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We show that the phase space of stratified turbulence mainly consists of two slow
invariant manifolds with rich physics, embedded on a larger basin with fast evolution.
A local invariant manifold in the vicinity of the fluid at equilibrium corresponds to waves,
while a global invariant manifold corresponds to the onset of local convection. Using a
reduced model derived from the Boussinesq equations, we propose that waves accumulate
energy nonlinearly up to a point such that fluid elements escape from the local manifold and
evolve fast to the global manifold, where kinetic energy can be more efficiently dissipated.
After this, fluid elements return to the first manifold. As the stratification increases, the
volume of the first manifold increases, and the second manifold becomes harder to access.
This explains recent observations of enhanced intermittency and marginal instability in
these flows. The reduced model also allows us to study structure formation, alignment of
field gradients in the flow, and to identify balance relations that hold for each fluid element.
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I. INTRODUCTION

Many physical systems alternate between two states or display bistability. These systems can
behave as if they were caught between a rock and a hard place, going there and back again, and in
some situations the transition between states can be associated with a transition between ordered
and disordered solutions. However, while finding such behavior in low-dimensional systems is
not uncommon, and evidence in complex flows of similar behavior sometimes emerges, showing
systematically the existence of such solutions in systems with a huge number of degrees of freedom
in often impracticable. In turbulent flows, fluid elements explore a complicated phase space and
may or may not go back to a previous state. Where do fluid elements go in the phase space of
stably stratified turbulence, and how are they changed as they explore this space? This question has
become relevant as recent observations indicate that fluid elements in stably stratified turbulence
alternate between stable and unstable states, resulting in the occurrence of extreme events, enhanced
intermittency, marginal instability, and critical behavior [1–6]. Moreover, a transition between
different states could provide a path for efficient energy dissipation, which wave turbulence solutions
often lack. However, properly answering this question requires studying the flow from a Lagrangian
point of view, while most studies of this problem consider a Eulerian description of the flow.

The correct characterization of stratified turbulence is of fundamental importance for many
environmental processes, as well as for weather forecasting [7,8]. In the Eulerian description, a
useful way to characterize turbulent flows is through its energy spectrum and scaling relations.
The presence of gravity provides a preferred direction in the system, which results in different
scaling laws for the spectrum in the directions parallel and perpendicular to gravity [9–13]. The
anisotropy associated with the stratification also affects velocity and temperature gradients, resulting
in the generation of pancakelike structures in the flow. These structures can also be interpreted,
from a spectral point of view, as resulting from a preferential transfer of energy by nonlinear
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interactions toward horizontal slow modes [14–17]. The study of stratified turbulence from the
Eulerian point of view has thus led to significant advances which are useful, e.g., to understand
scale-by-scale balances satisfied by the system, which in turn are relevant for subgrid scale models
as the production of turbulent fluctuations are ultimately controlled by velocity and buoyancy
gradients.

However, important turbulent averages used to estimate mixing, such as the local shear produc-
tion, the vertical buoyancy turbulent flux, and the flux Richardson number, are not obtained from
the energy spectrum but from global balance equations [12,18]. A correct estimation of mixing is
crucial for weather prediction, as models rely on it to estimate the effect of turbulence. But averaged
values are only relevant if the statistics of the fields are Gaussian, as averages can fail to correctly
capture the mixing if extreme events and localized structures are present [2–4].

In this context, a very useful approach to study mixing and dissipation in stratified turbulence is
the Lagrangian description of the flow. In homogeneous and isotropic turbulence, whether it is from
a single-particle approach [19] or from a multiparticle one [20], the Lagrangian perspective has
been key for the understanding of several flow properties [21,22]. Both approaches have been used
to study stratified turbulence in Refs. [23–27]. Vertical dispersion of Lagrangian tracers was found
to be strongly suppressed when compared to the homogeneous and isotropic case [23,26], while
horizontal dispersion was found to be enhanced by horizontal winds [25]. Experiments following
Lagrangian buoys in the ocean have also enabled studies of dispersion and dissipation in stratified
flows [28,29]. More recently, studies focused on the Lagrangian evolution of vertical gradients
in stratified turbulence found a nonmonotonic enhancement of extreme events with the level of
stratification [4,5,30].

Studies that combine the Lagrangian and Eulerian points of view have also proven to be useful
in the study of stratified turbulence. As an example, the diffusion of a passive scalar in stratified
turbulence has been modelled with an Eulerian spectral approximation by using the two-time rapid
distortion theory (RDT) for predicting Eulerian correlations, and a simplified Corrsin analysis for
roughly equating Eulerian and Lagrangian two-time two-point velocity correlations [31]. This study
has been extended to the rapidly rotating case in Ref. [32] by means of RTD, kinematic simulations,
and direct numerical simulations with inertial particles. Also, RDT has been used to study the role
of two-point single-time velocity correlations in the evolution of rotating and of stratified flows in
Ref. [33]. More details on these approaches can be found in Ref. [34].

Compared with homogeneous and isotropic turbulence, the Eulerian and Lagrangian descriptions
of stably stratified flows are obfuscated by the presence of waves: In these flows, buoyancy acts as
a restitutive force allowing for the excitation of internal gravity waves [35]. These waves play a
crucial role in the development of the Eulerian spectra [9,10,14] and in the suppression of vertical
transport [23,26] discussed above. As a result, many works point out the need of separating the
dynamics of “waves” and of “convection” to correctly model these anisotropic flows [36]. The
so-called wave-vortex decomposition achieves this by splitting the velocity field into propagating
(corresponding to waves) and nonpropagating modes (associated to vortical motions), in some cases
under a weakly nonlinear interaction approximation. Relevant for this work, Ref. [37] shows that the
potential vorticity is better than the vertical velocity at distinguishing vortical modes from internal
waves in stratified flows. Such decompositions between waves and convective motions have also
been extensively used in more recent studies (see, e.g., Ref. [38]), and are reviewed in detail
in Ref. [34] where the connection to poloidal-toroidal and Craya-Herring decompositions of the
velocity field are also discussed.

In turbulent stratified flows, waves can also interact nonlinearly and contribute to the turbulent
transfer of energy to smaller scales [39], but they can be inefficient at dissipating energy. As a result,
under some conditions energy can be expected to accumulate until wavelike solutions cannot hold
anymore, and the system must search in phase space for other solutions that can dissipate energy
more efficiently [40,41]. The convective motions described above are a good candidate to account
for such a process.
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This is the main motivation for the present study. What surfaces of solutions in phase space
are explored when internal gravity waves break, and how does the system fill in the gap between
the different possible states? Using a reduced model for stratified flows introduced in Ref. [30],
and direct numerical simulations of stably stratified turbulence, we show that the Boussinesq
equations have two slow invariant manifolds corresponding to two solutions: waves, and the onset
of local convection. Fluid elements stay for long times in the first region of phase space. When
they escape from this manifold, they travel fast in phase space from one manifold to the other,
where they can dissipate energy more efficiently, to finally return to the first manifold. Our reduced
model is an extension of restricted Euler models studied in detail in homogeneous and isotropic
turbulence [42–45]. These models describe the Lagrangian evolution of field gradients using a small
number of ordinary differential equations, and for homogeneous and isotropic turbulence were able
to explain many flow properties such as the development of intermittency and the origin of flow
structures [44,45]. In spite of some limitations associated with the approximations needed to derive
them [46], several advances have been made in homogeneous and isotropic turbulence to circumvent
these limitations [47,48]. Moreover, as we will show, approximations needed to derive restricted
Euler models in stratified turbulence are better satisfied. In our case, the reduced model allows us to
also identify and study: (1) balance relations that hold for fluid elements as they are advected by the
flow, (2) alignments between the vorticity, the gradient of density fluctuations, and the strain-rate
tensor, and (3) correlations between different terms in the potential vorticity.

The structure of the paper is as follows. In Sec. II we introduce the Boussinesq equations, and
we describe the direct numerical simulations used to study the evolution of fluid elements in phase
space and to compare their evolution with the predictions from the reduced model. In Sec. III we
derive in detail the restricted Euler model for stratified turbulence originally presented in Ref. [30].
In Sec. IV we study its fixed points and invariant manifolds, we compare with the results from the
numerical simulations of the full Boussinesq equations, and show the evolution of fluid elements
in the phase space defined by the model. Section V discusses implications of the model for subgrid
modeling of stably stratified turbulence and, in particular, for the turbulent production of buoyancy
gradients. Implications of the results for the alignment of field gradients are presented in Sec. VI.
Section VII discusses further implications of the model for the evolution of the potential vorticity.
Finally, Sec. VIII presents our conclusions.

