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Motion of buoyant point vortices
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A general formulation is presented for studying the motion of buoyant vortices in
a homogeneous ambient fluid. It extends the well-known Hamiltonian framework for
interacting homogeneous point vortices to include buoyancy effects acting on the vortices.
This is then used to systematically examine the buoyant one-, two-, and three-vortex
problems. In doing so we find that two buoyant vortices may evolve either as a pair in
bounded circular orbits or as two independent unbounded vortices that drift apart, and a
criterion is found to distinguish these cases. Special attention is given to the buoyant vortex
couple, consisting of two vortices of equal and opposite circulation and equal buoyancy
anomaly. We show that a theoretical maximum height is generally possible for the rise (or
fall) of such couples against buoyancy forces. Finally, the possibility and onset of chaotic
motions in the buoyant three-vortex problem are addressed. In contrast to the homogeneous
three-vortex problem, the buoyant vortex system shows evidence that chaos is present. We
also demonstrate the chaotic advection of tracer parcels arising from the flow field induced
by just two buoyant vortices.
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I. INTRODUCTION

Ever since the classical paper of Helmholtz [1], vortex dynamics has been used as a tool to
understand the behavior of complex fluid flows. In the words of Aref [2], “. . .the evolution of
vorticity, and thus the motions of vortices, are essential ingredients of virtually any real flow. Hence
vortex dynamics is of profound practical importance.” Based on this principle, in the present paper
we consider a general model for the interaction of singular “point” vortices that are subject to
buoyant forces in a homogeneous ambient fluid. We find that the presence of buoyancy leads to
richer dynamics than in the homogeneous vortex problem and displays some nonintuitive solutions,
including the more rapid appearance of chaos compared to homogeneous flows as the number of
vortices is increased. The present paper generalizes previous studies to account for any number
of buoyant vortices, and in any initial configuration. This allows for a number of generalizations of
the behavior of buoyant vortex interactions. It also has the advantage of fitting into the well-studied
Hamiltonian framework.

The first study that considered two interacting buoyant point vortices was that of Turner [3].
Motivated by the release of effluent from chimneys, and buoyant “thermals” found in convection
flows, he investigated the motion of two vortices of opposite circulation and equal buoyancy
anomaly relative to the ambient fluid. The motion of this buoyant vortex couple was found by
Turner for the special configuration of a purely vertical trajectory in the direction of the buoyancy
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force (i.e., for a buoyant couple rising or dense couple falling). In this case he made the nonintuitive
finding that increasing the buoyancy difference leads to a decrease in the rate of rise of the buoyant
couple.

Since the original paper of Turner [3], there have been a number of studies that have extended
his analysis, nearly always focusing on the important case of two vortices with opposite circulation
(see, e.g., [4]), and often in more complicated ambient environments with shear and/or stratification
(see, e.g., [5,6]). In a series of papers by Arendt [7–9] the motion of buoyant vortices in polytropic
stratified fluids, where the pressure and density are related through a power law, have been
systematically explored. Many of the results in Arendt [9] will be found to have analogs in
the present paper where we focus on buoyant vortices in a homogeneous ambient. Recently,
Ravichandran et al. [4] examined the collision and collapse of such buoyant vortex couples, and
conducted simulations using many vortex patches to demonstrate the presence of this mechanism in
a random field of vortices.

Similar to the general framework established by Arendt [9], we formulate the motion of many
buoyant point vortices of arbitrary buoyancy anomaly and circulation in a homogeneous fluid, into a
single general framework. Our motivation for such a formulation arises from the study of instability
development in stratified shear layers, which has been found to lead to the formation of concentrated
patches of buoyancy and vorticity (see, e.g., [10,11]). An idealized model for the interaction of these
buoyant vortex structures, such as formulated here, is therefore of interest in order to understand the
evolution of stratified shear layers, with implications for oceanic and atmospheric mixing [12].

The paper is organized as follows. In the next section we derive a series of conservation equations
for the motion of buoyant vortices, and demonstrate that they are captured by a Hamiltonian
framework. Given this general formulation of the laws governing the motion of buoyant point
vortices, we then go on to explore the solutions by increasing the number of vortices from N = 1 to
3, in Secs. III–V. Special cases of interest, such as the buoyant vortex couple, and an exploration of
chaotic motion in the buoyant three-vortex problem, will be examined along the way. A summary
and conclusions follows in the final section.

II. GENERAL FORMULATION

A. Conservation laws

In this subsection, we present a brief background of the formulation of vortex conservation laws
for Boussinesq flows (for details about homogeneous flows, see [13]).

Consider an inviscid, nondiffusive, Boussinesq fluid inside a simply connected domain of fixed
volume V (which could be infinite). The background state, with density ρa, is assumed to be
irrotational and in hydrostatic balance. Denoting perturbation velocity, vorticity, pressure, and
density, respectively, by u, ω(≡∇ × u), p, and ρ, the perturbed Boussinesq Euler equations on
integration yield

∂

∂t

∫
V

u(x, t )dV =
∫

V
(u × ω + F )dV −

∫
∂V

(
p

ρa
+ 1

2
|u|2

)
n̂ dA, (1)

where

F ≡ − g

ρa
ρ ĵ.

