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Spermatozoa self-propel by propagating bending waves along a predominantly active
elastic flagellum. The organized structure of the 9 + 2 axoneme is lost in the most-distal
few microns of the flagellum, and therefore this region is unlikely to have the ability
to generate active bending; as such it has been largely neglected in biophysical studies.
Through elastohydrodynamic modeling of humanlike sperm we show that an inactive distal
region confers significant advantages, in both propulsive thrust and swimming efficiency,
when compared with a fully active flagellum of the same total length. The beneficial effect
of the inactive end piece on these statistics can be as small as a few percent but can
be above 430%. The optimal inactive length, between 2% and 18% of the total length,
depends on both wave number and viscous-elastic ratio, and therefore is likely to vary in
different species. Potential implications in evolutionary biology and clinical assessment
are discussed.

DOI: 10.1103/PhysRevFluids.5.073101

I. INTRODUCTION

Spermatozoa, alongside their crucial role in sexual reproduction, are a principal motivating
example of inertialess propulsion in the very-low-Reynolds-number regime. The time-irreversible
motion required for effective motility is achieved through the propagation of bending waves along
the eukaryotic axoneme, which consists of nine doublet microtubules surrounding a central pair [see
Fig. 1(a)]. This 9 + 2 axoneme forms the active elastic internal core of the slender flagellum and in
the case of human sperm is surrounded by a fibrous sheath which thins towards the distal end. While
sperm morphology varies significantly between species [1–6], there are clear conserved features
which can be seen in humans, most mammals, and also our evolutionary ancestors [7]. In gross
structural terms, sperm comprise (i) the head, which contains the genetic cargo; (ii) the midpiece
of the flagellum, typically a few microns in length, containing the ATP-generating mitochondria;
(iii) the principal piece of the flagellum, typically 40–60 μm in length (although much longer in
some species [8]), the core of which is the 9 + 2 axoneme that produces and propagates active
bending waves through dynein-ATPase activity [9]; and (iv) the end piece, typically a few microns
in length, which consists of disorganized singlet microtubules only [10]. Lacking the predominant
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FIG. 1. Schematic of an idealized sperm cell. (a) Cross sections (redrawn from [10]) showing the internal
flagellar structure, where SMT denotes singlet microtubules, DMT doublet microtubules, and CP the central
microtubule pair. (b) Sketch of the model sperm highlighting the position of the centerline X (s, t ) [parametrized
by the arc length s ∈ [0, L] and tangent angle θ (s, t )], head surface ∂H (blue ellipsoid), head angle φ(t ), and
flagellum-neck junction X 0(t ). The active component of the flagellum (s ∈ [0, �)) is shown in dark yellow, with
the inactive distal end (s ∈ [�, L]) shown by the black dashed line. (c) A tapering fibrous sheath surrounds the
core of the flagellum, modeled through the varying elastic stiffness function (2).

9 + 2 axonemal structure, it appears unlikely that the end piece is a site of molecular motor activity,
a hypothesis that forms the basis for our study. Since the end piece is assumed to be unactuated,
we will refer to it as inactive, noting however that this does not mean it is necessarily ineffective.
Correspondingly, the actuated principal piece will be referred to as active. A detailed review of
human sperm morphology can be found in Refs. [11,12].

While the end piece can be observed through transmission electron and atomic force microscopy
[2,13,14], live imaging to determine its role in cell propulsion is currently challenging. Furthermore,
because the end piece has been largely considered to not have a role in propelling the cell, it has
received relatively little attention. However, analysis of experimental data [15] indicates that the
sperm flagellar waveform has a significant impact on propulsive effectiveness and moreover changes
to the waveform have an important role in enabling cells to penetrate the highly viscous cervical
mucus encountered in internal fertilization [16]. This leads us to ask the following question: Does
the presence of a mechanically inactive region at the end of the flagellum help or hinder the cell’s
progressive motion?
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II. MODEL SETUP