II. THE BOUSSINESQ EQUATIONS AND DIRECT NUMERICAL SIMULATIONS

A. The equations for a stably stratified flow

In this work we will consider the Lagrangian evolution of velocity and density gradients of
individual fluid elements, as they evolve under the Eulerian dynamics of an incompressible stably
stratified turbulent flow. To describe the flow Eulerian dynamics we work under the Boussinesq
approximation, which describes perturbations to a linear background density profile (which in
our case is stable). On top of this background profile, density (or “buoyancy”) fluctuations are
represented by θ . The scalar field θ has units of velocity by defining it as θ = gρ/(Nρ0), where g is
the gravitational acceleration, ρ is the actual density fluctuation, N is the Brunt-Väisälä frequency
(associated to the frequency of internal gravity waves, to the linear background density profile, and
a measure of how strong stratification is), and ρ0 is the mean background density (i.e., averaged over
all space). For this scalar field and for a velocity field u, the incompressible Boussinesq equations
can then be written as

∂u
∂t

+ u · ∇u = −∇p − Nθ ẑ + ν∇2u + f, (1)

∂θ

∂t
+ u · ∇θ = Nu · ẑ + κ∇2θ, (2)

∇ · u = 0, (3)
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where p is the correction to the hydrostatic pressure, ν the kinematic viscosity, κ the diffusivity, and
f an external mechanical forcing. Equations (1) and (2) have three dimensionless parameters that
control the dynamics of the system, the Reynolds, Froude, and Prandtl numbers respectively defined
as

Re = UL

ν
, Fr = U

NL
, Pr = ν

κ
, (4)

where U and L are the characteristic velocity and length of the flow. While Re measures the
strength of the nonlinear term compared with that of the viscous term in the momentum equation,
Fr compares the strength of the nonlinear term with the buoyancy term; Pr just corresponds to the
ratio of diffusivities. The strength of the turbulence is also often characterized using the buoyancy
Reynolds number, defined as

Rb = Re Fr2. (5)

The Boussinesq equations have a well-known fixed point for u = θ = 0. Linearizing Eqs. (1)
and (2) in the vicinity of this solution and neglecting viscosity and diffusivity (ν = κ = 0), internal
gravity waves are found with dispersion relation [35],

ω = N
k⊥
k

, (6)

where ω is the wave frequency, k = |k| is the wave number, k the wave vector, and k⊥ is the wave
number associated to the components of k perpendicular to gravity. In the linear regime, these waves
only affect the poloidal part of the velocity field, whereas its toroidal part is disconnected from the
wave regime (see Ref. [34] for more details). Note that ω � N , and the Brunt-Väisälä frequency is
thus the maximum possible frequency of internal gravity waves.

These waves play a crucial role in the dynamics of stably stratified flows, and it is known
that fluid elements are often found in wavelike states in the vicinity of u = θ = 0. This results
in low vertical diffusion and mixing [23,24,26]. However, local instabilities also play a key role
in these flows. Important parameters to measure the vertical stability of the flow are given by the
Richardson numbers, which have different definitions in the literature depending on whether they are
estimated in the bulk or based on pointwise values of field gradients, but which in all cases attempt
at estimating the ratio of production of turbulence by buoyancy to the production of turbulence by
shear. Here we will consider the gradient Richardson number,

Rig = N (N − ∂zθ )

|∂zu⊥|2 , (7)

where u⊥ is the horizontal flow velocity (see, e.g., Ref. [49]). The factor N − ∂zθ results from
estimating the vertical derivative of the total density (or buoyancy) field � = �0 − Nz + θ , with
�0 a constant. This dimensionless number provides us with a pointwise estimation of the flow
stability. When Rig � 1/4 the flow can undergo zigzag and shear instabilities [50], while for Rig � 0
the local density fluctuation can overcome the background density gradient (controlled by N) and
local convection can develop, significantly increasing the vertical mixing in the vicinity of that
point [26,51]. Another way to look at this latter case is the following: When ∂zθ � N the local
buoyancy steepness is larger in absolute value than that of the background, breaking down the
vertical stability and allowing for a convective instability to take place. Finally, note that while θ

should be small compared with �0 − Nz for the Boussinesq approximation to be valid, there is no
condition on its local vertical derivative ∂zθ and, as a result, points with Rig � 0 are compatible with
the approximations used in this work.

B. Numerical solutions of the Boussinesq equations and Lagrangian particles integration

We performed direct numerical simulations of Eqs. (1)–(3) in the regime of developed turbulence,
in a three-dimensional (3D) periodic domain with aspect ratio Lx:Ly:Lz = 4:4:1 (where Lx, Ly, and
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TABLE I. Characteristic parameters of the numerical simulations: N is the Brunt-Väisälä frequency, Fr is
the Froude number (typical geophysical values are Fr ≈ 10−2), Re is the Reynolds number, Rb is the buoyancy
Reynolds number, and LB/η and Loz/η are respectively the buoyancy scale Lb and the Ozmidov scale Loz

normalized by the Kolmogorov dissipation scale η.

N Fr Re Rb LB/η Loz/η

4 0.05 10 000 25 9.6 14.4
8 0.03 14 000 13 6.0 5.6
12 0.02 15 000 4 4.0 2.8

Lz are the lengths of the domain in each direction, and with Lx = 2π in dimensionless units), and
with spatial resolution of 768 × 768 × 192 grid points. We used a parallel pseudospectral fully
dealiased method to compute spatial derivatives and nonlinear terms in the equations, and a second
order Runge-Kutta scheme for time integration [52]. A Taylor-Green forcing was used to sustain
the turbulence, a forcing that has been used in previous studies of stably stratified flows (see, e.g.,
Refs. [53,54]), and which is given by

f = F0

[
sin(x) cos(y) cos

(
Lx

Lz
z

)
x̂ − cos(x) sin(y) cos

(
Lx

Lz
z

)
ŷ

]
, (8)

where Lx/Lz = 4 and F0 is the forcing amplitude (which was chosen to have a r.m.s. flow velocity
U ≈ 1 in the turbulent steady state). The forcing generates counterrotating large scale vortices
separated by planes of strong horizontal shear. In the analysis that follows, we also verified that
other domain aspect ratios, other spatial resolutions, and other possible forcing schemes (see, e.g.,
simulations in Ref. [30]) give qualitatively similar results.

The viscosity and diffusivity (ν = κ , and thus Pr = 1) were chosen so that all the relevant
flow scales were properly resolved [9]. This includes the buoyancy scale LB = 2π/kB (the scale
associated to the typical height of the strata), the Ozmidov scale Loz = 2π/koz (the scale at which
the flow starts recovering isotropy), and the Kolmogorov dissipation scale η = 2π/kη, where all the
corresponding wave numbers are respectively defined as

kB = N

U
, koz =

(
N3

ε

)1/2

, kη =
(

ε

ν3

)1/4

, (9)

and where ε is the energy injection rate. The Kolmogorov dissipation scale was always slightly
larger than the minimum resolved spatial scale. Three values of the Brunt-Väisälä frequency (and
thus of the stratification) were considered, with N = 4, 8, and 12 in dimensionless units. Resulting
values of Fr, Re, Rb, and of the ratios LB/η and Loz/η for the three simulations, are given in Table I.

