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Renormalized analytic solution for the enstrophy cascade
in two-dimensional quantum turbulence

Andrew Forrester , Han-Ching Chu , and Gary A. Williams *

Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 17 June 2019; accepted 1 July 2020; published 21 July 2020)

The forward enstrophy cascade in two-dimensional quantum turbulence in a superfluid
film connected to a thermal bath is investigated using a Fokker-Planck equation based
on Kosterlitz-Thouless renormalization. The steady-state cascade is formed by injecting
vortex pairs of large initial separation at a constant rate. They diffuse with a constant flux
to smaller scales, finally annihilating when reaching the core size. The energy spectrum
varies as k−3, similar to the spectrum known for two-dimensional (2D) classical-fluid
enstrophy cascades. The dynamics of the cascade can also be studied, and for the case
of a sharply peaked initial vortex-pair distribution, it takes about four eddy turnover times
for the system to evolve to the decaying k−3 cascade, in agreement with recent computer
simulations. These insights into the nature of the cascade also allow a better understanding
of the phase-ordering process of temperature-quenched 2D superfluids, where the decay of
the vorticity is found to proceed via the turbulent cascade. This connection with turbulence
may be a fundamental characteristic of phase ordering in general.
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I. INTRODUCTION

Constant-flux cascades have long played a role in understanding turbulence in fluids. In classical
two-dimensional (2D) turbulence it is well known that there are two such cascades [1–3], an inverse
cascade of energy to large length scales with a k−5/3 (Kolmogorov) energy spectrum, and a forward
cascade of enstrophy (vorticity) to small length scales, with a k−3 energy spectrum (plus logarithmic
corrections [4–7]). There is no analytic theory of these cascades, and the primary evidence for their
existence comes from numerical simulations of the Navier-Stokes equation [8]. Since there is a wide
range of length scales in the turbulence, it has long been recognized that renormalization group
methods will be necessary to fully understand turbulent cascades in both two and three dimensions,
and this has been a difficult program to implement [9], but recently there have been some advances
in 2D methods [10].

In 2D quantum turbulence in superfluids, with quantized pointlike vortices, computer simulations
have been able to identify the formation of an inverse energy cascade to large length scales, in
which like-sign vortices begin to cluster together, a negative-temperature state [11]. More recently a
computer simulation [12] observed the development of an enstrophy cascade to small length scales
with a k−3 spectrum in decaying 2D quantum turbulence, validating the existence of the cascade,
as proposed by us a number of years ago [13,14] involving the diffusive motion of vortex pairs of
opposite circulation.

Our system involves a 2D superfluid film on a substrate that acts as a thermal bath held at a
relatively low temperature T , so there are almost no thermally excited vortices. We continually
inject at a constant rate vortex-antivortex pairs of large separation R (out of equilibrium), and due

*gaw@ucla.edu

2469-990X/2020/5(7)/072701(9) 072701-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3902-0415
https://orcid.org/0000-0001-6799-2401
https://orcid.org/0000-0002-0927-3465
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.072701&domain=pdf&date_stamp=2020-07-21
https://doi.org/10.1103/PhysRevFluids.5.072701


FORRESTER, CHU, AND WILLIAMS

to the frictional forces on the vortex cores these pairs drift diffusively to smaller separation, finally
annihilating when the separation becomes equal to the vortex core diameter a0. This constant flux of
vorticity from large scales to small scales, with the rate of injection equal to the rate of annihilation
and removal, constitutes the forward enstrophy cascade. The frictional dissipation giving rise to the
change in separation of the pairs plays a key role in the cascade, as it did in the computer simulation
of Ref. [12], where frictional dissipation was explicitly added to their Hamiltonian point-vortex
model. Energy is not conserved in the cascade; in our case any excess is simply absorbed by the
thermal bath.

In this Rapid Communication we give a more detailed analytic solution of the cascade that
utilizes a formulation of the 2D Kosterlitz-Thouless renormalization methods for the case of
nonequilibrium vortex pairs [15]. The energy spectrum of the cascade is found to vary as k−3, and
the dynamics of the decay is found to be in agreement with the numerical simulations of Ref. [12].
We also highlight the relationship of the cascade to the dynamics of temperature-quenched 2D
superfluids [16]: the phase ordering of the vortex decay in that case proceeds via the turbulent
cascade.