Here g denotes gravity, ĵ is the unit vector in the vertical y direction, and n̂ is the unit vector normal to
the bounding surface ∂V . We will focus on the dynamics of an isolated vortex patch (i.e., vorticity
distribution with a compact support) of volume V (v) ∈ V . The vortex patch may have a density
different from ρa, hence yielding the body force (or buoyancy) term F. The vector quantity u × ω

is referred to by different names by different authors, such as the vortex force [13], Magnus force
[4], or lift force [14]; however, we will use the latter term in this paper.
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By taking x × (∇×) of the integrands in Eq. (1) and making use of various vector calculus
identities, detailed in Saffman [13], we arrive at

d

dt
I(v) =

∫
V (v)

(uext × ω + F )dV. (2)

This expresses the conservation of linear impulse of the vortex patch, defined as

I(v) = 1

2

∫
V (v)

x × ω dV.

As discussed in [13,15], this result relies on the fact that both u and p due to an isolated vortex decay
as O(r−3), where r is the distance from the vortex. Therefore, the surface integrals which appear in
this process vanish. In Eq. (2), the quantity uext represents the induced velocity within V (v) due to
all vorticity external to it. Similarly, defining the angular impulse of an isolated vortex as

L(v) = −1

2

∫
V (v)

‖x‖2ω dV,

we obtain the conservation of angular impulse:

d

dt
L(v) =

∫
V (v)

x × (uext × ω + F )dV. (3)

If multiple such vortex patches are present (and are far away from the domain boundary) in the
irrotational background flow field, uext on a given patch would arise from the action of the other
vortex patches present in the system. It can be obtained using the Biot-Savart law, which inverts the
vorticity field ωext existing due to the other patches:

uext (x) = 1

2(n − 1)π

∫
V

ωext (x′) × (x − x′)
‖x − x′‖n dV ′, (4)

where the number of spatial dimensions is n = 2 or 3. From Eqs. (2) and (3), we recover the well-
known result that in the absence of any external velocity field and applied force both linear and
angular impulses of a homogeneous vortex patch, i.e., with the same density as the background, are
constants of motion.

In this paper, we will be focusing on two-dimensional (x-y) systems. The vorticity vector is then
given by ω = −ωk̂, where ω(x, y) = ∂u/∂y − ∂v/∂x, and (u, v) are fluid velocities in the (x, y)
directions. The linear and angular impulses of an isolated vortex patch of area A(v) are given by [13]

I(v) = −
∫

A(v)
ωx × k̂ dA and L(v) = 1

2

∫
A(v)

‖x‖2ωk̂ dA. (5)

The missing 1/2 in I for two-dimensional flows is a consequence of the vortex lines not being
closed. When working with two-dimensional flows we also consider area integrals to be expressed
per unit length.

The conservation of linear and angular impulse essentially represents rewritten forms for the
linear and angular momentum that are more practical for vortex dynamics studies. This will become
apparent in the next subsection when we use them to formulate point vortex motions.

B. Equations governing buoyant point vortex dynamics

Consider N vortices, denoted by the subscript i = 1, . . . , N , that move across the unbounded
x-y plane in time, t . We assume that the diameter of the vortices is much smaller than the distance
between them, and so we can take them to be represented by “point vortices” at the locations xi =
(xi, yi ). The vorticity field is zero everywhere except at the locations of the vortices, where it has
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delta-function behavior, i.e.,

ω(x, y) =
N∑

i=1

�iδ(x − xi ). (6)

Here �i indicates the circulation strength of vortex i, with a �i > 0 indicating clockwise circulation.
In addition, we allow each vortex to be composed of fluid with a density anomaly from the

constant ambient density ρa. Each vortex will then experience a buoyant point force, and the field
of these forces can be written as

F(x, y) =
N∑

i=1

g̃iδ(x − xi )ĵ. (7)

F is expressed as a force per unit mass (per unit length in two dimensions), so that the “reduced
gravity” of each vortex, g̃i, is defined by the difference in density with the ambient ρ(x, y), and the
vortex cross-sectional area A(v)

i , as

g̃i ≡
∫

A(v)
i

F · ĵ dA = −
∫

A(v)
i

ρ(x, y)

ρa
g dA. (8)

Hence g̃i > 0 implies that the vortex is (positively) buoyant. This definition of the reduced gravity,
g̃i, differs from the usual definition by the area factor. Since we are assuming the fluid to be
Boussinesq, the inertia of the vortices resulting from their difference in density from the ambient
fluid is neglected. Note that in taking our vortex to be concentrated at a point and shrinking the area
to zero we ensure that the net buoyant force on the vortex patch is fixed. This limit might appear
to violate the Boussinesq approximation, as the density difference with the ambient should become
infinite; however, it must be kept in mind that these limits are only mathematical tools used when
making a point approximation to a finite-sized vortex. Another option would be to take g → ∞,
as in Aref and Tryggvason [16], which would avoid this issue. We observe that the integral terms
in Eqs. (2) and (3) preserve the conservation of linear and angular impulse in this point vortex
representation (see, e.g., [3]).