To study the evolution of velocity and density gradients as fluid elements are advected by the
fluid, in each simulation we tracked O(106) Lagrangian particles for over 10 large-scale turnover
times. Each tracer satisfies the ordinary differential equation

dx
dt

= u(x, t ), (10)

where x is the particle position. This equation was integrated using a Runge-Kutta method to evolve
in time, and a 3D cubic spline interpolation to estimate the fluid velocity u(x, t ) at the position
of the particles [55]. The same method was used to estimate velocity and temperature gradients at
particles’ positions, respectively denoted as ∇u(x, t ) and ∇θ (x, t ). These quantities were stored for
each particle with very high time cadence. Then, finite differences and averages over multiple nearby
particles (to decrease fluctuations) were used to obtain time derivatives of ∇u(x, t ) and ∇θ (x, t ), to
study their evolution in phase space.
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III. A REDUCED MODEL FOR THE LAGRANGIAN EVOLUTION OF FIELD GRADIENTS

From Eqs. (1)–(3) a closed model for the Lagrangian evolution of velocity and buoyancy
gradients was presented in Ref. [30]. In this section we introduce a detailed derivation of this
model, including intermediate equations that, albeit not closed, are in many cases exact, and useful
to interpret the physical implications of the reduced model. While actual stably stratified fluids have
external forcing and dissipation, for practical reasons in this section we neglect both and we consider
the ideal unforced case (ν = κ = f = 0). As a result, we can expect the reduced model to give a good
approximation to field gradients dynamics for short times, when the effects of the forcing and of the
dissipation are small compared with other linear and nonlinear terms in the Boussinesq equations.
In spite of this, we will see that the model gives useful insights into the dynamics of the full system
even when long times are considered.

We start by computing spatial derivatives of Eqs. (1) and (2). We write field gradients using index
notation, and define Ai j = ∂ jui and θ j = ∂ jθ (for i, j = {x, y, z}). With this notation, we obtain

DAi j

Dt
+ Ak jAik = − ∂2 p

∂xi∂x j
− Nθ jδiz, (11)

Dθ j

Dt
+ Ak jθk = NAz j, (12)

where δi j is the Kronecker delta and D/Dt = (∂/∂t + u · ∇) is the material derivative. Equation (11)
is the usual Lagrangian evolution equation for the velocity gradient tensor Ai j , with the extra term
−Nθ jδiz that accounts for the (linear) creation or destruction of gradients of the vertical velocity
by the buoyancy gradients θ j . Equation (12) is the Lagrangian evolution equation for buoyancy
gradients. Here the nonlinear term Ak jθk represents the turbulent production or destruction of
buoyancy gradients by strain and vorticity [56], while the linear term NAz j corresponds to the
(linear) creation or destruction of these gradients by gradients of the vertical velocity.

We can remove some of the derivatives of the pressure in Eq. (11) by using the incompressibility
condition ∇ · u = Aii = 0, which for the trace of Eq. (11) implies

AklAlk = − ∂2 p

∂xl∂xl
− Nθz. (13)

The remaining spatial derivatives of the pressure can be written using the deviatoric part of the
pressure Hessian, defined as

Hi j = −
(

∂2 p

∂xi∂x j
− δi j

3

∂2 p

∂xk∂xk

)
. (14)

Using Eqs. (13) and (14), Eq. (11) can be finally written as

DAi j

Dt
+ Ak jAik − δi j

3
Akl Alk = Hi j − Nθ jδiz + Nθz

δi j

3
. (15)

This equation, together with Eq. (12), provides a set of equations (albeit not closed) for the evolution
of all components of ∇u and ∇θ along the trajectories of the fluid elements.

To close this set of equations we use an approximation commonly made in restricted Euler
models of homogeneous and isotropic turbulence [43–45], and we assume that the deviatoric part
of the pressure Hessian can be neglected. In other words, we assume that Hi j ≈ 0 in Eq. (15). In
homogeneous and isotropic turbulence, recent works have focused on how to estimate this term,
or on how to close it, using Gaussian random fields [46], recent deformation of Gaussian velocity
fields [47], or multifractal models [48]. However, while for the homogeneous and isotropic case
the condition Hi j ≈ 0 is not well satisfied, in the stratified case the pressure Hessian becomes
relatively smaller as stratification is increased. Moreover, attempts to close the deviatoric part of the
pressure Hessian using, e.g., multifractal models, should probably be modified to take into account
the anisotropy of stratified flows, and the different intermittency properties observed in their fields.
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FIG. 1. PDFs of the pressure Hessian components Hxz (left) and Hxx (right), in both cases normalized by
a r.m.s. typical value of one-third of the trace of the nonlinear term in Eq. (15), 〈(Ak jA jk/3)2〉1/2, and for the
three simulations with different Brunt-Väisälä frequencies N . Note most fluid elements have relatively small
pressure Hessian components, although the PDFs also display fat tails.

Thus, we will not use any of these techniques, and leave the study of their effects for the future.
To partially justify this choice, and to illustrate how the contribution from the deviatoric part of Hi j

decreases with increasing stratification, in Fig. 1 we show probability density functions (PDFs) of
pointwise values of Hxz and Hxx in the direct numerical simulations in Table I, normalized by the
r.m.s. value of one-third of the trace of the nonlinear term in Eq. (15), namely 〈(Ak jA jk/3)2〉1/2.
For all simulations, more than 80% of fluid elements have normalized components of the pressure
Hessian smaller than 0.2 (with an increasing percentage of these fluid elements as N increases). Note
also that for N = 12 an asymmetry develops in the probability density functions of Hxx, associated
with the increasing contribution of the buoyancy terms in Eq. (15). In fact, for sufficiently large N
it is better to compare the amplitude of the diagonal terms of Hi j against these terms instead. But in
any case, proper estimation of the pressure Hessian is an open problem that goes beyond this work
(see, e.g., further discussions in Ref. [45]), and in spite of its apparent smaller relevance here, just
as in homogeneous and isotropic turbulence we choose to neglect it in order to obtain a closed set
of equations.

We also want to reduce the information in Ai j and θ j to the smallest possible number of scalar
quantities that result in an autonomous system. In the isotropic and homogeneous case, two scalar
quantities (proportional to the traces of A2 and of A3, with A the velocity gradient tensor, and
thus invariant under the group of rotations and reflections) suffice. But here, as we have more field
gradients and as the stratification introduces anisotropy, the system cannot be closed with just these
two variables. However, using the fact that the system has a preferred direction and that the equations
are axisymmetric around this direction, we can define

Q = −Ai jA ji/2,

R = −Ai jA jkAki/3,

Rθ = θiAi jA jz,

B = AziAiz,

T = θiAiz,

A = Azz,

S = θz.

(16)

We now want to find Lagrangian evolution equations for these seven scalars. The equations for
the evolution of Q and R are well known for homogeneous and isotropic turbulence (for a derivation
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of the reduced Euler model in this case, see e.g., Ref. [43]). To derive an evolution equation for Q
we evaluate Eq. (15) in An j and multiply it by Ain. Using the derivative product rule we obtain

D(AinAn j )

Dt
+ 2AikAknAn j − 2

3
Ai jAkl Alk = 2

3
Ai jNθz − NθnAn jδiz − Nθ jAiz, (17)

where Hi j was neglected. Setting i = j in this equation we obtain Dt Q = −3R + NT (where Dt

is shorthand for D/Dt). To obtain an equation for R we multiply Eq. (17) by the velocity gradient
tensor again, to obtain

D(AinAnkAk j )

Dt
+ 3AimAmnAnkAk j − (AinAn j )(AklAlk ) = NθzAikAk j − NθnAn jδiz − Nθ jAiz. (18)

The trace of this equation results in an equation for the evolution of R, but in order to do so we
need to reduce the fourth-order term AimAmnAnkAki into second-order terms. To this purpose we use
the Cayley-Hamilton theorem [42,43,45], which states that any second-rank tensor Vi j satisfies the
relation

VimVmnVnk + PV VilVlk + QV Vik + RV δik = 0, (19)

where PV = Vii, QV = −VklVlk/2, and RV = −VimVmnVni/3. Taking Vi j = Ai j , then for incompress-
ible flows P = 0, QV = Q, and RV = R, and Eq. (19) reduces to the relation

AimAmnAn j = −QAi j − Rδi j . (20)

Then, using the Cayley-Hamilton theorem, the fourth-order term in Eq. (18) can be written as
AimAmnAnkAki = −QAikAki − RδikAki = 2Q2. By these means the equation for the evolution of
R reduces to Dt R = 2Q2/3 + 2NSQ/3 + NRθ . An evolution equation for B = AziAiz follows in
the same manner as for Q, by taking i = j = z in Eq. (17), and by reducing the third-order
term AzkAknAnz = −QAzz − R using again the Cayley-Hamilton theorem. Then the equation for B
results Dt B = 2QA/3 + 2R − NAS/3 − NT . The equation for T = θkAkz requires using both the k
component of Eq. (12) multiplied by Akz, and the kz component of Eq. (15) multiplied by θk , to
obtain