II. THEORY

We consider an incompressible superfluid film connected to a thermal bath at low temperature
T = 0.1TKT, where TKT is the critical Kosterlitz-Thouless temperature where thermally excited
vortex pairs drive the superfluid density to zero. Since the system is in contact with a thermal bath
the negative-temperature states necessary for the inverse energy cascade cannot form, and so there
is only the possibility of the forward enstrophy cascade. The vortex dynamics are modeled by a
Fokker-Planck equation [15] describing the distribution of vortex pairs of separation r, with the
addition of a forcing delta function to inject additional pairs of a fixed large separation R into the
film at a rate α,

∂�

∂t
= 1

r

∂

∂r

(
r
∂�

∂r
+ 2πK�

)
+ αδ2(�r − �R). (1)

This equation is set in dimensionless form with lengths in units of the vortex core diameter a0,
the vortex-pair distribution function � in units a4

0, and the time in units of the vortex diffusion time,
τ0 = a2

0/2D with D the vortex diffusion coefficient arising from frictional forces on the vortex cores.
K is the dimensionless superfluid density, K = h̄2σs/m2kBT with σs the superfluid areal density and
m the atomic mass, and is determined from the Kosterlitz recursion relation [17]

dK

dr
= −4π3r3K2�. (2)

The term 2πK� in Eq. (1) results from the attractive (screened) logarithmic interaction between
pairs of opposite circulation. The 2D “ring” delta function δ2(�r − �R) = δ(r − R)/2πr injects pairs
of separation R at random locations and orientations across the plane. The dimensionless injection
rate α is given by α = a2

0Q̇τ0 where Q̇ is the number of vortex pairs of separation R injected per unit
area per time. In the limit α = 0 and ∂�/∂t = 0 these equations (1) and (2) reduce to the equilibrium
renormalization equations of Kosterlitz and Thouless [17,18]. We note that Eq. (1) (without the
delta function) was originally developed to understand the source of the dissipation found in thin
4He films right at TKT in finite-frequency third sound [19,20] and torsional [21] and shear oscillator
[22] measurements. At finite frequencies the friction on the vortex cores causes them to fall out of
equilibrium with the applied flow, giving rise to dissipation and finite-size broadening, and Eq. (1)
was found to accurately describe this situation.

The steady-state solutions (∂�/∂t = 0) found by iterating Eqs. (1) and (2) for the case R =
400 and T = 0.1TKT are shown in Fig. 1 for different values of α, with the delta function at R
approximated with a strongly peaked Gaussian (width = 2), and extraction when the pairs annihilate
at the core radius (and are absorbed by the thermal bath) is implemented with a boundary condition.
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FIG. 1. Steady-state solutions of Eqs. (1) and (2) for the vortex-pair distribution function at different
injection rates α at R = 400, and T = 0.1TKT. Recursion parameters are the same as in Refs. [14,16].

In the limit of low injection rates the vortex densities are well below the densities at TKT, and the
superfluid fraction is unaffected by the vortices, K (r) = K0 where K0 is the value at r = 1 where
σs equals the “bare” superfluid density σ 0

s . Analytic solutions for the steady state can be found by
adding a second delta function −αδ2(�r − �1) to the right-hand side of Eq. (1) to account for the
absorption of pairs at the same rate they are being injected, necessary to conserve vorticity. This
yields at low injection rates

�(r) = �0 = α/2πK0 (r < R) = �0(r/R)−2πK0 (r > R). (3)

For r > R the solution is a quasithermal distribution extending from R, which arises from injected
pairs initially at separation R getting a thermal kick to higher separation.

In the limit where the vortex density becomes comparable to that found at TKT (indicated by the
dashed curve in Fig. 1) the superfluid fraction is rapidly driven to zero at a finite length scale r0 that
depends on the injection rate. This effect on the superfluid density emphasizes that the turbulent
state is not just characterized by isolated dipole pairs, but in fact is a complex many-body state of
smaller pairs screening the long-range interaction of larger pairs, and in this limit driving down the
superfluid density. If we approximate the drop in the superfluid density as a step function at r0,
analytic solutions can be found giving a logarithmic variation of � at scales above r0,

�(r) = �0 (r < r0) = �0[1 + ln(r/r0)] (r0 < r < R) = �0[1 + ln(R/r0)] (r > R). (4)

It can be seen that these analytic solutions match those found numerically in Fig. 1. The low bath
temperature is the reason the KT recursion relations remain valid even when the superfluid density
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is zero, and there are then “free” vortices of separation greater than R. The equations do finally
become unstable and blow up (similar to the equilibrium behavior above TKT) as the temperature is
increased, depending on the value of α; for α = 1 × 10−12 this is around T = 0.4TKT.