As in the case of a system of homogeneous vortices [17], in the system just described it is possible
to use a Hamiltonian framework to find the vortex trajectories. The Hamiltonian H is given by the
energy

H = −
N∑
i, j

�i� j

4π
ln[(xi − x j )

2 + (yi − y j )
2] −

N∑
i=1

g̃iyi, (9)

being composed of both a “kinetic energy of interaction” (given by the first term on the right-hand
side) and a potential energy (last term), and is a constant of motion [18]. Note that the sum in the
kinetic-energy term is not carried out over the singular terms i = j. Substituting Eqs. (6) and (7) in
the linear impulse conservation equation Eq. (2), and using the definitions in Eqs. (4) and (5), we
obtain the following Hamiltonian dynamical system of 2N dimensions:

�i
dxi

dt
= −∂H

∂yi
⇒ d

dt
I (i)
y =

N∑
i, j

�i� j

2π

yi − y j

(xi − x j )2 + (yi − y j )2
+ g̃i, (10a)

�i
dyi

dt
= ∂H

∂xi
⇒ − d

dt
I (i)
x = −

N∑
i, j

�i� j

2π

xi − x j

(xi − x j )2 + (yi − y j )2
, (10b)

where I(i) = (I (i)
x , I (i)

y ) represents the linear impulse of vortex i. It is important to note that the
summation terms in Eq. (10) arise from the externally induced lift force

∫
V (v) uext × ωdV of the

linear impulse conservation Eq. (2).
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It is also possible to find global conservation laws for all buoyant vortices in a straightforward
manner directly from the Hamiltonian description. In this regard we follow the analyses of [19],
which deduced the conservation laws for homogeneous point vortices:

N∑
i=1

∂H
∂xi

= 0 ⇒ − d

dt
Ix ≡

N∑
i=1

�i
dyi

dt
= 0, (11a)

−
N∑

i=1

∂H
∂yi

=
N∑

i=1

g̃i ⇒ d

dt
Iy ≡

N∑
i=1

�i
dxi

dt
=

N∑
i=1

g̃i. (11b)

Also, if we transform into polar coordinates, with (xi, yi ) = (ri cos θi, ri sin θi ), it is possible to
derive the conservation of the global angular impulse:

∑
i

∂H
∂θi

= −
N∑

i=1

g̃ixi ⇒ d

dt
L2 ≡ 1

2

d

dt

N∑
i=1

�i
(
x2

i + y2
i

) = −
N∑

i=1

g̃ixi. (12)

This shows that when a global budget (including all vortices) is considered the lift forces can be
regarded as internal forces, and will cancel to produce no net effect.

The Hamiltonian in Eq. (9) has correctly reproduced the conservation laws of linear and angular
impulse, derived in a general form in the previous subsection, for a buoyant point vortex system.
This can be verified by substitution of Eqs. (6) and (7) into Eqs. (2) and (3). These conservation
laws, and their alterations under the force of buoyancy from the homogeneous vortex case, will be
critical for determining the nature of the solutions in what follows. Note that the Hamiltonian itself
is also a conserved quantity, corresponding to energy conservation. These conservation laws and
Hamiltonian structure also have an analog in the configuration studied by Arendt [9].

III. A SINGLE BUOYANT VORTEX

For the case of a single buoyant vortex (the parameters of which are not denoted with a subscript)
the Hamiltonian equations of motion in Eqs. (10a) and (10b) become

ẋ = g̃/� and ẏ = 0, (13)

where the dot represents ordinary differentiation with respect to t . This shows that the vortex
propagates in the horizontal direction with speed U = g̃/�, and merely expresses the conservation
of linear impulse for a single vortex. Note that for a vanishing buoyancy this solution reduces to the
homogeneous result of a stationary vortex. The nonintuitive result that a strictly vertical buoyancy
force results in the horizontal motion of the vortex can be understood as follows. The Hamiltonian
formulation reveals that total energy H is a constant of motion. Since there is no kinetic energy
of interaction between vortices, the total potential energy must remain constant, giving ẏ = 0.
However, in order to keep the vortex at the same vertical level, there must be an additional force that
is needed to balance the vertical buoyancy force. As long as the vortex is moving horizontally, this
force is provided by the aerodynamic lift (or vortex force) that is present on any body possessing
a circulation in a cross flow [14]. In terms of force per unit length, the lift force is ρa�U , and the
buoyancy force is ρag̃, which leads directly to the resulting translation velocity. The appearance of
an equivalent horizontal drift of a vortex once subject to a body force is also derived by Saffman
[13], and discussed by Arendt [8]. In the Appendix, we numerically show that a buoyant point vortex
(modeled as a Rankine vortex patch) indeed travels horizontally with a constant speed.