D(θkAkz )

Dt
+ 2θmAmkAkz − 1

3
θzAkl Alk = NAzkAkz − 2

3
Nθ2

z , (21)

which reduces to Dt T = −2Rθ − 2SQ/3 + NB − 2NS2/3. To derive an equation for Rθ = θkAkl Alz

we use the k component of Eq. (12) and the kz component of Eq. (17) in the same way, to compute

D(θkAkl Alz )

Dt
+ 3θmAmkAkl Alz − 2

3
θkAkzAkl Alk = −4

3
NθzθnAnz + NAzkAklAlz. (22)

To express this equation in terms of our scalar quantities, we use again the Cayley-Hamilton theorem
in Eq. (20) for AmkAkl Alz = −QAmz − Rδmz and AzkAkl Alz = −QAzz − R. Then the evolution
equation for Rθ results Dt Rθ = 5QT/3 + 3RS − 4NST/3 − NQA − NR. Finally, the equation for
A is obtained by simply taking j = i = z in Eq. (15), resulting in Dt A = −B − 2Q/3 − 2NS/3, and
the equation for S is obtained by taking j = z in Eq. (12), resulting in Dt S = NA − T .
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The resulting reduced model for the Lagrangian evolution of field gradients of stratified
turbulence can be summarized as

Dt Q = −3R + NT,

Dt R = 2Q2/3 + 2NSQ/3 + NRθ ,

Dt Rθ = 5QT/3 + 3RS − 4NST/3 − NQA − NR,

Dt B = 2QA/3 + 2R − NAS/3 − NT,

Dt T = −2Rθ − 2SQ/3 + NB − 2NS2/3,

Dt A = −B − 2Q/3 − 2NS/3,

Dt S = NA − T .

(23)

This system prescribes the evolution of field gradients along the trajectories of the fluid particles.
From the frame of reference of a Lagrangian particle, these equations are a closed system of
seven ordinary differential equations. As in the reduced Euler model of homogeneous and isotropic
turbulence, the only approximations made to derive the equations were to assume an ideal and
unforced regime, and to neglect the pressure Hessian Hi j . In the reduced Euler case, dropping Hi j

makes field gradients to diverge and the system to blow up in finite time. In our system stratification
slows down the blow up, and can prevent it in some cases if N is large enough [30]. Nevertheless,
the dynamics of this system, even when it blows up at finite time, provides significant information
on the dynamics of the full set of partial differential Eqs. (1)–(3), as we will show in the following
sections.

IV. EVOLUTION OF FLUID ELEMENTS IN PHASE SPACE

In this section we characterize the topological properties of the phase space of the reduced system
in Eq. (23), and we compare its predictions with those obtained from the time evolution of field
gradients in the direct numerical simulations of the full Boussinesq equations. From the simulations
in Table I we compute Q, R, Rθ , T , B, A, and S for all fluid elements, and their time derivatives, and
embed these quantities in the phase space defined by the reduced model. Compared with previous
results presented in Ref. [30], here we will not only study whether fluid elements in the full system
accumulate in certain regions of the phase space of the reduced system but also how fast or slow
they evolve depending on the region in which they are.

This section is organized as follows: First, we introduce the fixed points of the system, for
which the time derivatives of all the scalars are zero. Associated to fixed points, dynamical systems
can have invariant manifolds, which are constrained regions of the phase space where points (i.e.,
states of the system) can only evolve to other points in the same manifold. In these manifolds, the
dimensionality of the system is further reduced [57]. We consider the invariant manifold that is
known to play a relevant role in the homogeneous and isotropic case, and study how stratification
modifies this manifold and introduces new invariant manifolds. Finally, after discussing the role of
these manifolds and their physical relevance, we propose a simplified picture of the phase space of
stably stratified turbulence.

A. Fixed points

We start by listing the fixed points of the reduced model for the Lagrangian evolution of field
gradients. The system in Eq. (23) has two sets of fixed points,

I : Q = R = Rθ = T = B = A = S = 0,

II : Rθ = 2N2Q − 6Q2

3N
, B = 2N2

3
− 2Q, T = 3R

N
, A = 3R

N2
, S = 2Q

N
− N, Q, and R free.

(24)
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FIG. 2. Joint probability density functions of Q and Rθ for N = 4, 8, and 12 (from left to right). Colors
represent the probability density of finding fluid elements with the corresponding values of Q and Rθ in the
numerical simulations of the Boussinesq equations (color tables here an in the following figures are in log
scale), while the arrows indicate the direction and speed in which fluid elements evolve on the average. The
relation Rθ = (2N2Q − 6Q2)/(3N ), associated with fixed point I, is shown as reference with a solid line.

Fixed point I corresponds to null gradients of u and θ . Unlike the fixed point Q = R = 0 in the
reduced Euler model for homogeneous and isotropic turbulence (i.e., for N = 0, see Refs. [42–45]
and the discussion below), this fixed point is not obviously unstable. When the system in Eq. (23)
is linearised around this fixed point, the linear system of ordinary differential equations can be
represented by a matrix whose eigenvalues provide information of how fluid elements evolve
when perturbed in its vicinity. The array has one eigenvalue equal to 0, four eigenvalues equal to
±iN , and two eigenvalues equal to ±i

√
6N/2. As all eigenvalues are zero or purely imaginary,

small perturbations around fixed point I results in oscillations (between linear combinations of
Q, T , B, and S in one case and A and S in the other). Also because all eigenvalues are zero
or purely imaginary, center manifold theory can be used to further reduce the dimensionality of
the system [57] (see Sec. IV C). Physically, this fixed point corresponds to the stratified fluid at
equilibrium, and linearly perturbing this solution results in the excitation of internal gravity waves
as follows from Eq. (6). The behavior described here is the counterpart for field gradients of the
well-known fixed point of the full Boussinesq partial differential equations for u = θ = 0 [35]. Of
course, if the fluid elements are perturbed far from this equilibrium, nonlinearities will become
relevant and fluid elements may run away in phase space.

The other solution, fixed point II, actually corresponds to a manifold of fixed points, as Q and
R are free (i.e., for each value of these variables we have a fixed point in the system). To confirm
their presence in the full Boussinesq partial differential equations, Fig. 2 shows the joint probability
density function of Rθ and Q (i.e., the probability density of finding fluid elements with different
values of these two variables) obtained from the direct numerical simulations, with arrows indicating
the mean direction and speed at which fluid elements evolve in this plane (also obtained from the
full Boussinesq system). Superimposed, we show the relation Rθ = (2N2Q − 6Q2)/(3N ) which
corresponds to fixed points II of the reduced model. There is a correlation between points in the
direct numerical simulations and this relation, in the sense that arrows are small in the vicinity
of the fixed points (albeit there is no significant accumulation of fluid elements in the manifold
defined by these fixed points). Other lobes showing significant accumulation of probability, as well
as other regions with slow evolution (i.e., with small arrows, or equivalently, with small DRθ /Dt and
DQ/Dt) are associated to projections into this Rθ -Q plane of slow manifolds in the reduced system
that will be discussed next (note these figures, and all following figures, correspond to projections
into planes of a seven-dimensional phase space).

B. The Vieillefosse manifold

As mentioned before, an invariant manifold is a region of phase space that is invariant under
the action of the dynamical system (i.e., such that initial conditions in this manifold remains in the
same manifold as time evolves). These manifolds are often constructed by perturbing dynamical
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FIG. 3. Joint probability density function of Q and R for N = 4, 8, and 12 (from left to right). Colors
represent the logarithm of the probability density of finding fluid elements with the corresponding values of
Q and R in the numerical simulations of the Boussinesq equations, while the arrows indicate the averaged
direction and speed in which fluid elements evolve. The Vieillefosse tail Q = −(27/4R2)1/3 is shown as
reference with solid lines. For homogeneous and isotropic turbulence, this curve corresponds to an invariant
manifold of the Q-R reduced Euler model.

systems around fixed points, although global invariant manifolds (i.e., valid up to any order in the
nonlinearity) can also exist.

