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We investigate numerically the three-dimensional (3D) flow around a squareback
Ahmed body at Reynolds number Re = 104. Proper orthogonal decomposition (POD)
is applied to a symmetry-augmented database in order to describe and model the flow
dynamics. Comparison with experiments at a higher Reynolds number in a plane section
of the near wake at midheight shows that the simulation captures several features of the
experimental flow, in particular the antisymmetric quasisteady deviation mode. 3D POD
analysis allows us to classify the different physical processes in terms of mode contribution
to the kinetic energy over the entire domain. It is found that the dominant fluctuating
mode on the entire domain corresponds to the 3D quasisteady wake deviation, and that
its amplitude is well estimated from 2D near-wake data. The next most energetic flow
fluctuations consist of vortex shedding and bubble pumping mechanisms. It is found that
the amplitude of the deviation is negatively correlated with the intensity of the vortex
shedding in the spanwise direction and the suction drag coefficient. Finally, we find that
despite the slow convergence of the decomposition, a POD-based low-dimensional model
reproduces the dynamics of the wake deviation observed experimentally, as well as the
main characteristics of the global modes identified in the simulation.
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I. INTRODUCTION

A surprisingly generic feature of the flow around symmetric bodies at high Reynolds numbers is
the presence of permanent symmetry-breaking structures in the wake. These have been observed for
the sphere [1], bullet [2], the flat plate [3], as well as academic models for ground vehicles such as
the Ahmed body [4] and the Windsor body [5]. The origin and dynamics of these structures have not
been entirely elucidated, although they have been the object of several experimental and numerical
studies. They appear to be connected to the first steady bifurcation observed at much lower Reynolds
number (see Refs. [6,7]) and will be referred to as deviation modes throughout the paper. At higher
Reynolds numbers, rapid switches between different quasistable states can be observed, as described
by Refs. [8] and [9].

In the remainder of the paper, we will focus on the Ahmed body. Grandemange et al. [4] have
established that the appearance of bi- or multistable states for the flow around a squareback Ahmed
body depends on the value of the ground clearance and the aspect ratio of the body base. Pasquetti
and Peres [10] carried out the first numerical simulation of the Ahmed body that was able to
reproduce the steady wake deviation. However, switches were not observed in Pasquetti and Peres’s

2469-990X/2020/5(6)/064612(23) 064612-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.064612&domain=pdf&date_stamp=2020-06-23
https://doi.org/10.1103/PhysRevFluids.5.064612


BÉRENGÈRE PODVIN et al.

simulation, since the typical time separating two switches is on the order of 1000 U/H where U is
the incoming flow speed and H the body characteristic height (see Ref. [11]). In more recent work
Dalla Longa et al. [12] were able to integrate over sufficiently long times to capture the switch in
the wake deviation. However, they could only observe one switch, due to the still longer time scale
separating two switches. They also applied proper orthogonal decomposition (POD) and dynamic
mode decomposition (DMD) [13] to extract the dynamics of the flow. Interaction of the near-wake
recirculation zone with the surrounding shear layers is expected to play a part in the occurrence of
switches. They proposed that the switch is triggered by large hairpin vortices.

Grandemange et al. [4] characterized two periodic phenomena by carrying out a spectral analysis
in the wake of the squareback Ahmed body. Two well-defined synchronized frequencies were
identified in their experimental data corresponding to vortex shedding modes with large and small
Strouhal numbers, respectively, associated with the width and the height of the body. Volpe et al.
confirmed the presence of these two frequencies with Strouhal numbers of 0.13 and 0.19. In addition
they identified a wake-pumping motion in the low-frequency range around a Strouhal number of
0.08. Pavia et al. [14] have applied POD to both the experimental pressure and velocity field of
a Windsor body to identify structures corresponding to the bistable modes and the dynamics of
the switch. They identified pumping motion in the wake with a bistable vortical structure in the
streamwise direction and derived a phase-averaged model that describes the switch between the
quasistable states. They confirmed the observation made by Evrard et al. [15] and Cadot et al. [3]
that the symmetric state corresponds to a lower drag. The topology of the flow was confirmed by
a recent study by the same group [16] based on volumetric POD analysis of the full experimental
velocity field behind a Windsor body.