One may also be tempted to infer that the horizontal motion of the buoyant vortex arises due
to the absence of an inertial term (from making the Boussinesq approximation) that can lead to a
vertical acceleration of the vortex under the action of gravity. This can easily be added in an ad hoc
manner, and the equations of motion written as

μẍ + �ẏ = 0 and μÿ − �ẋ + g̃ = 0, (14)
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with μ a measure of the mass of the vortex. A similar balance was considered in Ravichandran et al.
[4]. However, their model is based on potential flow around a circular cylinder and it is not clear
how it may be constructed from the equations of motion applied to vortex motions, i.e., proceeding
similar to that outlined in Sec. II. Proceeding nonetheless, a general solution for the velocities (ẋ, ẏ)
of this system can be found as

ẋ(t ) = C1 cos(αt ) + C2 sin(αt ) + g̃/� and ẏ(t ) = C1 sin(αt ) − C2 cos(αt ), (15)

where C1 and C2 are constants that depend on the initial conditions. This solution describes a
horizontal drifting motion of the vortex at the speed g̃/� and an oscillation at the frequency
α ≡ �/μ.

The vortex motion is composed of a balance between inertia, buoyancy and lift forces. Note that
if inertia is neglected the lift-buoyancy balance leads to the constant horizontal drift of ẋ = g̃/�.
This arises from the fact that the lift force is always perpendicular to the vortex motion and is the
only force that can balance the vertical buoyancy force. The oscillation arises due to the exchange
between the kinetic- and potential-energy components of the total energy, which must be conserved.
The addition of inertia to the system, therefore, does not significantly change the fundamental force
balance, or the vortex trajectory. This neglect of the vortex inertia will be appropriate as long as the
dimensionless number


 ≡ μ2g̃4

�8
, (16)

which quantifies the relative importance of the inertial term, is small. If we approximate the mass
of the vortex by its area A(v), assume that the vortex is circular with radius a, and approximate the
circulation by a solid body rotation with maximum velocity Vmax, we can write


1/4 ∼ g′a
V 2

max

, (17)

with g′ ≡ �ρg/ρa the standard reduced gravity. This shows that 
1/4 has the form of a Richardson
number, or 
−1/8 has the form of a Froude number.

IV. TWO INTERACTING BUOYANT VORTICES

A. Solution

Using the Hamiltonian system Eqs. (10a) and (10b) with N = 2 vortices now leads to a nonzero
kinetic energy of the interaction term, and considerably richer dynamics. In analogy with the two-
body problem of classical physics, it is possible to make considerable analytical progress in solving
this system by introducing new variables given by the vortex separation

r ≡ (ζ , η) = (x1 − x2, y1 − y2), (18)

and the center of vorticity

R ≡ (X,Y ) =
(

�1x1 + �2x2

�
,
�1y1 + �2y2

�

)
, (19)

as illustrated in Fig. 1. Here we have defined � ≡ �1 + �2, and the original coordinates can be
recovered by

x1 = R + �2

�
r and x2 = R − �1

�
r. (20)

With the new coordinates the Hamiltonian takes the form

H = −�1�2

4π
ln(ζ 2 + η2) − g̃1�2 − g̃2�1

�
η − g̃Y, (21)
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x

y

R

r

x
1

x
2

FIG. 1. Streamlines and notation for two interacting vortices. In this case, a vortex couple with unequal
circulation strength (�1 �= −�2) is sketched.

where g̃ ≡ g̃1 + g̃2. The original 2N-dimensional Hamiltonian system has been reduced to a (2N −
2)-dimensional Hamiltonian system, and we can rephrase the whole problem as the following set of
equations:

�1�2

�
ζ̇ = −∂H

∂η
,

�1�2

�
η̇ = ∂H

∂ζ
, (22a)

for r, and

�Ẋ = −∂H
∂Y

, �Ẏ = ∂H
∂X

, (22b)

for R. Notice that in this set of equations the motion of the center of vorticity R is decoupled from the
vortex separation r. In particular, the center of vorticity moves with the constant horizontal drift as if
it were a single vortex with circulation �, and reduced gravity g̃. This may be seen from Eq. (22b),
i.e.,

d

dt
R = (g̃/�, 0), (23)

giving the same result as Eq. (13), which can easily be integrated. Then we are left with a system of
two first-order ordinary differential equations for the components of r.