The steady-state diffusive flux of vortex pairs from Eq. (1) is J = −(r∂�/∂r + 2πK�), and for
both of the above solutions is a constant in the direction of small scales, J = −α for r < R, and zero
for r > R.

III. ENERGY SPECTRUM

The energy and enstrophy in the cascade region can be calculated following the results of
Novikov [23] and Tsubota [24], where it is convenient now to return to dimensional units r′ = a0r,
R′ = a0R, �′ = a−4

0 �, etc. The enstrophy per unit area in the cascade range for a uniform density
ρpair of vortex pairs of circulation κ = 2π h̄/m is then [24]

� =
∫

�(k′)dk′ = κ2ρpair δ2(�0), (5)

where for our neutral gas of vortices (N+ = N−)

ρpair =
∫

�′(r′)2πr′dr′ (6)

and �(k′) is the enstrophy spectrum. Similarly, the real-space enstrophy injection rate is κ2Q̇δ2(�0),
and the k-space transform is then η = κ2Q̇/a2

0.
The enstrophy spectrum can be found from a representation of the 2D delta function in terms of

the Bessel function J0,

δ2(�0) = 1

(2π )2

∫
e−i�k′ ·�r′

d2�k′ = 1

2π

∫
J0(k′r′)k′dk′ (7)

and inserting this in Eq. (5) gives

�(k′) = κ2k′

2π

∫
�′(r′)J0(k′r′)2πr′dr′. (8)

The spectral kinetic energy E (k′) per unit mass is then given by the well-known relation with �(k′)
[25],

E (k′) = �(k′)
(k′)2 = κ2(k′)−3F (9)

where setting z = k′r′ the function F is

F =
∫

�′(z/k′)J0(z)z dz. (10)

Evaluating E (k′) over the cascade range a0 < r′ < R′ of the constant solution of Eq. (3) gives

E (k′) = ητ0

2πK0
(k′)−3F̃ (11)

with F̃ = k′R′J1(k′R′) − k′a′
0J1(k′a0). Since the energy can only be positive definite, this rapid

oscillation of the dimensionless F̃ is unphysical: it is just the well-known result of imposing a
square-wave cutoff on the transform over the finite length scale of the cascade region. The energy
using the solution of Eq. (4) is the same as (10), but with F̃ now a more complicated oscillating
function. The k′−3 variation of Eq. (10) results only from the const + ln(r) form found for � in
the solutions of Eqs. (3) and (4); any other variation would result in additional factors of k′ in the
evaluation of Eq. (9).
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Γ

FIG. 2. Growth of the cascade after turning on an injection rate α = 1 × 10−20 at R = 400, and T = 0.1TKT.

The linear variation of E (k′) with the enstrophy flux η in Eq. (10) differs from the classical-fluid
cascade, which varies as η2/3. The difference in our case is that τ0 is a new dimensional quantity that
is the same for every vortex, and hence must appear as a factor in the energy. τ0 is proportional to the
frictional force on a vortex, and an increase in τ0 slows the motion of the vortices down the cascade,
increasing the pair density, and hence increases the spectral energy. This constrains the energy to
be linear in η, since the product ητ0, with dimension (time)−2, is the only dimensional possibility.
Similarly, the linear variation of the energy with temperature (from the factor K0) comes about from
the Einstein relation that lowers the mobility with increasing T , increasing the pair density and the
energy.

IV. DYNAMICS OF THE CASCADE

The dynamics of the cascade can be studied by solving Eqs. (1) and (2) as a function of both time
and separation using standard numerical techniques. Figure 2 shows the growth of the distribution
and the pair flux where a low injection rate α = 1 × 10−20 is suddenly switched on at t = 0, and
where again the delta function is approximated with a Gaussian of width 2 at R = 400 and an
absorbing boundary condition is used at r = 1. Initially the distribution just broadens as the pairs
get thermal kicks to larger and smaller separations, but the frictional forces on the vortex cores
also give rise to a net flux of pairs to smaller separations. After a few hundred diffusion times the
decaying pairs reach the core size separation where they begin to annihilate, and the energy is pulled
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Γ

FIG. 3. Decay of the vortex-pair density from the steady state reached in Fig. 2, after switching off the
injection.

out by the thermal bath. This is basically the “eddy turnover time” τeddy ≈ 410τ0 [26]. After about
four eddy times the distribution becomes relatively constant over r < R, which is the steady state
k−3 cascade solution of Eq. (3). The flux is initially only appreciable near the injection scale, and
then finally reaches the constant value of −α, the cascade state where the rate of pairs being injected
at R is equal to the rate of pairs being pulled out by the thermal bath at the scale a0. The total vortex
density initially increases linearly with slope α before any pairs are pulled out at a0, and then levels
off to an equilibrium value once pairs begin annihilating.