In the case with N = 0 (no stratification, homogeneous, or isotropic flows), the reduced system
in Eq. (23) further reduces to the so-called Vieillefosse or reduced Euler model for Q and R (which
are the two rotationally invariant scalars obtained from the traces of A2 and A3, and proportional to
sums and products of the eigenvalues of the Ai j tensor) [42–45],

Dt Q = −3R,

Dt R = 2Q2/3, (25)

and also to a reduced system of ordinary differential equations for the gradients of an isotropic
passive scalar. The system in Eqs. (25) has only one fixed point, Q = R = 0, and one invariant
manifold, the so-called Vieillefosse tail given by Q = −(27/4R2)1/3 [42,45], as it can be shown that
Dt (4Q3/27 + R2) = 0. The reduced Euler system blows up following this manifold, with gradients
growing to arbitrarily large (negative) values of Q. However, this manifold plays a crucial role
in the dynamics even in the viscous and forced Navier-Stokes case, as it can be shown that its
existence is associated with the observed alignment of vorticity with an eigenvector of the strain-rate
tensor, with the phenomenon of vortex stretching, and with the development of extreme events in
the flow [45,56,58,59].

In the stratified case (N �= 0), from the reduced system in Eq. (23) this relation is replaced by

D

Dt

(
4Q3

27
+ R2

)
= 3N

2
[3NR(3B + 2Q) + 2Q2T ], (26)

and thus, as N increases from zero, this manifold stops being invariant and it becomes less relevant
for the dynamics. Indeed, in the direct numerical simulations we observe that for small values of N
some fluid elements still accumulate near this manifold but that this accumulation decreases as N
increases. To illustrate this, Fig. 3 shows the isocontours of the joint probability density functions
of Q and R for all simulations. Besides the change in the PDFs, there is also a change in the rate of
change of Q and R: For N = 4 vectors are small near the Vieillefosse tail and tend to align with this
manifold in its vicinity. Instead, for N = 8 and 12, although fluid elements still slow down near the
manifold, they cross it and they orbit around the point Q = R = 0. This corresponds, as mentioned
above, to the wavelike motions near fixed point I and also indicates that the mechanism of vortex
stretching (see, e.g., Refs. [58,59]) is significantly affected by the stratification, in agreement with
the well-known change in the geometry of vortical structures in stably stratified turbulence from
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FIG. 4. Joint probability density function of Rθ /N − B and Q for simulations of the full Boussinesq
equations with N = 4, 8, and 12 (from left to right), restricted to fluid elements with S ≈ 0. Arrows indicate
the mean rate of change of these quantities in the direct numerical simulations. The invariant manifold I with
Q = Rθ /N − B is shown as a reference by solid lines. Insets show the same quantities but for all fluid elements
(i.e., without any restriction on the possible value of S), and with the same ranges for the axes as the main
figures. Insets in the following figures also follow this convention.

tubes to pancakes. Indeed, note that Q can be written as [59]

Q = 1
4 [ω2 − 2 Tr(s2)], (27)

where ω = ∇ × u is the vorticity, Tr denotes the trace, and s = (A + AT )/2 is the strain-rate tensor.
As a result, fluid elements with Q > 0 are dominated by vorticity, and fluid elements with Q < 0
are dominated by strain. Also, for R > 0 flow topologies are stable, while for R < 0 flow topologies
are unstable. Finally, it can be also shown (see, e.g., Ref. [59]) that regions in Fig. 3 with R > 0
and Q > 0 correspond to unstable compression of vortices, regions with R > 0 and Q below the
Vieillefosse tail correspond to unstable vortex sheet structures, and regions with R < 0 correspond
to stable tubelike structures (which can be also stretched depending on the value of Q). Thus, the
apparent accumulation (for sufficiently large N) of fluid elements near Q ≈ 0 and with any sign
of R seems to indicate structures alternate between all these possible configurations in the stably
stratified case (the local structure of the flow will be discussed in more detail in Sec. VI).

C. The invariant manifold in the vicinity of fixed point I

An expansion of the ordinary differential equations in Eq. (23) in the vicinity of fixed point I
shows that

I :
D

Dt

(
Rθ

N
− B − Q

)
= 0, (28)

i.e., Rθ /N − B − Q = 0 is a local invariant manifold of the system.
Figure 4 shows the joint probability density functions of Rθ /N − B and Q for the direct numerical

simulations, together with arrows indicating the mean rate of change of these quantities in the phase
space, only for fluid elements with S ≈ 0 (as expected near fixed point I), using the same criteria for
the selection of fluid elements as in Ref. [30] (briefly, here and in the following conditions S ≈ 0
or S ≈ N mean all particles satisfying any of these conditions within 10% of the value of N were
chosen). The insets in Fig. 4 show the same probability density functions but without any restriction
on the values of S. For the restricted cases, and for all simulations with different values of N , a
strong correlation between Rθ /N − B and Q is seen, as evidenced by the larger probability densities
near the manifold Rθ /N − B = Q. Moreover, the correlation increases with increasing N . And this
correlation is seen even for large values of Rθ /N − B and Q, in spite of the fact that the invariant
manifold is local (i.e., only expected to be valid in the vicinity of the fixed point I).

Rates of change are very small near the invariant manifold Rθ /N − B = Q, and large far from it,
more clearly in the simulation with N = 12 (note the disparate size of the arrows in different regions
of phase space in Fig. 4). This suggests that fluid elements evolve slowly near this manifold, or in
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other words, that the local manifold I is not only preserved in the full Boussinesq system but is
also a slow manifold of the system.

D. The invariant manifold in the vicinity of fixed point II

Only valid in the vicinity of fixed point II, the system in Eq. (23) has two invariant manifolds,

II,a : Q = N2

3
, R free,

D

Dt
(−4R + NT + N2A) = 0,

II,b : Q = −N2

3
, R free,

D

Dt

(
Rθ − NB + 8NQ

3

)
= 0. (29)

But in order to reach fixed points II, the system needs a value of Q or B of O(N2), so this set
of fixed points are hard to access. Indeed, analysis of the direct numerical simulations indicate that
the invariant manifolds associated with fixed points II do not seem to have a relevant role in the
dynamics of the fluid elements.

E. The global invariant manifold

From the system in Eq. (23), it can be verified that T = NA, S = N , and Rθ = NB is a global
invariant manifold as

0 : Dt (T − NA) = 0, Dt S = 0, Dt (Rθ − NB) = 0. (30)

This particular manifold is valid for all orders of the nonlinearity, and inside it, the system in Eq. (23)
reduces to a dynamical system with just 4 degrees of freedom,

Dt Q = −3R + NT,

Dt R = N2B + 2N2Q/3 + 2Q2/3,

Dt B = −4N2T/3 + 2NR + 2QT/3,

Dt T = −NB − 2N33 − 2NQ/3. (31)

This manifold has a rich physical interpretation, since as S = ∂zθ , then for ∂zθ = N the gradient
Richardson number in Eq. (7) becomes zero, and fluid elements in this manifold are at the onset
of the convective instability becoming vertically unstable at the slightest perturbation. Thus, and
although stably stratified turbulence is expected to display low vertical mixing [24,60] and wavelike
solutions, fluid elements in 0 can display a marginal instability as reported for stratified turbulence
in Refs. [1,6], go through bursts and trigger sudden and intermittent local convective processes as
observed in Refs. [2–5], and significantly enhance vertical dispersion as reported in Refs. [26].

Figure 5 shows the joint PDFs of Rθ and NB, while Fig. 6 shows the joint PDFs of NA and T ,
obtained from the direct numerical simulations, and superimposed with mean rates of change of all
quantities. As references, we also indicate in these figures the relations T = NA and Rθ = NB of
the global invariant manifold 0. The correlation of the dynamics of fluid elements in the numerical
simulations with this manifold improves when fluid elements are restricted to cases with S ≈ N (as
expected for 0). Moreover, fluid elements again evolve slowly in the vicinity of this manifold. A
slow evolution, and the accumulation of fluid elements near this manifold, can be explained as the
evolution of the convective instability (which takes place in the order of the turnover time) is slower
than the fast internal gravity waves and other physical processes in the flow.