At this point it is useful to nondimensionalize the equations using �2/g̃ as a length scale and g̃/�
as a velocity scale. The corresponding form for the Hamiltonian becomes

H∗ = −�1�2

�2

[
1

4π
ln(ζ 2

∗ + η2
∗) + Dη∗

]
− Y∗, (24)

where all variables with an asterisk are nondimensional, and we have defined the dimensionless
number D ≡ (�/g̃)(g̃1/�1 − g̃2/�2). The system of equations describing the trajectories is then
written as

ζ̇∗ = 1

2π

η∗
ζ 2∗ + η2∗

+ D and η̇∗ = − 1

2π

ζ∗
ζ 2∗ + η2∗

. (25)

Note that for D = 0 the equations describing two homogeneous point vortices are recovered. We can
gain considerable insight into the solution for the vortex trajectories by using the fact that the total

064702-7



JEFFREY R. CARPENTER AND ANIRBAN GUHA

FIG. 2. (a) Phase portrait for the case of D = (4π )−1. The contours represent values of constant C2, with
the thick contour representing the separatrix. It corresponds to a critical value of C below which the orbits
are bounded to each other, shown by the gray region. The arrows denote the direction of the trajectories in
phase space with the colors representing the speed of the point through phase space with red representing fast
trajectories and blue representing slower trajectories. (b) Critical curve in the CD plane separating bounded
and unbounded orbits.

energy is conserved. Since H is a constant of the motion, given by its initial value H(t = 0) ≡ E , it
allows us to write

ζ 2
∗ + η2

∗ = C2 exp(−4πDη∗) (26)

with

C2 ≡ exp

[
− 4π

�1�2
(E + g̃Y )

]
(27)

a dimensionless constant given by the initial conditions. Note that from Eq. (23) we can always
define our coordinate system so that Y = 0 for all t (this is just a choice of datum for the potential
energy).

Equation (26) defines a set of curves that describe the vortex separation distance over the entire
evolution of the vortex interaction, and are shown in Fig. 2(a). Similar to the results of Arendt [9]
for the case of a stratified polytropic fluid, we can generally split the solution into two different
categories: (i) those that remain bounded, i.e., within a finite distance to the center of vorticity and
(ii) those that are unbounded. For a given value of D, there is a critical value of the dimensionless
parameter C, given by Ccr = (2πeD)−1 and shown in Fig. 2(b) (which can be thought of as a
measure of the initial distance between the vortices, or equivalently as the initial energy), above
which there are unbounded orbits (Fig. 2, white area). The separatrix, represented by the thick dark
contour in Fig. 2(a), separates the bounded and unbounded regions. This separatrix appears as a
homoclinic orbit, with its hyperbolic fixed point located at

(ζ F
∗ , ηF

∗ ) =
(

0,− 1

2πD

)
,

and has eigenvalues ±2πD2 and eigenvectors (∓1, 1). Hence the eigenvalues and eigenvectors are
independent of the sign of D, leading to a clockwise circulation (in the bounded region) for both
D > 0 and D < 0. The far-field flow, however, depends on the sign of D as per Eq. (25). We also
note in passing that (0,0) is not a fixed point, but on the contrary it corresponds to a point of infinite
relative velocities, as can be seen from the colored arrows in Fig. 2(a). This singularity is not realistic
as we have assumed that the separation of the vortices is much larger than their diameters.
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FIG. 3. Vortex trajectories in a frame of reference moving with the center of vorticity for two buoyant
vortices with bounded and unbounded orbits. We have used C = 2e−1 ± ε to transition between the two cases,
with ε = 0.001, and the minus (plus) sign for the (un)bounded case. In both plots �1 = 2�2 and D = (4π )−1.
A close-up of the dashed rectangular region in (a) with the bounded orbits is shown in (b). The dark line
corresponds to vortex 1, and the green line corresponds to vortex 2, with dots indicating the vortex starting
positions.

If the initial energy of the vortices is large enough, i.e., C is large enough, then unbounded
orbits will result, and this is more likely to occur for large D. Note that for the singular case
of homogeneous point vortices D = 0, and we recover the result that all vortex trajectories are
bounded. The dependence of the orbits on the parameter D can be interpreted more easily if we
write it in terms of the individual vortex velocities assuming there is no interaction between them,
i.e., Ui ≡ g̃i/�i. Then we have

D = U1 − U2

UCV
, (28)

where UCV ≡ g̃/� is the velocity of the center of vorticity. As we would expect intuitively, when
the difference in the individual vortex velocities is large compared to that of the center of vorticity,
they are able to “escape” from a bounded orbit.

B. Special cases

1. Bounded and unbounded orbits: An example

It is helpful to examine an example of the transition between bounded and unbounded vortex
trajectories. Fixing D = (4π )−1 and choosing C = 2e−1 ± ε will produce a bounded trajectory for
C < Ccr = 2e−1, and an unbounded trajectory for C > Ccr. In practice, we choose �1 = 2�2, and
can compute the trajectories relative to R.

The results are shown in Fig. 3. In the unbounded case, the vortices approach a constant
horizontal trajectory in opposite directions, as the distance between them increases, and thus the
interaction weakens. Recall that for a vanishing interaction each vortex will approach a horizontal
trajectory at the speed g̃i/�i. Only an extremely small change in the initial energy (and therefore
position) of the vortices, expressed by C, alters the orbits of the two from bounded to unbounded
[Fig. 3(b)]. This diverging of the orbits occurs as the two are farthest from one another, and the
interaction is weakest. This sensitive dependence on the initial condition in the two vortex problem
is only present at this point in parameter space close to the critical separation between bounded and
unbounded orbits.
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2. The vortex couple

In the original analysis of Turner [3], he considered the special case of the strictly vertical
propagation of a buoyant vortex couple, i.e., vortices with �1 = −�2. This vortex configuration
often arises in idealized models of convection “thermals,” and in starting jets. In these applications,
and in Turner’s analysis, it is assumed that the couple is formed from an initial buoyant cloud, or
jet, and therefore it is also the case that g̃1 = g̃2 ≡ g̃0. In this subsection we extend Turner’s analysis
and examine the motion of buoyant vortex couples in general.