Upon switching off the injection, the decay of the cascade starts at the injection scale, as shown
in Fig. 3, since the flux of pairs away from R is no longer being replenished by the injected pairs.
Once the region of diminished pairs begins to reach the scale a0 the distribution starts to uniformly
decrease, and in fact in this regime the solution becomes the exact solution found in Ref. [16]
for a quenched 2D superfluid, with a vortex pair density falling off as t−(πK0−1). We point out the
fundamental relation between temperature-quenched superfluids and the vortex cascade, which both
derive from the same equations. In the temperature quench case the decay of the initial vortex
distribution is entirely due to the development of the cascade flux that begins to remove the vortices
by the annihilation at the smallest scale. The phase-ordering dynamic length ξ (t ) = ξ0t1/z, with z =
2 the dynamic exponent, is identified to be the growing extent of the flat region of the distribution
function seen in Figs. 1(a) and 3 of Ref. [16], defining the region of the k−3 cascade where the
small-scale vorticity is being removed [27].

To more clearly illustrate the dynamics of freely decaying turbulence, we start with a spike in the
distribution at R = 400 (a Gaussian of amplitude 1 × 10−20 and width σ = 20), which otherwise is
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FIG. 4. Decay of the distribution function from an initial spike at R = 400.

the thermal distribution at T = 0.1TKT, and then monitor the subsequent time dependence, shown
in Fig. 4. The spike relaxes again over about four eddy turnover times, where it evolves into the flat
k−3 cascade spectrum, and then uniformly continues to decay toward thermal equilibrium in exactly
the same manner as the decay from the steady-state cascade or from the temperature quench. This
behavior is nearly identical to that seen in the simulations of Ref. [12], where a spike in the initial
distribution (formed in their case by an actual real-space separation of the positive and negative
circulation vortices) relaxes to the k−3 spectrum over roughly four eddy times. Our turbulent cascade
appears to be quite equivalent to the simulation results, although they find the energy spectrum
proportional to η2/3 instead of linear as in our case. Since in the simulation frictional forces are not
the same for every vortex [see Eq. (S5) of their Supplemental Material] there will not be a single
diffusion time, and the only dimensional possibility is then η2/3. The vortices in the simulation start
from a negative-temperature state, with like-sign vortices clustered together, but then rapidly diffuse
together, mixing and increasing the entropy to what is likely an overall positive-temperature state,
since annihilation has begun (which would not occur at negative temperatures). There may still be
negative-temperature regions remaining, since some regions of like-sign clustering are still found
at late times. Left unknown in this simulation is whether the system is actually a superfluid as the
authors claim; based on our results in Fig. 1 this seems very unlikely even at their lowest vortex
densities. We note that the pair distribution function could easily be computed from the vortex maps
shown in Fig. 1 of Ref. [12], using the pairing technique of Ref. [28].

V. CONCLUSIONS

Experimentally, it is probably not likely that vortices in superfluid helium films can be easily
accessed, but the situation in quasi-2D Bose-Einstein condensate systems may be more amenable.
Experiments have been able to identify the positions of both positive and negative circulation
vortices [29], and from such maps it should be possible to construct the pair distribution function
as noted above. It is now also possible to image magnetic vortices of both circulations in magnon-
condensed ferromagnetic films [30], and with suitable electrodes they can be injected at given rates
into the films [31].

In summary, we have constructed analytic solutions for the enstrophy cascade in two-dimensional
quantum turbulence, using Kosterlitz renormalization. The results are very simple and give a clear
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picture of the cascade as diffusing vortex pairs drifting to smaller separation under their mutual
attraction, and annihilating at the smallest scale. The energy spectrum varies as k−3, quite similar
to the classical-fluid case, and suggests that patch models of 2D Euler equations might be more
generally useful [32].

There are also significant parallels with reaction-diffusion systems [33]. The time decay
characteristics of the enstrophy cascade allows an insight into the vortex decay found in thermally
quenched 2D superfluids, where the phase ordering proceeds via the constant-flux enstrophy cascade
to small scales. This connection with turbulent cascades may be a fundamental characteristic of the
phase-ordering process of topological excitations in general.
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