F. Overall dynamics

The data from the direct numerical simulations presented so far indicates that fluid elements
spend a significant time exploring two invariant manifolds. Moreover, the data also shows that as
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FIG. 5. Joint probability density function of NB and Rθ for direct numerical simulations with N = 4, 8,
and 12 (from left to right), together with arrows indicating mean rate of change of these quantities, restricted
to fluid elements with S ≈ N . The curve NB = Rθ , corresponding to the invariant manifold 0, is indicated as
a reference by the solid lines. Insets show the same quantities but for all fluid elements (without any restriction
on the possible value of S).

N increases, the local invariant manifold I holds a larger fraction of particles, as opposed to the
global manifold which holds a smaller fraction of fluid elements. This is shown in Fig. 7, which
shows the percentage of fluid elements at any moment with S ≈ 0 or with S ≈ N in all simulations
in Table I, as a function of Fr. However, note that previous studies [4,30] suggest that this behavior
may be monotonous only for sufficiently large N (or sufficiently small Fr), while for intermediate
values of N fluid elements could escape more rapidly (and nonmonotonously with N of Fr) from the
local invariant manifold.

The present analysis also indicates that once fluid elements escape from any of these two
manifolds, the evolution of fluid elements is fast as they move in phase space from one manifold
to the other. This is not only suggested by the reduced model, but also seen in the data from the
simulations of the full Boussinesq equations. Indeed, as shown above, the invariant manifolds are
not only partially preserved in the full system, but are also slow, as rates of change of field gradients
in phase space decrease dramatically in the vicinity of these manifolds. Moreover, fluid elements
display fast and extreme values of the gradients when S �= 0 or N , and in these cases the fluid
elements seem to rapidly recover one of these two values. This is also illustrated in Fig. 8, where
the value of S is shown as a function of time for an individual fluid element in the simulation with
N = 4. Note S fluctuates around 0 or 4 for long times, and changes between these two values are
often mediated by a long and fast excursion in the value of S (we will see similar alternations
between slow and fast evolution in the dynamics of the potential vorticity in Sec. VII).

Following these results, we propose the following scenario: The phase space of stably stratified
turbulence is composed of two main slow invariant manifolds. The local manifold I, valid in

FIG. 6. Joint probability density function of NA and T for direct numerical simulations with N = 4, 8, and
12 (from left to right), together with arrows indicating mean rate of change of these quantities, restricted to
fluid elements with S ≈ N . The curve NA = T , corresponding to the invariant manifold 0, is indicated as a
reference by the solid lines. Insets show the same quantities but for all fluid elements (without any restriction
on the possible value of S).
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FIG. 7. Fraction of fluid elements (in percentage) in manifolds 0 (with S ≈ N) and I (with S ≈ 0) as a
function of Fr, for all simulations in Table I (i.e., for N = 12, 8, and 4, in that order with increasing Fr). Notice
how the percentage of fluid elements in the wavelike invariant manifold (I ) decrease with increasing Fr, while
the percentage of fluid elements at the onset of convection (i.e., in 0) increase with increasing Fr, at least for
the values of Re considered here.

the proximity of the flow at equilibrium (fixed point I) corresponds to the case in which waves
dominate the system dynamics. When energy in the waves grows too much (either from nonlinear
amplification, from the wave turbulence cascade, or from effects neglected in the reduced model
such as forcing or pressure gradients), fluid elements can escape this local manifold and explore

FIG. 8. Left: Value of S as a function of time for one particle in the simulation with N = 4. Horizontal lines
with S = 0 and S = N = 4 are shown as references. The particle spends more time near these two values, with
fast bursts and excursions in between. Right: Schematic of the proposed dynamics of fluid elements of the full
Bousinnesq system embedded in the phase space of the reduced system. For simplicity, the seven-dimensional
phase space is represented with only three axes. Fluid elements spend a long time in a “wavy” state in the slow
invariant manifold I with S ≈ 0 and Q ≈ Rθ /N − B (whose size grows with N). As their energy increases,
fluid elements eventually escape from I and evolve fast toward the global invariant manifold 0 with S ≈ N ,
T ≈ NA, and Rθ ≈ NB. Fluid elements in this manifold are at the brink of the convective instability, and any
perturbation results in efficient dissipation and in the fast return of fluid elements to the first invariant manifold.

064802-15



N. E. SUJOVOLSKY AND P. D. MININNI

(fast) the phase space until finding the global slow manifold 0. When this happens, the wave
turbulence solutions break, and the finding of 0 can be interpreted as the result of fluid elements
looking for a different surface of solutions in phase space to efficiently dissipate their energy.
Manifold 0 is at the brink of the local convective instability. Any perturbation from this manifold
excites local convection, and the full Boussinesq equations can dissipate energy through strong
turbulence mechanisms. Then, particles can rapidly go back to the first local manifold I and
be dominated again by the waves. These two manifolds, which the particles can inhabit for long
periods of time, are embedded in a phase space in which particles evolve fast, and which fills the
gap between the stable wavelike regime and the efficient dissipation of accumulated energy (see the
diagram in Fig. 8). In this scenario, as N increases, the size and stability of I can be also expected
to increase (see Fig. 4 and Ref. [30] for a confirmation of this behavior), resulting in less and less
excursions to the strongly nonlinear region of phase space associated with the 0 manifold.

V. TURBULENT PRODUCTION OF VERTICAL BUOYANCY FLUCTUATIONS

We can now discuss some of the physical implications of the behavior reported in the previous
section for the modeling of stably stratified turbulence, for the formation of flow structures, and for
the evolution of important quantities in geophysical flows such as the potential vorticity. Let us start
with turbulent production of buoyancy fluctuations, which affects dissipation and is important for
mixing and for subgrid scale models. The z component of Eq. (12) can be written as

Dθz

Dt
= −Akzθk + NAzz, (32)

and gives the evolution of the vertical buoyancy gradients as seen when following fluid element
trajectories in the ideal Boussinesq equations. In this equation, the production and destruction of
vertical buoyancy gradients are controlled by strain and rotation (associated with the vorticity) as
described by the term −Akzθz = −T , and by the buoyancy term NAzz = NA. For fluid elements
in the global invariant manifold 0 (i.e., for fluid elements at the brink of convection), the two
terms are balanced (as T = NA), and Eq. (32) reduces to Dtθz = 0. In physical terms, production of
vertical buoyancy gradients by turbulence is perfectly balanced by linear (buoyancy) effects.

Moreover, in the global invariant manifold 0, as θz = S = N does not vary, we can derive
another balance relation for buoyancy gradients, which has important consequences for subgrid
modeling as it provides a condition over the turbulent dissipation of spatial buoyancy variations.
Multiplying Eq. (12) by θ j we obtain the following equation for the second-order one-point
correlation of buoyancy gradients,

1

2

D(θ jθ j )

Dt
= −θkθ jAk j + Nθ jAz j . (33)

For i = j this equation gives the evolution of |∇θ |2 which (after integrating over the whole volume)
controls the total dissipation of potential energy in the flow EP = ∫

θ2/2 dV (see, e.g., Ref. [61]).
As a result, this equation often appears in subgrid models of stratified turbulence [56].

The first term on the right-hand side of Eq. (33), −θkθ jAk j , corresponds to the turbulence
production term [56], while the second term, Nθ jAz j , accounts again for buoyancy effects. We can
expect the time derivative on the left-hand side of Eq. (33) to become small when a fluid element
is close to any of the two invariant manifolds, as time evolution becomes slow in these manifolds.
For the particular case of manifold 0, in which turbulence and field gradients can be expected to
be more relevant, neglecting the time derivative in Eq. (33) implies that as long as particles remain
in this manifold, then

θkθ jAk j ∼ Nθ jAz j ∼ ST . (34)
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FIG. 9. Joint probability density function of θkθ jAk j and Nθ jAz j (left) and of θkθ jAk j and ST (right) for
fluid elements with S ≈ N in the simulations with N = 8. The insets show the same quantities but for fluid
elements without any restriction on the values S can take.

This relation implies that also for the second-order one-point correlation of buoyancy gradients,
turbulent production is approximately balanced by buoyancy effects. And if this relation holds in
the numerical data, it also confirms that |∇θ |2 varies slowly in the 0 manifold.

Figure 9 shows the joint probability density functions of θkθ jAk j and Nθ jAz j , and of θkθ jAk j and
T S, for fluid elements close to the 0 invariant manifold in the simulation of the full Boussinesq
equations with N = 8 (the insets show the same probability density functions for all fluid elements
in the flow, irrespectively of their value of S). The observed correlations are in good agreement
with Eq. (33), and indicate a possible way to estimate relevant subgrid production terms using the
reduced model.

