ (t ) = |r′(t ) × r′′(t )|
|r′(t )3| . (18)

To calculate the curvature from the cell trajectory, we fit a third-order polynomial to j measured
bacterial positions. The first and second derivatives of r(t ) were evaluated from the fitted polyno-
mial, and the local curvature was calculated using Eq. (18). Then a moving window with a time step
δt = 1/80, where 80 is the frame rate used in the experiment, was applied and in this way the local
curvature at different times (locations) was estimated.

Averaging over all times gives a measure of the trajectory curvature. For the trajectory in polymer
solutions, the number of data points ( j) for local curvature estimation was chosen depending on the
average swimming speed. More data points were chosen for slower-swimming cells to ensure that
a similar length was used for estimating the local curvature. The number of time intervals ( j − 1)
was chosen to be inversely proportional to the average swimming speed. We chose j = 7 for a mean
speed v = 25 μm/s.
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