Drag reduction through control of the flow asymmetry has been the object of several passive
and active control strategies [9,11,17–21]. An important question is to determine how the different
structures present in the flow contribute to the drag. A low-dimensional description and modelling
of the large-scale structures could be beneficial for understanding, predicting, and ultimately
controlling the flow dynamics. Reduced-order models were developed by Refs. [8,9] in order to
control the deviation of the wake in experiments. A general form is assumed a priori for these
models based on limited information about the flow physics. In contrast, full information is available
in numerical studies.

The objectives of the paper are threefold. The first is to compare classical 2D POD obtained
with experiment to the 3D POD available with the simulation. The second goal is to use 3D POD
to provide a hierarchy of the global wake dynamics that contribute the most to the aerodynamic
drag. These global dynamics thoroughly identified in the literature are the pumping motion, the two
vortex shedding modes, and the deviation mode. The third goal of the paper is to derive, in a manner
as objective as possible, a model able to reproduce the dynamics of the large scales. This is achieved
through Galerkin projection of the Navier-Stokes equations onto a basis of POD eigenfunctions.

The numerical configuration considered here consists of the flow around a squareback Ahmed
body at a Reynolds number of Re = 104. The spanwise to vertical aspect ratio of the body is 1.18, so
that bistability corresponds to two deviation modes, which are symmetric through reflection of the
vertical midplane. Due to the long time scales separating switches, the change in the wake deviation
could not be captured by the simulation. However, reflection symmetry was enforced artificially to
build the POD modes, so that we provide a description of the structures of the flow as a superposition
of reflection-symmetric and reflection-antisymmetric POD modes.

The paper is organized as follows. Section II presents the 3D numerical configuration, while
Sec. III describes the specifics of proper orthogonal decomposition. Section IV presents a 2D
comparison of the numerical simulation and an experimental configuration corresponding to the
same geometry but a higher Reynolds number. Section V presents a 3D POD analysis of the
structures in the full configuration. A POD-based low-dimensional model is constructed in Sec. VI
and compared with experimental and numerical results. A conclusion is given in Sec. VII.
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FIG. 1. Numerical configuration. The streamwise, spanwise, and wall-normal positions are referred to as x,
y, z. The length, width, and height of the body are respectively L, W, and H . The origin of the axes (indicated
in red) is taken at the top and foremost position of the Ahmed body in the vertical symmetry plane.

II. NUMERICAL CONFIGURATION

Figure 1 presents the numerical configuration. The dimensions of the squareback Ahmed body
are the same as in the experimental configuration of Evrard et al. [15], i.e., L = 1.124m, H =
0.297m,W = 0.35m. We note that there is no support in the numerical simulation and the ground
clearance (distance from the body to the lower boundary of the domain) in the experiment is
C = 0.13 H while it is 0.3 H in the simulation. The Reynolds number based on the incoming
velocity U , body height, H and fluid viscosity is 104. The foremost and upper part body defines
the reference position (x = 0, z = 0). The plane y = 0 corresponds to the midplane of the body. In
what follows we will focus on the flow in the midheight plane of the body. The domain extent in the
streamwise (x), spanwise (y), and vertical (z) directions is [−1, 10]H × [−2, 2]H × [−1.3, 1.2]H .

The code used is SUNFLUIDH, an in-house code, which is based on a second-order finite volume
approach, which has been described for instance in Ref. [22]. The temporal discretization is based on
a second-order backward Euler scheme. Diffusion terms are treated implicitly and convective terms
are solved with an Adams-Bashforth scheme. The Poisson equation for the computation of pressure
field is solved iteratively. We use (512 × 256 × 256) grid points in, respectively, the longitudinal
direction x, the spanwise direction y, and the vertical direction z. The Cartesian grid is refined
close to surfaces. Periodic boundary conditions are used in the spanwise direction. No-slip velocity
boundary conditions on the Ahmed body and on the ground are implemented on the mesh cells
corresponding to the physical boundaries. The simulation was initialized from a uniform condition.
About 100 time units based on the upstream velocity U and body height H were necessary for the
flow to develop and statistical convergence to be reached. We note that all times will be expressed
in those units in the remainder of the paper. All lengths will be made nondimensional with the body
height H .
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III. PROPER ORTHOGONAL DECOMPOSITION

The main tool of analysis used in this paper is proper orthogonal decomposition (POD) [23]. On
a domain �, the field u is written as a superposition of spatial modes φ

n

u(x, t ) =
∑

n

ãn(t )φ
n
(x), (1)

where the spatial modes are orthogonal (and can be made orthonormal), i.e.,∫
φ

n
(x).φ

m
(x)dx = δnm.