VI. ALIGNMENT OF FIELD GRADIENTS AND LOCAL FLOW GEOMETRY

In homogeneous and isotropic turbulence, the existence of the Vieillefosse invariant manifold in
the restricted Euler model (dependent only in the variables Q and R) has implications for the align-
ment of the vorticity with one of the principal axes of the strain-rate tensor, and as a result, with the
formation of vortical structures through vortex stretching [45,58,59]. As was discussed in Sec. III,
the replacement of the Vieillefosse tail by two other invariant manifolds in the system in Eq. (23)
should have an important effect in vortex stretching and in the development of structures in stably
stratified flows. These effects are discussed in this section, by studying the alignment of the vorticity
and of buoyancy gradients with the principal axes of the strain-rate tensor, as well as with the
Cartesian axes, paying special attention to directions parallel and perpendicular to gravity.

In the context of this analysis, we can study separately the two relevant regions of the phase
space of stably stratified turbulence by discriminating fluid elements which have (instantaneously)
S ≈ 0 or S ≈ N . We can also study alignment globally (i.e., for all fluid elements) by considering
fluid elements in the entire flow, without any restriction on the value of S. As mentioned, we will
consider the vorticity ω at the position of each of these fluid elements, the density gradient ∇θ , and
the strain-rate tensor defined as in Sec. IV B as

si j = 1
2 (Ai j + Aji ). (35)

This symmetric tensor describes the rate at which fluid elements are stretched and sheared. It has
three eigenvalues sα , sβ , and sγ (with decreasing value, and with the eigenvalue sγ being negative).
Each eigenvalue is associated to an eigenvector, respectively α, β, and γ , which are orthogonal and
define the principal axes of stretching and shearing. In fact, the three eigenvalues correspond to the
strain along these principal axes, so that fluid elements along these directions are locally strained
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FIG. 10. PDFs of the cosine of the angles between the vorticity ω and the eigenvectors α, β, and γ of
the strain rate tensor si j . In the first row, panels (a)–(c) correspond to simulations with N = 4, with panel
(a) showing the PDFs of all fluid elements (i.e., without any restriction on the value of S), panel (b) showing
fluid elements restricted to instants with S ≈ 0, and panel (c) restricted to S ≈ N . The second row, with panels
(d)–(f), shows the same PDFs for the simulation with N = 8, while the third row, with panels (g)–(i), shows
the case with N = 12.

but not rotated. Studying the alignment between these quantities then reduces to studying the angles
between the vectors ω, ∇θ , α, β, and γ .

In homogeneous and isotropic turbulence vorticity ω aligns with the intermediate strain eigen-
vector β. In other words, vorticity is driven away from the direction of compression (associated to
γ), resulting in vortex stretching at an intermediate rate (as in practice sβ > 0, but smaller than sα).
A restricted Euler model of the vorticity-shear interaction suggest that, as this process takes place
in a time shorter than the eddy turnover time, the alignment of ω with β is the result of angular
momentum conservation [45,56,62]. This is also the case for stably stratified turbulence (albeit with
a dependence on the level of stratification), as is shown in Fig. 10. The figure shows the PDFs of
the cosine of the angle between ω and the eigenvectors α, β, and γ of the strain-rate tensor, for the
simulations with N = 4, 8, and 12, and for all fluid elements, as well as for fluid elements restricted
to cases with S ≈ 0 or with S ≈ N . The most probable values of the cosine of the angle between ω

and β peak always at ±1, while the probability density of the cosine between ω and α or γ peaks
at zero (and slightly more for γ). The alignment between ω and the intermediate eigenvector β

increases with the stratification, and takes place in all fluid elements irrespectively of the region of
the phase space they are visiting (although the alignment is better for fluid elements with S ≈ 0 than
for fluid elements at the brink of convection with S ≈ N).

This could suggest that vortex stretching mechanisms in stably stratified turbulence are similar
to those reported in homogeneous and isotropic turbulence. However, the alignment observed in
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FIG. 11. PDFs of the cosine of the angles between the eigenvectors α, β, and γ of the strain rate tensor si j ,
and the Cartesian axes x, y, and z, for the simulation with N = 8. In the first row, panels (a)–(c) show the PDFs
of the alignment between α and the Cartesian axes, for (a) all fluid elements, (b) fluid elements with S ≈ 0,
and (c) fluid elements with S ≈ N . The second row, with panels (d)–(f), shows the same for the β eigenvector,
while the third row, with panels (g)–(i), shows the same for γ .

Fig. 10 is, in this case, also related with the anisotropy of the flow. Indeed, the intermediate
eigenvector β of the strain-rate tensor is preferentially perpendicular to gravity (which points in
the z direction), and as a result also preferentially in the x-y plane (while the other two eigenvectors,
α and γ , show a larger projection in z). This is shown in Fig. 11, which considers the statistics
of the alignment between the eigenvectors of the strain-rate tensor and the x, y, and z axes for
the simulation with N = 8. Note the differences between probability densities peaking near ±1
(indicating the corresponding eigenvalue is mostly aligned with the axis considered), probability
densities peaking near 0 (indicating the eigenvalue is mostly perpendicular to the axis considered),
and flat probability densities denoting the absence of a clear correlation. The alignment of β with
x or y happens on the average for the entire flow, and also in fluid elements in the I (“wavy”)
manifold, but less so in fluid elements in the 0 (“convective”) manifold (see Fig. 11). This
can be expected: Fluid elements in the “wavy” state have the eigenvectors with the largest and
smallest strains pointing in the vertical direction (and thus, resulting in anisotropic structures), while
interestingly, fluid elements at the brink of local convection display less alignment of α, β, and γ

with the Cartesian axes (and as a result, of ω with these axes). While this speaks of a state in which
the three Cartesian directions are more similar, note this does not result in a perfect isotropization
(as peaks in the probability densities in Fig. 11 for fluid elements with S ≈ N are smaller than for
all fluid elements or for the fluid elements with S ≈ 0, but still visible). In spite of this, we can
associate the second invariant manifold 0 with flow regions that are more efficient at mixing.
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FIG. 12. PDFs of the cosine of the angles between the density gradient ∇θ and the eigenvectors α, β, and
γ of the strain rate tensor si j . In the first row, panels (a)–(c) show the PDFs for the simulation with N = 4, for
(a) all fluid elements, (b) fluid elements with S ≈ 0, and (c) fluid elements with S ≈ N . The second row, with
panels (d)–(f), shows the same PDFs for N = 8, while the third row, with panels (g)–(i), shows the same for
N = 12.

Besides ω, in stably stratified turbulence we can also study the alignment of the vector defined by
the buoyancy gradient, ∇θ , with α, β, and γ . The vector ∇θ provides us with information on how
buoyancy changes in the vicinity of the fluid elements. In homogeneous and isotropic turbulence,
when θ is a passive scalar, ∇θ aligns preferentially with γ (the compressive strain direction) [62],
which can be expected as compression increases the gradients of a scalar that is advected by the
flow. Figure 12 shows the probability density functions of the cosine of the angle between ∇θ and
the eigenvectors of the strain-rate tensor in our simulations. On the average, for all fluid elements,
∇θ is perpendicular to β and becomes more so as stratification increases. When all fluid elements
are considered, ∇θ also seems to align almost equally with either γ or α for strong stratification,
which a small preference for aligning with γ (albeit this preference decreases with N). This can
be related to the flow anisotropy, with gradients in the density fluctuations being mostly vertical
and associated to the formation of strata or of pancakelike structures. But interestingly, we see
again a strong difference in the alignment when fluid elements in the two invariant manifolds are
considered separately. Now, fluid elements in the global invariant manifold 0 (S ≈ N) display a
similar behavior as the average over all fluid elements (but with a stronger alignment with γ , as is
observed in the case of passive scalars in homogeneous and isotropic turbulence [62]), while fluid
elements in I (S ≈ 0) display the opposite trend and present a weak alignment of ∇θ with β for
sufficiently large N (and thus ∇θ lies partially in the x-y plane). The latter behavior is to be expected
for propagating internal gravity waves.
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FIG. 13. Probability density functions of the cosine of the angle between the density gradient ∇θ and the
vorticity ω for all simulations in Table I, for (a) all fluid elements, (b) fluid elements with S ≈ 0, and (c) fluid
elements with S ≈ N .