The emergence of elastic waves on the flagellum can be described by a constitutively linear,
geometrically nonlinear filament, with the addition of an active moment per unit length m, which
models the internal sliding produced by dynein activity, and a hydrodynamic term f , which
describes the force per unit length exerted by the filament onto the fluid. Many sperm have
approximately planar waveforms, especially upon approaching and collecting at surfaces [17,18].
As such, their shape can be fully described by the angles made between the tangent and the
laboratory frame horizontal [denoted by θ (s, t )] and between the head centerline angle and the
laboratory frame horizontal [denoted by φ(t )], as shown in Fig. 1(b). The sperm head is modeled by
an ellipsoidal surface ∂H , with the head-flagellum joint denoted by X 0(t ). Following [19,20], we
parametrize the filament by arc length s, with s = 0 corresponding to the head-flagellum joint and
s = L to the distal end of the flagellum, and apply force and moment free boundary conditions at
s = L to get

E (s)∂sθ (s, t ) − e3 ·
∫ L

s
∂s′X (s′, t ) ×

(∫ L

s′
f (s′′, t )ds′′

)
ds′ −

∫ L

s
m(s′, t )ds′ = 0, (1)

with the elastic stiffness given, using a modification of previous work (i.e., [11]), by

E (s) =
{

Ed (ρ − 1)
(

s−Ld
Ld

)2 + Ed , s � Ld
Ed , s > Ld,

(2)

where Ed is the stiffness of the distal flagellum. The dimensionless parameters ρ, corresponding to
proximal-distal stiffness ratio, and d , corresponding to the proportion of the flagellum over which
the stiffness is a varying function, will be fixed throughout this study; d = 0.65 is chosen so that
Ld = 39 μm for human sperm, corresponding to the distance over which the accessory structures
extend, while ρ ≈ 35 is approximated based on a qualitative comparison with experimental data
(Appendix A). A sketch of how the elastic stiffness E (s) varies with arc length s can be seen in
Fig. 1(c). The effect of varying the remaining parameters of wavelength, active length, total length,
viscosity, distal stiffness, and frequency is investigated via analyzing a dimensionless model.

Returning to Eq. (1), the position vector X = X (s, t ) describes the flagellar waveform at time
t , so that ∂sX is the tangent vector and e3 is a unit vector pointing perpendicular to the plane of
beating. Integrating by parts leads to the elasticity integral equation

E (s)∂sθ (s, t ) + e3 ·
∫ L

s
[X (s′, t ) − X (s, t )] × f (s′, t )ds′ −

∫ L

s
m(s′, t )ds′ = 0. (3)

The active moment density can be described to a first approximation by a sinusoidal traveling
wave m(s, t ) = m0 cos(ks − ωt ), where k is wave number and ω is radian frequency. The inactive
end piece can be modeled by taking the product with a Heaviside function so that m(s, t ) =
m0 cos(ks − ωt )H (� − s), where 0 < � � L is the length of the active tail segment.

At very low Reynolds number, neglecting non-Newtonian influences on the fluid, the hydrody-
namics are described by the Stokes flow equations

−∇p + μ∇2u = 0, ∇ · u = 0, (4)

where p = p(x, t ) is pressure, u = u(x, t ) is velocity, and μ is dynamic viscosity. These equations
are augmented by the no-slip, no-penetration boundary condition u(X (s, t ), t ) = ∂t X (s, t ), i.e., the
fluid in contact with the filament moves at the same velocity as the filament. A convenient and
accurate numerical method to solve these equations for biological flow problems with deforming
boundaries is based on the regularized Stokeslet [21,22], i.e., the solution to the exactly incom-
pressible Stokes flow equations driven by a spatially concentrated but smoothed force

−∇p + μ∇2u + ψε(x, y)e3 = 0, ∇ · u = 0, (5)
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where ε � 1 is a regularization parameter, y is the location of the force, x is the evaluation point,
and ψε is a smoothed approximation to a Dirac δ function. The choice

ψε(x, y) = 15ε4/r7
ε (6)

leads to the regularized Stokeslet [22]

Sε
i j (x, y) = 1

8πμ

(
δi j (r2 + 2ε2) + rir j

r3
ε

)
, (7)

where ri = xi − yi, r2 = riri, and r2
ε = r2 + ε2.