To solve for the trajectory of the vortex couple we cannot use the formulation in the previous
section since � = 0; instead we will use the conservation laws directly. The conservation of linear
impulse Eq. (10) reduces to

d

dt
r = (2g̃0/�0, 0) (29)

where �0 ≡ �1 = −�2. This equation states that in order for a vortex couple to conserve linear
impulse the vertical distance between vortices remains constant in time, while the horizontal
distance changes linearly with time. The total energy for the couple can be written

H = �2
0

2π
ln |r| − 2g̃0ȳ, (30)

where we have defined the mean vertical position of the couple as ȳ ≡ (y1 + y2)/2. Differentiating
this equation with respect to t and combining it with Eq. (29) allows us to solve for the evolution of
the couple.

For large times, we can effectively ignore the initial separation of the vortices and, by Eq. (29),
write

ζ (t ) ∼ 2g̃0

�0
t . (31)

This can be combined with Eq. (30) to find the long-time evolution of the elevation of the couple as

dȳ

dt
∼ �2

0

4π g̃0
t−1. (32)

This relation demonstrates a number of noteworthy results. First, buoyant couples will rise, and
dense couples will fall, inline with our intuition. Second, they will do so at a decreasing rate,
proportional to t−1. Last, it is interesting that as the magnitude of the buoyant force (measured
by g̃0) is increased the rate of elevation change decreases. This is a generalization of Turner’s result
that less buoyant thermals will rise faster. The reason for this is clearly that the rate of separation
increases with increasing |g̃0|, due to the dominant balance for large times between the lift and
buoyancy forces on the individual vortices. This results from increasing horizontal motion of the
vortices required to increase the lift in response to increased buoyancy.

For short times, however, the couples can propagate in a direction that is opposite to the buoyant
forces. An example in Fig. 4 shows such an orientation and trajectory. In an arbitrary initial
orientation it can be shown that the rate of elevation change of the couple is

dȳ

dt
= �0

2π

ζ

|r|2 , (33)

where |r|2 = ζ (t )2 + η2
0 with η0 the initial vertical separation (which is constant in time). This shows

that it is the vertical advection speed of each vortex on the other that is responsible for the mean rate
of elevation change (but with the separation governed by the conservation of linear impulse). Using
the conservation of H allows us to derive a maximum vertical displacement of the couple against
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FIG. 4. (a) Trajectories of a vortex couple with negative (downward-directed) buoyancy and a circulation
oriented as shown. The horizontal dashed line indicates the elevation change of the couple, �ȳ = 0.42.
Parameters are given by �0 = −1, g̃0 = −1, ζ0 = −2, and η0 = 0.01, with the dark line corresponding
to vortex 1, the green line corresponding to vortex 2, and dots indicating the vortex starting positions.
(b) Maximum elevation change in the vortex couples (made dimensionless through �ȳ∗ ≡ �ȳg̃0/�

2
0) as a

function of the vortex orientation angle, θ . The singularity at θ = 0 represents the case of purely vertical
orientation of the couple, as discussed in the text.

buoyancy forces of

�ȳ = �2
0

4π g̃0
ln

( |η0|
|r0|

)
, (34)

where |r0| is the initial separation of the couple. This can alternatively be expressed in terms of the
angle, θ , that a line connecting the two vortices makes with the horizontal:

�ȳ = �2
0

4π g̃0
ln(| sin θ |). (35)

This relationship for the dimensionless elevation change, �ȳg̃0/�
2
0 , is plotted in Fig. 4(b).

Note that the special case treated by Turner (with η0 = 0 and θ = 0) can result in a singularity
in finite time when the couple is directed opposite to the buoyant force, as it results in the collision
of the vortices and an infinite vertical velocity of the couple. This result is clearly unrealistic as our
assumption that the diameter of the vortices is much smaller than the distance between them breaks
down. This case has been examined by Ravichandran et al. [4], who found that the collision results
in significant deformation of the vorticity field into complicated structures, leading to the collapse
of the individual vortex cores. The process of vortex couple collapse is also likely to happen for
small but nonzero θ , as the distance between the vortices decreases during the elevation change of
the couple [Fig. 4(a)]. This will likely lead to a decrease in the elevation change predicted by the
curve in Fig. 4(b).