From these results, it can be expected that ∇θ and ω should be perpendicular on the average, and
display different behaviors in the two slow manifolds of the system. This is indeed seen in Fig. 13,
which shows the probability density functions of the cosine of the angle between these two vectors
in all numerical simulations. The probability densities peak at 0 for all fluid elements and when
restricted to fluid elements in 0, while for fluid elements in I (i.e., for wavelike behavior) these
two vectors go from weakly perpendicular to strongly parallel as N is increased.

Besides giving information on the local geometry of the flow, and confirming that fluid elements
are in different states when exploring the two invariant manifolds 0 and I, the results in this
section also confirm a requirement for the validity of the reduced model in Eq. (23). When deriving
this model, we reduced the information in the velocity gradient tensor Ai j and in the buoyancy
gradient θi to seven scalars by using the fact that the flow has a preferred direction (given by the
direction of stratification, or of gravity). Thus, scalar quantities defined in Eq. (16) treat differently
Azz, Aiz, Azi, and θz, but not other components of these tensors and vectors involving the x or y
Cartesian directions (in other words, we reduce the information in the tensors and vectors by using
the axisymmetry of the equations). Probability density functions presented in this section confirm
that there is a preference of the eigenvectors of the strain-rate tensor, and of other vectors, to align
parallel or perpendicular to z, but with no clear preferences in the x or y direction.

VII. POTENTIAL VORTICITY

The relations reported above for field gradients in each of the invariant manifolds of the system
also have implications for the evolution of the potential vorticity. In a stably stratified flow under
the Boussinesq approximation, the potential vorticity is

PV = ω · ∇θ − Nωz = (S − N )(Ayx − Axy) + θx(Azy − Ayz ) + θy(Axz − Azx ), (36)

which is a conserved quantity following fluid trajectories in the ideal (and unforced) case. The
potential vorticity is an important quantity in geophysical flows as PV conservation, unlike
circulation conservation or Kelvin’s theorem, holds even for baroclinic flows. This makes the
quantity of relevance for the atmosphere and the oceans. Indeed, PV is a scalar quantity that is
advected by the flow and can be used as a means to track fluid elements, as well as to reconstruct
the flow properties in the vicinity of the fluid elements [63,64].

From the previous section it is clear that ω · ∇θ ≈ 0 in most of the phase space. The only
exception being the 1 stable manifold, where all gradients are small, and so PV ≈ 0. We can
further decompose the potential vorticity as

PV = PVz + PVxy, (37)

where PVz = (S − N )(Ayx − Axy) and PVxy = θx(Azy − Ayz ) + θy(Axz − Azx ). Note that PVz = 0 in
0. But if PV is conserved, this implies that as fluid elements explore phase space, then PVxy must
be anticorrelated with PVz and must compensate for its changes. Moreover, even when PV is not
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FIG. 14. Left: Joint probability density function of PVxy and PVz for all fluid elements in the simulation
with N = 4. Right: Values of PV , PVxy, and PVz following a single particle trajectory in the simulation with
N = 4. The value of PV fluctuates around zero, with sudden bursts of PVxy and PVz canceling each other. The
grey areas indicate changes in sign of PVxy (and thus also of PVz) as a result of S becoming larger than N .

perfectly conserved (e.g., in the presence of dissipation), we can expect variations in PV to be slow
compared with the fast evolution when fluid elements escape from one of the invariant manifolds to
the other.

Indeed, Fig. 14 confirms this anticorrelation from data obtained from the direct numerical
simulations with N = 4. On the average, PVz ≈ −PVxy for most fluid elements, and the most
probable values in the joint probability density function of PVz and PVxy correspond to relatively
small values of these quantities. Figure 14 also shows the time evolution of PV for a single fluid
element in the same simulation, as a function of time, as well as the two components PVz and
PVxy. The potential vorticity fluctuates around zero. However, sudden bursts of S (as those seen in
Fig. 8) affect the evolution of PVz, and as a result of PVxy. Note how each sudden burst of PVz

has an associated burst of opposite sign of PVxy, so that PV displays less fluctuations than the
two components separately. In Fig. 14 we also shade some time intervals in which the change of
sign of PVz (and, as a consequence, also in PVxy) is not due to S displaying a burst, but becoming
instead larger than N , which can occur when fluid elements are in the vicinity or escape from the
“convective” manifold 0. The dynamic of these quantities is reminiscent of that observed in Fig. 8,
with fluid elements displaying a slow evolution, with fast bursts that change the state from one
regime to another.

VIII. CONCLUSIONS

Fluid elements in stably stratified turbulence explore a complicated phase space by moving
between two places (associated with slow invariant manifolds). And these two places put fluid
elements in two very different states. In the first manifold, fluid elements are in a quiet “wavy”
state. When energy becomes sufficiently large, fluid elements escape from this manifold and evolve
rapidly toward another manifold in which evolution is also slow. This second manifold is at the
brink of the local convective instability, and thus can be expected to correspond to a disordered state
characterized by efficient mixing and dissipation. Once the strength of gradients decreases again,
fluid elements return rapidly to the first manifold. But as stratification is increased, the stability of
the first manifold increases, and the journeys to the second manifold become less and less frequent.

The reduced system presented here, as well as the results from direct numerical simulations,
indicate that the Boussinesq equations have only these two invariant manifolds, and as a result
evolution outside these manifolds is fast. Such a picture, in which fluid elements explore slowly
two solutions, and travel fast through the rest of phase space, is in good agreement with recent
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developments in wave turbulence [40,41], and provide, at least for the case of stably stratified
turbulence and in the full Boussinesq system, a much needed route for dissipation. While wavelike
motions can bring energy to smaller scales, eventually the amplitude of the nonlinearity becomes
such that the fluid elements must search for other surfaces of solutions in phase space. These
solutions, which do not correspond to waves, dissipate energy efficiently, and fluid elements can
then return to their previous state.

The existence of the second invariant manifold, which is at the brink of a convective instability,
explains recent observations that a significant fraction of fluid elements in stratified turbulence is
always at the threshold of a linear instability [5] or in a critical state [1,6], that only an intermittent
fraction of fluid elements in the ocean are responsible for dissipation [3], and that extreme vertical
drafts develop sporadically in these flows resulting in non-Gaussian statistics [4,11].

Besides, the invariant manifolds of the reduced system for the Lagrangian evolution of velocity
and density gradients indicate that (1) Certain balance relations must hold as fluid elements are
advected in the flow. These balance relations impose conditions, e.g., in the turbulent production of
gradients of density fluctuations, with implications for subgrid models of turbulence. (2) The change
of the invariant manifolds with respect to the homogeneous and isotropic case (and in particular,
the destruction of the Vieillefosse tail), modifies the geometry of vortex stretching, thus providing
a different explanation for the change in vortical structures and the development of pancakelike
structures as stratification is increased. Moreover, these changes are different depending on what
region of phase space the fluid elements are exploring. And (3), correlations exist in the evolution
of different terms in the potential vorticity, as fluid elements travel from one manifold to the other.

The model also has clear limitations. The first is that it neglects the effect of forcing and
dissipation. This can be also seen as an advantage, as an external forcing could obscure the evolution
or drive the system into solutions that are not preferred by the partial differential equations. The
second is that pressure gradient effects are partially neglected (as the deviatoric part of the pressure
Hessian is dropped). This second limitation is shared with restricted Euler models of homogeneous
and isotropic turbulence [43–45], although in the stably stratified case the role of the pressure
Hessian is smaller as stratification is increased. In spite of these limitations, it is interesting that
direct numerical simulations of the full Boussinesq equations including forcing and dissipation are
in agreement with predictions from the model. This suggests that some of the manifolds and balance
relations that follow from the model could be used for the development of subgrid models (as an
example, to derive new estimations for turbulent production of vertical density fluctuations), as
predictors of the occurrence of extreme events such as those observed in clean air turbulence or
in extreme vertical updrafts and downdrafts, or to explain the origin of the anomalous dissipation
reported in recent oceanic models.
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