The flow u j (x, t ) produced by a filament X (s, t ) exerting force per unit length f (s, t ) is
then given by the line integral

∫ L
0 Sε

jk (x, X (s, t )) fk (s, t )ds. The flow due to the surface of the
sperm head ∂H , exerting force per unit area ϕ(Y , t ) for Y ∈ ∂H , is given by the surface integral∫∫

∂H Sε
jk (x,Y )ϕk (Y )dSY , yielding the boundary integral equation [23] for the hydrodynamics,

namely,

u j (x, t ) =
∫ L

0
Sε

jk (x, X (s, t )) fk (s, t )ds +
∫∫

∂H
Sε

jk (x,Y )ϕk (Y , t )dSY . (8)

The position and shape of the cell can be described by the location X 0(t ) of the head-flagellum
joint and the waveform θ (s, t ) so that the flagellar curve is

X (s, t ) = X 0(t ) +
∫ s

0
[cos θ (s′, t ), sin θ (s′, t ), 0]T ds′. (9)

Differentiating with respect to time, the flagellar velocity is then given by

u(X (s, t ), t ) = Ẋ 0(t ) +
∫ s

0
∂tθ (s′, t )[− sin θ (s′, t ), cos θ (s′, t ), 0]T ds′. (10)

Modeling the head as undergoing rigid body motion about the head-flagellum joint, the surface
velocity of a point Y ∈ ∂H is given by

u(Y (t ), t ) = Ẋ 0(t ) + ∂tφ(t )e3 × [Y (t ) − X 0(t )]. (11)

Equations (10) and (11) couple with fluid mechanics [Eq. (8)], active elasticity [Eq. (3)], and total
force and moment balance across the cell to yield a model for the unknowns θ (s, t ), φ(t ), X 0(t ),
f (s, t ), and ϕ(Y , t ). Nondimensionalizing with length scale L, timescale 1/ω, and force scale μωL2

yields the elasticity integral equation in scaled variables (with dimensionless variables denoted by a
circumflex)

E (ŝ)∂ŝθ (ŝ, t̂ ) + e3 · S4
∫ 1

ŝ
[X̂ (ŝ′, t̂ ) − X̂ (ŝ, t̂ )] × f̂ (ŝ′, t̂ )dŝ′

− MS4
∫ 1

ŝ
cos(k̂ŝ′ − t̂ )H (�̂ − ŝ′)dŝ′ = 0, (12)

where S = L(μω/Ed )1/4 is a dimensionless group comparing viscous and elastic forces (related,
but not identical to, the commonly used sperm number), M = m0/μωL2 is a dimensionless group
comparing active and viscous forces, and �̂ = �/L is the dimensionless length of the active segment.
Here Ed is the stiffness at the distal tip of the flagellum (ŝ = 1) and the dimensionless wave number
is k̂ = kL. The remaining equations nondimensionalize directly using these scales.

The problem is numerically discretized as described by Hall-McNair et al. [20], accounting for
nonlocal hydrodynamics via the method of regularized Stokeslets [22]. This framework is modified
to take into account the presence of the head via the nearest-neighbor discretization of Gallagher
and Smith [24]. The head-flagellum coupling is enforced via the dimensionless moment balance

073101-4



DOING MORE WITH LESS: THE FLAGELLAR END PIECE …

boundary condition

κ̂ (0, t̂ ) − e3 · S4
∫∫

∂Ĥ
[Ŷ (t̂ ) − X̂ 0(t̂ )] × ϕ̂(Ŷ , t̂ )dSŶ = 0, (13)

where the dimensionless curvature evaluated at the head-flagellum joint κ̂ (0, t̂ ) is calculated as the
centered difference between the head angle φ(t̂ ) and the tangent angle of the first segment of the
flagellum θ1(t̂ ).

For the remainder of this paper we work with the dimensionless model but for readability omit
the circumflex notation used to represent dimensionless variables. The initial value problem for
the trajectory, head angle, discretized waveform, and force distributions is solved in MATLAB®

using the built-in solver ode23tb. At any point in time, the sperm cell’s position and shape can
be reconstructed completely from X 0(t ), θ (s, t ), and φ(t ) through Eq. (9). Simulated sperm cells
are initialized with a flagellar shape in the form of a low-amplitude parabola, obtained by sampling
a section of unit arc length from the curve y = 0.1x2 centered about x = 0.

In what follows, we consider how varying the three dimensionless groups S , M, and � through
physiological ranges can affect both swimming velocity and efficiency of simulated spermatozoa.