3. A “pseudohomogeneous” case

In this case, we note that trajectories of the buoyant vortices can occur as if they were
homogeneous when D = 0. This occurs when g̃1�2 = g̃2�1, or similarly if the individual vortex
speeds are equal, i.e., U1 = U2. The solution for |r| is

ζ 2 + η2 = C2, (36)

which corresponds exactly to the equations for the homogeneous two-vortex problem with C the
initial distance between the vortices. The only difference between the trajectories of these buoyant
vortices and two similar homogeneous vortices is the constant motion of the center of vorticity at
the speed UCV = g̃/�. The vortices are also rotating about the center of vorticity at the frequency
of �/2πC2, independent of buoyancy. Rather than plotting the trajectories in the xy plane, it is also
possible to get an accurate qualitative feel for the trajectories by using the ζη plane. This can be
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FIG. 5. Vortex trajectories for the homogeneous (a, c, e) and buoyant (b, d, f) three-vortex problems. Each
row shows vortices with the same starting positions [i.e., (1,1), (1.5,1), and (2,2), respectively, for each row,
starting from the top] and same circulations (�i = {1, 2, 3}, starting from the top), with the vortices in (b, d, f)
having g̃i = {0.02, 0, −0.02}, respectively.

seen by writing

x1 − R = �2

�
r and x2 − R = −�1

�
r, (37)

so that the individual vortex trajectories, in a frame of reference moving with the center of vorticity,
are just a scaled version of the curve in the ζη plane.

V. THREE BUOYANT VORTICES

A general property of Hamiltonian systems is the appearance of chaotic motions as the number of
degrees of freedom is increased [20]. In the case of homogeneous point vortices, it is well known that
chaotic motions appear once the number of vortices (equal to the number of degrees of freedom of
the Hamiltonian system) N � 4 [2,21]. The key to integrating the equations, and thereby eliminating
the possibility of chaotic trajectories, is to determine N independent integrals (constants) of motion,
F1, . . . , FN , where Fj = const for all vortex positions and all t . These integrals of the motion are
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FIG. 6. Maximum Lyapunov exponents for three homogeneous vortices (black curve) and three buoyant
vortices (red curve). Circulation and initial position of the vortices are the same in both cases, corresponding
to the systems plotted in Fig. 5.

usually formed from the conservation laws that we found in Eqs. (10) and (12), as well as the
Hamiltonian (energy) itself. For example, in the homogeneous vortex case, three integrals of motion
can be identified as H, I2

x + I2
y , and L2 [21]. These integrals can be used to effectively reduce the

number of degrees of freedom so that the system may be solved (in theory) by an integration [22].
Although techniques exist to derive integrals of motion, such as Lie algebra and symmetries of the
Lagrangian (see, e.g., [23–25]), one often relies on intuition (see [20], p. 39).

For the global conservation laws of the buoyant vortex system derived in Eqs. (11) and (12)
we can see that the addition of buoyancy forces has resulted in nonconstant angular impulse, L,
and vertical linear impulse, Iy. We are therefore left with only two conserved quantities H, the
energy, and Ix, the horizontal linear impulse. Hence, the buoyant three-vortex problem appears to be
nonintegrable, as was also the case found for the stratified polytropic fluid system of Arendt [9]. The
purpose of this section is therefore to answer the following question: Can three interacting buoyant
vortices exhibit chaotic motion?

To address this question, we begin by showing in Fig. 5 an example of the evolution of three
buoyant vortices, and comparing to the homogeneous case (which is known to be nonchaotic). In
both cases, the circulation of the vortices is identical with �i = {1, 2, 3}, but the buoyant three-
vortex system has g̃i = {−0.2, 0, 0.2} [Figs. 5(b), 5(d) and 5(f)]. Note that since

∑
i g̃i = 0, by

Eq. (11b), there is no net movement of the center of vorticity. It can be seen from Fig. 5 that, whereas
the homogeneous vortices trace out regular symmetric patterns, the buoyant vortices have irregular
asymmetric trajectories. This is an indication of the presence of chaos in the buoyant three-vortex
problem, as we might expect from the loss of an independent integral of motion.

To further address the presence of chaos in the buoyant three-vortex problem, we have numeri-
cally calculated the Lyapunov exponents. A defining feature of chaos is that nearby initial conditions
will produce diverging solutions after finite times. This feature is quantified through the maximum
Lyapunov exponent defined as

λmax ≡ lim
t→∞ lim

δX 0→0

1

t
ln

( |δX (t )|
|δX 0|

)
.

It characterizes the exponential rate of separation of infinitesimally close trajectories the initial
separation of which is δX 0. An autonomous nonlinear dynamical system with λmax > 0 is noninte-
grable, implying chaos is a possibility. We have numerically computed the Lyapunov exponents up
to t = 100 000 using the procedure outlined in Wolf et al. [26]. In Fig. 6, λmax is shown for both
three homogeneous vortices (black curve) and three buoyant vortices (red curve), corresponding to
the case examined in Fig. 5. In the absence of reduced gravity, i.e., for the homogeneous three-vortex
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FIG. 7. Illustration of chaotic advection in the restricted buoyant three-vortex problem. (a) Trajectories of
the two buoyant vortices with nonzero circulation (black and green curves), along with (b) the passive vortex,
i.e., neutrally buoyant with vanishing circulation.

case, λmax → 0 with increasing t , as expected. However, the presence of buoyancy in the problem
leads to a positive λmax, indicating that two nearby trajectories will exponentially diverge, further
supporting the finding that chaos is present.