Here we have used the standard inner product definition, although other choices can be made [24].
The modes can be ordered by their magnitude. We have λ1 � λ2 � . . . � λn = 〈ãnãn〉, where 〈.〉
represents a time average. The amplitudes ãn can be obtained by projection of the velocity field
onto the spatial modes:

ãn(t ) =
∫

�

u(x, t ).φ
n
(x)dx. (2)

In the remainder of the paper we will consider normalized amplitudes an = ãn/
√

λn.

In all that follows POD is implemented following the method of snapshots [25], which is based
on computing the autocorrelation between the different samples of the field obtained at times ti, i =
1, . . . , N :

Ci j = 1

N

∫
�

u(x, ti ).u(x′, t j )dx,

and extracting the eigenvalues λn and temporal eigenvectors Ain = an(ti ) such that

CA = λA. (3)

The spatial modes can then be reconstructed using the following rule in tensor notation

φ̃
n
(x) = u(x, ti )Ain (4)

and renormalizing φ
n
(x) = 1

Nn
φ̃

n
(x) where

N2
n =

∫
φ̃

n
(x).φ̃

n
(x)dx. (5)

Different spatial domains, as well as different quantities will be considered in the decomposition.
In Sec. IV, we will limit the analysis to 2D velocity fields in the near-wake region in order to match
the data of Evrard et al. [15]. In Sec. V, we will apply POD to the full 3D velocity field in the full
numerical domain.

A key ingredient of the procedure is the definition of the data set. Cross sections of the time-
averaged streamwise velocity are represented in Fig. 2 for two planes: one is the midheight plane
of the base z = −0.5 (the origin is located at the rooftop) and the other is the vertical midspan
plane y = 0. We observe a steady deviation (or asymmetry) of the wake in the horizontal plane,
with stronger fluctuations for y > 0 in agreement with previous observations [10]. This deviation
is breaking the reflection symmetry with respect to the vertical midplane. However, the equations
are symmetric; for each flow realization, the flow obtained by symmetry with respect to the vertical
midplane is also a possible solution. One has

ui(x, y, z, t ) → ui(x,−y, z, t )ηi,

where ηi = (−1)i+1. Following recommendations in Ref. [26], an enlarged data set enforcing the
statistical symmetry could then be created as follows: for each snapshot of the original data set, a
symmetrized snapshot corresponding to the image of the snapshot by the reflection symmetry was
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FIG. 2. Streamwise velocity contours of the mean flow; left) horizontal plane at body midheight z = −0.5;
right) vertical midplane at y = 0.

created. The size of the new data set was therefore twice that of the original one. By construction (see
the consequences of symmetry for POD eigenfunctions in Ref. [26]), POD modes are thus either
symmetric or antisymmetric with respect to the vertical midplane y = 0, so that the amplitude of
a POD mode for a given snapshot of the original data set is either identical or opposite to that
on the symmetrized snapshot. This allows us to break down flow patterns into symmetric and
antisymmetric components.

We emphasize that individual POD modes are different from coherent structures. A coherent
structure typically corresponds to local patterns identified in a realization. POD modes are defined
over the full domain chosen for decomposition, and every single realization contains a combination
of modes. A coherent structure will therefore correspond to a combination of a few POD modes,
which may be restricted to a portion of a spatial domain. As a consequence of the data enlargement
procedure we have adopted, the mean flow of the simulation does not correspond to one single mode
but to the sum of the first two modes representing, respectively, the symmetric and the antisymmetric
part of the mean flow.

We note that the data does not contain information about the switching process, however, since
they are of small duration, we expect that the most energetic POD modes obtained with the
symmetrized data set are not very different from those that would be found in a long simulation,
which would include switches between quasisteady states. This was found to be the case for a
turbulent Rayleigh-Bénard convection flow displaying intermittent reversals [27].