III. RESULTS

The impact of the length of the inactive end piece on propulsion is quantified by the swimming
speed and efficiency. Velocity along a line (VAL) is used as a measure of swimming speed,
calculated via

VAL( j) = ∥∥X ( j)
0 − X ( j−1)

0

∥∥/T, (14)

where T = 2π is the period of the driving wave and X ( j)
0 represents the position of the head-

flagellum joint after j periods. Lighthill efficiency [25] is calculated as

η( j) = (VAL( j) )2/W
( j)

, (15)

where W
( j) = 〈∫ 1

0 u · f ds′ + ∫∫
∂H u(Y ) · ϕ(Y )dSY 〉 is the average work done by the cell over the

jth period. In the following, j is chosen sufficiently large so that the cell has established a regular
beat before its statistics are calculated ( j = 5 is sufficient for what follows).

A. Choice of parameters

Below, the viscous-elastic parameter S is varied between 9 and 18, corresponding to the
approximate physiological range for human spermatozoa migrating within the female reproductive
tract. However, the sperm of many other mammalian species exhibit similar values of S including
bull (S ≈ 10.5), chocolate wattled bat (S ≈ 12.6), rabbit (S ≈ 14.85), cat (S ≈ 16.4), dog (S ≈
16.9), and dolphin (S ≈ 18), as well as many others [7].

For each (S, k), two variations on the actuation parameter M are investigated, the value MVAL

that optimizes VAL and the value Mη that optimizes Lighthill efficiency η, each for the fully active
� = 1 case. Therefore, any increase in velocity or efficiency as a consequence of varying � is not a
consequence of the specific value of M chosen. Indeed, any increases in velocity and efficiency
observed will therefore be lower bounds for what is possible if M is allowed to vary freely.
Optimization is carried out via the MATLAB® one-dimensional optimization algorithm fminbnd.
Figure 2 shows the smooth variation in both MVAL and Mη as S and k are varied.

B. Simulations actuated with M = MVAL

The effects of varying the dimensionless active tail length on sperm swimming speed and
efficiency are shown in Fig. 3 for five choices of dimensionless wave number k and viscous-elastic
parameter S , actuated with M = MVAL. Here � = 1 corresponds to an entirely active flagellum
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FIG. 2. Values of the actuation parameter M, optimizing (a) swimming speed VAL and (b) the Lighthill
efficiency η for S ∈ [9, 18] and k ∈ [3π, 5π ].

and � = 0 to an entirely inactive flagellum. Values 0.5 � � � 1 are considered so that the resulting
simulations produce cells that are likely to be biologically realistic. Higher wave numbers are
considered as they are typical of mammalian sperm flagella in higher-viscosity media [16].

FIG. 3. Effect of the inactive end piece length on swimming speed and efficiency of propulsion, for
simulations actuated with M = MVAL. (a) swimming speed VAL, (b) Lighthill efficiency η, and relative
increase in (c) VAL and (d) efficiency when comparing the optimally active and fully active flagella, for
viscous-elastic parameter choices S ∈ [9, 18] and wave numbers k ∈ [3π, 5π ].
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FIG. 4. (a) Normalized VAL and (b) normalized Lighthill efficiency η for S ∈ [9, 18] versus � ∈ [0.5, 1],
shown for five choices of dimensionless wave number k. Values in each plot are normalized with respect
to either (a) the maximum VAL or (b) the maximum η for each (S, k) pair. The optimal choices of � are
highlighted as red dots. (c) Active length that optimizes VAL (�VAL) and (d) active length that optimizes the
Lighthill efficiency �η, for S ∈ [9, 18] and k ∈ [3π, 5π ]. Simulations are actuated with M = MVAL.

Optimal active lengths for swimming speed, �VAL, and efficiency, �η, occur for each parameter
pair (S, k); crucially, as shown in Figs. 3(a) and 3(b), the optima are always less than 1, indicating
that by either measure some length of inactive flagellum is always better than a fully active
flagellum. The relative effect of the end piece on VAL and η is larger for smaller values of S .
In particular, for S = 9 the optimally inactive flagellum results in a 56%–72% increase in VAL
over k ∈ [3π, 5π ] compared to a fully active flagellum [Fig. 3(c)], decreasing to 2%–9% when
S = 18. The end piece has a more pronounced effect on the efficiency of cells [Fig. 3(d)], with an
11%–438% increase over the values of k and S considered. A more detailed investigation of the
relationship between optimum active flagellum length and each of VAL and η is shown in Figs. 4(a)
and 4(b) by simulating cells over a finer gradation in S ∈ [9, 18]. The optimum values �VAL and
�η are shown in Figs. 4(c) and 4(d); typically �VAL 	= �η for a given swimmer. For each metric, the
optimum active length is smoothly varying for each choice of S and k. In the case of �η, we observe
nonmonotonic behavior for the combination of larger values of S and smaller values of k, due to the
development of a skewed beat pattern (see Fig. 7).