A point worth mentioning in the context of differences between the homogeneous and buoyant
three-vortex problems is the concept of chaotic advection—simple time-dependent flows can cause
chaotic motion of tracer parcels. The basic idea stems from the fact that the motion of a point
vortex with vanishing circulation and zero buoyancy anomaly will behave as a tracer particle, being
advected by the fields induced by the other vortices present. When such a “tracer vortex” is included
in a field of three homogeneous point vortices, although the unsteady flow field produced by the
three point vortices is integrable, the motion of the tracer vortex is not [27]. This result echoes
a similar finding for the three-body problem with one of the point masses being negligible, and
is commonly called the restricted three-body problem. This concept can be easily extended to
understand chaotic advection due to buoyant vortices, with an example of the restricted buoyant
three-vortex problem shown in Fig. 7. The flow field produced by two buoyant vortices is integrable
[Fig. 7(a)] with repeated closed orbits; however, the motion of neutrally buoyant tracers in this flow
field is not. The chaotic advection of the tracer particle is demonstrated in Fig. 7(b) to consist of
irregular nonrepeating orbits indicative of chaos.

VI. SUMMARY AND CONCLUSIONS

In this paper we have formulated a general Hamiltonian framework for the investigation of
buoyant point vortices in a homogeneous ambient fluid. This extends previous work in this area
that looked only at special cases of buoyant vortices of relevance for particular applications. It
reveals analogous results to the general Hamiltonian framework developed for vortices in a stratified
polytropic ambient fluid by Arendt [9]. We have provided a systematic study of the one- and
two-vortex problems, and discovered that the evolution of two buoyant vortices can be split into two
different solution types: those in which the vortices remain bounded, i.e., within a finite distance to
each other and those in which the vortices drift apart in time. The boundary between these two cases
was also derived. As the number of vortices is increased to 3, the solutions become complex, and
irregular chaotic motions result. This feature of the buoyant three-vortex problem is in contrast to
the homogeneous three-vortex problem, and arises due to the loss of symmetry in the Hamiltonian
due to the buoyancy force, thus reducing the number of integral invariants. We also investigate the
possibility of chaotic advection of tracer parcels arising from the simple, time-dependent flow field
induced by two buoyant vortices. Future work could include a deeper investigation of chaotic motion
in the three-buoyant vortex problem, including a mapping of chaotic regions throughout parameter
space, as well as investigating the statistical mechanics of many buoyant vortices.
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FIG. 8. Numerical simulation of the horizontal drift of a buoyant vortex patch: (a) at t = 0 and (b) at
t = 100. (c) The abscissa of the center of the vortex patch as a function of time.
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APPENDIX: NUMERICAL VALIDATION OF THE CONSTANT HORIZONTAL
DRIFT OF A BUOYANT VORTEX PATCH

We numerically solve the nondimensional perturbation vorticity and scalar (density) conservation
equations in two dimensions (x-y):

Dω

Dt
= − 1

Fr2

∂ρ

∂x
+ 1

Re
∇2ω, (A1)

Dρ

Dt
= 1

RePr
∇2ρ, (A2)

where D/Dt denotes the material derivative and Re, Fr, and Pr, respectively, denote the Reynolds,
Froude, and Prandtl numbers. The above set of equations is solved using a pseudospectral code in
a 2π × 2π domain with doubly periodic boundary conditions. The number of mesh points used
is (Nx, Ny ) = (512, 512); the Crank-Nicolson method is used for time integration. The following
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parameters are assumed: Re = 103, Fr = 10, and Pr = 1. We simulate a generalized Gaussian
vortex centered at (π, π ) having the following vorticity and density structure at t = 0:

ω = exp (−{[(x − π )2 + (y − π )2]/0.3}β ), (A3)

ρ = exp (−{[(x − π )2 + (y − π )2]/0.3}β ), (A4)

where β = 6. While β = 1 results in a standard Gaussian distribution, higher values of β allow a
flatter peak, resulting in a vortex patch of nearly constant vorticity and density, i.e., approximating
a “buoyant” Rankine vortex. We show the initial and final states of the vortex patch in Figs. 8(a)
and 8(b), respectively. In Fig. 8(b), we find that the vortex has diffused, as expected in a viscous
diffusive flow. Nevertheless, the vortex indeed travels along a horizontal trajectory with a constant
speed [Fig. 8(c)]. This speed can be derived based on Eq. (13) for a finite-sized buoyant vortex
patch, giving U = g′

0/�0, where �0 is the near-constant initial vorticity of the patch and g′
0 is the

buoyancy anomaly (standard reduced gravity). Nondimensionalizing this speed gives U∗ = Fr−2 =
0.01, corresponding to our chosen numerical setup. This provides an excellent match to the results
of the translation speed observed in the simulation of U∗ = 0.0099.
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