IV. 2D POD: COMPARISON WITH THE EXPERIMENT

In this section we apply POD analysis in the near-wake to the same variables defined over the
same domain in both the experiment and the numerical simulation, i.e., the full (i.e., including the
mean) streamwise and the spanwise velocity components u and v defined over the domain L � x �
L + 1.2H , −0.6 � y � 0.6H . Details are indicated in Table I. The main differences are

(i) the Reynolds numbers considered, as Re = 4 105 in Evrard’s experiment and Re = 104 in our
numerical simulation;

(ii) the time separation between two snapshots, which is 25H/U in the experiment versus 0.5H/U
in the simulation. The separation time is 50 times larger in the experiment than in the DNS, and the
total length window is about 80 times larger in the experiment than in the simulation.

TABLE I. Comparison between model and experiment. All times are made nondimensional with the
upstream velocity and body height. �t is the separation between two snapshots. N is the number of original
snapshots (original or unsymmetrized database).

Type Re �t N Lwindow = N�t

Simulation 104 0.5 280 140
Experiment 4× 105 25.25 400 10000
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FIG. 3. Near-wake 2D POD spectrum in the simulation and experiment.

Results for the POD spectrum are shown in Fig. 3 and show a good agreement between the
experiment and the simulation. The second mode represents about 35% of the total fluctuating
horizontal kinetic energy (the sum of the squares of the streamwise and the spanwise components)
in the wake

∑
p�2 λp. and the first eight modes capture more than 50%. Figure 4 compares the first

four POD modes for the experiment and the simulation. The first mode represents a cross section
of a toroidal-like structure constituting the recirculation bubble. The second mode corresponds to
a single vortical structure located in the recirculation bubble close to the rear of the body and
sweeping fluid from one side of the wake to the other. It represents the wake deviation. Overall
a good agreement is observed between all the modes found in the experiment and those found in the
simulation.

We can also see that mode 3 is symmetric and mode 4 is antisymmetric. Mode 3 consists
of a longitudinal motion at the extremity of the recirculation bubble, which converges towards
(or diverges away from, depending on the sign of the amplitude) the vertical midplane. This
motion could be associated with wake pumping, i.e., successive enlargement and shrinking of the

4=n3=n2=n1=n

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

0.2 0.4 0.6 0.8 1
x/H

-0.5

0

0.5

y/
H

FIG. 4. 2D wake POD modes 1 to 4; top row: simulation; bottom row: experiment.
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FIG. 5. Amplitudes of 2D POD modes 1 to 4 (from top to bottom); (left) simulation; (right) experiment.

recirculation region. Mode 4 consists of three vortical structures: one larger structure extending
across the wake and located close to the rear of the body, and two smaller ones, both rotating in
the opposite direction, on each side of the recirculating bubble. Its action is therefore to distort the
recirculation bubble in the spanwise direction.

Figure 5 shows for both the experiment and the simulation the corresponding amplitudes
(normalized by the square root of the eigenvalue) of the modes represented in Fig. 4. The amplitudes
of the first two modes in the simulation (Fig. 5, left) display small oscillations around a constant
positive value. In the experiment (Fig. 5, right), the amplitude of the first mode oscillates near a
constant positive value, while the amplitude of the second mode changes sign several times, which
may correspond to a switch in the wake asymmetry, as shown by Ref. [28].

Since the PIV results are not resolved in time and the simulation total time is relatively short,
it is difficult to compare directly time evolutions. However histograms of the amplitudes can be
compared in Fig. 6. We can see that there is a good agreement between the experiment and the
simulation, which suggests that the flow dynamics are similar despite the disparity in Reynolds
number.

The next four modes in the simulation, shown in Fig. 7, also present similarities with the modes
in the experiment. Modes 5 and 8 are antisymmetric and consist of vortical motions respectively
dominant on the inner part and the outer part of the recirculation. Modes 6 and 7 are symmetric and
consist of two counterrotating vortical structures, extending over the full recirculation length and
located on each side of the wake. Given the differences in Reynolds number and time resolution,
the agreement is remarkable and suggests that the most energetic structures have common features
over a wide range of Reynolds numbers.
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FIG. 6. Histogram comparison of 2D POD modes 1 to 4 (from left to right); top row: simulation; bottom
row: experiment.