C. Simulations actuated with M = Mη

In addition to the figures in Sec. III B, equivalent results can be produced for cells actuated with
M = Mη. Figures 5(a) and 5(b) show the relationship between active tail length � and swimming
speed and efficiency [with finer detail shown in Figs. 6(a) and 6(b)]. Figures 5(c) and 5(d) highlight
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FIG. 5. Effect of the inactive end piece length on swimming speed and efficiency of propulsion, for
simulations actuated with M = Mη. (a) swimming speed VAL, (b) Lighthill efficiency η, and the relative
increase in (c) VAL and (d) efficiency when comparing the optimally active and fully active flagella, for
viscous-elastic parameter choices S ∈ [9, 18] and wave numbers k ∈ [3π, 5π ].

the relative benefit of an optimally inactive flagellum compared to the fully active case, showing
an increase of 7%–40% for swimming speed and 22%–240% for efficiency. The optimum active
length for both swimming speed and efficiency is shown in Figs. 6(c) and 6(d) for k ∈ [3π, 5π ]
and S ∈ [9, 18]. The qualitative similarities between Figs. 5 and 6, and the analogous figures in
Sec. III B (Figs. 3 and 4), highlight that the observed cell behaviors are not simply governed by the
choice of actuation parameter M.

D. Effect of the end piece on waveform and trajectory

The foregoing results establish the propulsive and efficiency advantages of an inactive distal
flagellar region. To better understand why the inactive region yields these advantages we now
consider the flagellar waveforms and overall cell dynamics resulting from simulations with
parameters S = {9, 13.5, 18} and k = {3π, 4π, 5π}. The tracks and shapes of swimming sperm
actuated with M = MVAL are shown in Fig. 7, which compares the fully active (� = 1) and
optimally inactive (� = �VAL) waveforms for each parameter pair. Simulations with an optimally
inactive region produce flagellar shapes and tracks that are more qualitatively spermlike than those
with an entirely active flagellum and more specifically exhibit lower curvature and hence tangent
angle in the distal flagellum. The change to the flagellar envelope is most clearly visible in the
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FIG. 6. (a) Normalized VAL and (b) normalized Lighthill efficiency η for S ∈ [9, 18] versus � ∈ [0.5, 1],
shown for five choices of dimensionless wave number k. Values in each plot are normalized with respect
to either (a) the maximum VAL or (b) the maximum η for each (S, k) pair. The optimal choices of � are
highlighted as red dots. (c) Active length that optimizes VAL (�VAL) and (d) active length that optimizes the
Lighthill efficiency �η, for S ∈ [9, 18] and k ∈ [3π, 5π ]. Simulations are actuated with M = Mη.

overlaid time-lapse images of Fig. 8. A similar effect is observed for cells actuated with M = Mη,
whose cell tracks can be seen in Fig. 9 and waveforms in Fig. 10.

The velocity field associated with flagella that are fully active (� = 1) and optimally inactive
(� = �VAL) for propulsion are shown in Fig. 11(a) at t = 8π for parameter values M = MVAL, S =
13.5, and k = 4π . The qualitative features of both the waveform and the velocity field are similar;
however, the optimally inactive flagellar waveform has reduced curvature and tangent angle in the
distal region, resulting in an additional “oblique” region (i.e., where θ − φ ≈ π/4) that confers
additional thrust to the cell when � < 1. The equivalent results for cells actuated with M = Mη

can be seen in Fig. 11(b). Plots at additional time points are given in Appendix B for both values
of M.

IV. DISCUSSION

In simulations, we observe that spermatozoa which feature a short inactive region at the end
of their flagellum swim faster and more efficiently than those without. For each simulation, cell
motility is optimized when 2%–18% of the distal flagellum is inactive, regardless of parameter
choices. For the larger choices of S , commonly seen in the human female reproductive tract, the
optimally inactive length for velocity and efficiency [Figs. 4(c) and 6(d)] lies between 2% and 10%.
Experimental measurements of human sperm indicate an average combined length of the midpiece
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FIG. 7. Swimming track following the head for both fully active and optimally inactive sperm (top and
bottom of each pair, respectively) for a selection of parameter pairs (S, k) actuated with M = MVAL and
simulated for ten cycles of the active moment. In each pair the sperm is plotted at the final time point with the
optimally inactive length � = �VAL, shown in orange.

and principal piece of approximately 54 μm and an average end piece length of approximately 3 μm
[7], suggesting that the effects uncovered in this work are biologically important.

The modeling method has been validated by comparing the mean absolute value of curvature
along the flagellum, for the case S = 18 and k = 5π , with that of an experimentally captured

FIG. 8. Flagellar waveform for a fully active and optimally inactive sperm (left and right of each pair,
respectively), simulated for a selection of parameter pairs (S, k) and actuated with M = MVAL. The color of
the flagellum indicates progression through a single beat, from blue to yellow. For each pair the sperm are
plotted with the optimally inactive length �VAL shown in orange.
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FIG. 9. Swimming track following the head for both fully active and optimally inactive sperm (top and
bottom of each pair, respectively) for a selection of parameter pairs (S, k) actuated with M = Mη and
simulated for ten cycles of the active moment. For each pair the sperm are plotted at the final time point
with the optimally inactive length (� = �η) shown in orange.

sperm (details provided in Appendix A). The consistency between simulated cells and experimental
data lends further confidence that the modeling choices made are biophysically reasonable; future
investigation may assess the robustness of the conclusions to more intricate models of flagellar
structure and regulation.

FIG. 10. Flagellar waveform for a fully active and optimally inactive sperm (left and right of each pair,
respectively) simulated for a selection of parameter pairs (S, k) and actuated with M = Mη. The color of the
flagellum indicates progression through a single beat, from blue to yellow. For each pair the sperm are plotted
with the optimally inactive length � = �η, shown in orange.
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FIG. 11. Comparison of the flow fields around a simulated sperm at t = 8π with S = 13.5 and k = 4π for
(a) a cell actuated with M = MVAL and (b) M = Mη. In each case we plot (i) a cell with a fully active
flagellum, (ii) an optimally inactive cell, and (iii) the difference between flow fields, with positive values
corresponding to the optimally inactive case having a faster fluid velocity. (i) and (ii) Instantaneous fluid
streamlines are shown in white with arrows indicating direction and the fluid magnitude is indicated by the
colorbar for each panel. In (ii) and (iii) the inactive part of the flagellum is shown in black. For additional time
points see Appendix B.

Sperm move through a variety of fluids during migration, in particular encountering a step change
in viscosity when penetrating the interface between semen and cervical mucus and having to swim
against physiological flows [26]. Cells featuring an optimally sized inactive end piece may form
better candidates for fertilization, being able to swim faster and for longer when traversing the
female reproductive tract [27].

The basic mechanism by which the flagellar wave produces propulsion is through the interaction
of segments of the filament moving obliquely through the fluid [28], with the angle relative to the
direction of propulsion being between −π/2 and π/2. Analysis of the flow fields (Fig. 11 and
Appendix B) suggests that the lower curvature, and hence tangent angle associated with the inactive
end piece, maintains such regions towards the end of the flagellum, preventing the flagellum from
“overturning” (Figs. 7 and 9).

An inactive region of the flagellum is not a feature unique to human gametes; its presence
can also be observed in the sperm of other species [2], as well as other microorganisms. In
particular, the axonemal structures of the biflagellated algae Chlamydomonas reinhardtii deplete
at the distal tips [29], suggesting the presence of an inactive region. The contribution to swimming
speed and cell efficiency due to the inactive distal section in these cases remains unknown. By
contrast, the tip of the 9 + 2 cilium is a more organized “crown” structure [30], which will interact
differently with fluid than the flagellar end piece modeled here. The structure and actuation of the
motile 9 + 0 cilia found in the embryonic node (see, for example, [31]) is less well characterized.
Understanding this distinction between cilia and flagella, as well as the role of the inactive region in
other microorganisms, may provide further insight into underlying biological phenomena, such as
chemotaxis [32] and synchronization [33,34]. Further work should investigate how this phenomenon
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changes when more detailed models of the flagellar ultrastructure are considered, taking into
account the full 9 + 2 structure [35], sliding resistance associated with filament connections [36],
and the interplay of these factors with biochemical signaling in the cell [37].

The ability to qualitatively assess and model the inactive end piece of a human spermatozoon
could have important clinical applications. In live imaging for diagnostic purposes, the end piece is
often hard to resolve due to its depleted axonemal structure. Lacking more sophisticated imaging
techniques, which are often expensive or impractical in a clinical environment, modeling of the
end piece combined with flagellar tracking software, such as FAST [15], could enable more accurate
sperm analysis and help improve cell selection in assisted reproductive technologies. The difficulty
in capturing the end piece may be a significant explanatory factor to why previous works have only
been able to reconstruct the qualitative features of the swimming tracks, even when high-quality
flagellar waveform data are available [38]. Furthermore, knowledge of the function of an inactive
distal region has wider applications across synthetic microbiology, particularly in the design of
artificial swimmers [39] and flexible filament microbots used in targeted drug delivery [40].

V. SUMMARY AND CONCLUSIONS

In this paper we have revealed the propulsive and energetic advantages conferred by an inactive
distal region of a unipolar “pusher” actuated elastic flagellum, characteristic of mammalian sperm.
The optimal inactive flagellum length depends on the balance between elastic stiffness and viscous
resistance, and the wave number of actuation. The optimal inactive fraction mirrors that seen in
human sperm (approximately 3 μm/57 μm, or approximately 5%). From a modeling point of
view, inclusion of an inactive region can radically change the waveform, propulsive velocity, and
efficiency and so may be crucial to include in biophysical studies. These findings also motivate
the development of more highly resolved methods to image the far distal flagellum. Furthermore,
inclusion of an inactive region may be an interesting avenue to explore when improving the
efficiency of artificial microswimmer designs. Finally, important biological questions may now
be posed; for example, does the presence of the inactive end piece confer an advantage to cells
penetrating highly viscous cervical mucus?
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FIG. 12. Comparison between simulated and experimental data to verify the choice of elastic stiffness
parameters. (a) The mean absolute value of curvature for both a cell simulated with (S, k) = (18, 5π ) (blue)
and an experimentally tracked sperm (magenta) is plotted against arc length. A waveform comparison is shown
for the (b) simulated and (c) experimental cell (tracked with FAST [15], scale bar denotes 5 μm). In the case of
the simulated waveform, the inactive end piece is shown in orange.

APPENDIX A: QUALITATIVE VALIDATION USING EXPERIMENTAL DATA

The proximal-distal stiffness ratio ρ = 36.4 was chosen to provide results that closely resemble
those waveforms seen in swimming human spermatozoa. To validate this choice and also assess
the internal active moment and stiffness model (2), the mean absolute value of curvature is plotted

FIG. 13. Comparison of the flow fields around a simulated sperm actuated with M = MVAL at t = 8π

with S = 13.5 and k = 4π , for (a) a cell with a fully active flagellum and (b) an optimally inactive cell, each
shown at four time points in the final simulated beat. (c) Difference between flow fields, with positive values
corresponding to the optimally inactive case having a faster fluid velocity. (a) and (b) Instantaneous fluid
streamlines are shown in white with arrows indicating direction and the fluid magnitude is indicated by the
colorbar for each panel. In (b) the inactive part of the flagellum is shown in black.
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FIG. 14. Comparison of the flow fields around a simulated sperm actuated with M = Mη at t = 8π with
S = 13.5 and k = 4π , for (a) a cell with a fully active flagellum and (b) an optimally inactive cell, each
shown at four time points in the final simulated beat. (c) Difference between flow fields, with positive values
corresponding to the optimally inactive case having a faster fluid velocity. (a) and (b) Instantaneous fluid
streamlines are shown in white with arrows indicating direction and the fluid magnitude is indicated by the
colorbar for each panel. In (b) the inactive part of the flagellum is shown in black.

against the arc length of both a simulated [with (S, k) = (18, 5π )] and an experimental cell in
Fig. 12. The experimental data and waveform agree closely over the first 40 μm of the flagellum,
while the remainder of the flagellum is not visible in the experimental image. To emphasize, this
study is not focusing on parameter estimation or improving fitting of flagellar waveforms; rather
the aim is to find indicative parameters that are capable of broadly matching experimental data and
hence enable a rational exploration of the inactive end piece effect.

APPENDIX B: ADDITIONAL FLOW FIELDS

Additional flow fields for simulated sperm with S = 13.5 and k = 4π and actuated with M =
MVAL are shown in the case of a fully active flagellum and an optimally inactive flagellum in
Fig. 13. The analogous plots for M = Mη can be seen in Fig. 14.
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