Due to the low temporal resolution of the PIV measurements, the numerical and the experimental
frequency domains are not comparable in Fourier space. Thus, spectral analysis of the experimental
data is not shown. The spectral content of the temporal coefficients in the numerical simulation is
presented in Fig. 8. All modes are characterized by low frequencies. The two red and black lines,
respectively, correspond to the reference frequencies 0.08 and 0.2. Modes 3 and 7, which are both
symmetric, are characterized by a dominant frequency around 0.08, while mode 4, 5, and 6, which
are antisymmetric, are characterized by a frequency of 0.2. This frequency, which is associated with
vortex shedding, can be identified most clearly in modes 5 and 6. Mode 8 is characterized by a
mixture of frequencies.

V. 3D POD

To investigate the flow structure and dynamics in more detail, POD is applied to the full 3D
velocity field over the entire computational domain with the same symmetrization procedure as
described earlier. The eigenvalue spectrum is shown in Fig. 9. The first 3D mode, which coincides
with the mean flow (as can be checked from examination of the corresponding amplitude a1, which
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FIG. 7. 2D wake POD modes 5 to 8; top row: simulation; bottom row: experiment.
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FIG. 8. 2D POD amplitude power spectral density of the amplitudes in the numerical simulation |ân|2 for
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is constant for all snapshots; see also Ref. [26] for more details), is much more energetic than the
other modes compared with 2D analysis (Fig. 3) since the entire domain contains a large steady
contribution of the kinetic energy outside the wake. Due to the extent of the spatial domain, the
convergence of the fluctuations is much slower than in the 2D wake measurements. The second
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FIG. 9. 3D POD eigenvalue spectrum.
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FIG. 10. Streamwise velocity contours on body midheight plane z = −0.5; top: projection of an in-
stantaneous field u onto the first ten modes urecons = ∑10

n=1 an(t )φ(x) where an = ∫
u(x, t ).φ(x)dx.; bottom:

difference field |u − urecons|.

mode represents only 8% of the total fluctuating kinetic energy
∑

p�2 λp, which is equivalent to the
combined energy of the next eight most energetic modes. We note that the modes 3–6 have nearly
similar eigenvalues, which are about 10% of mode 2. This is in good agreement with the 3D POD
experimental results of Ref. [16].

Generally speaking, the physical structures are three-component modes extending over the full
domain, linking the upstream flow, the four boundary layers along the body, the near and the far
wake. We reconstructed an instantaneous velocity field from its projection on the first ten POD
modes, which capture about 20% of the total fluctuating energy. The reconstruction is shown in
Fig. 10, along with the difference between the full instantaneous field and the reconstructed field.
It is clear that only the large scales are captured by the projection. One can see that most of the
unresolved modes (which represent the major portion of the total kinetic energy) are located in the
boundary layers, the shear layers, and the far wake.

We now investigate the properties of the POD spatial modes. Spatial characteristics of the first
two 3D POD modes identified by the streamwise velocity contour are represented in Fig. 11. Each
figure displays the streamwise velocity of the 3D POD mode in both a horizontal cross section at
midheight of the body (z = −0.5), and in a vertical plane located in an off-center spanwise location.
The location of the vertical plane was chosen at y = −0.4 since asymmetric motions will cancel on
the symmetry plane. Although the representation of the first two POD modes in 2D and 3D is
different (Figs. 4 and 11), it can be seen that the restriction of the first two 3D POD modes to the
cross section of the wake is similar to the 2D POD results, which is not entirely surprising since
they are expected to represent the symmetric and antisymmetric part of the time-averaged velocity
field. This can also be seen from the similarity between the temporal amplitudes in two dimensions
and in three dimensions.

One can see in Fig. 12 that the temporal evolution of the first two 3D POD modes is slightly
different from that of the 2D POD coefficients. Unlike its 2D counterpart (Fig. 5, right), the
amplitude of the first 3D POD mode is essentially constant, which shows the statistical convergence
of the database. Moreover, the correlation between the amplitudes of the 2D and 3D modes a2d

2
and a3d

2 is 0.6, which indicates that the 2D measurements are able to describe to some extent
the evolution of the 3D deviation mode. However, although the amplitude of 2D POD mode 2
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FIG. 11. Streamwise velocity contours of 3D POD modes 1 (top row) and 2 (bottom row); (left) horizontal
section on body mid-height plane z = −0.5; (right) vertical section at y = −0.4.

changes sign, the corresponding 3D POD amplitude a3d
2 always remains positive. This means that

there are no full switches in the total wake deviation although a local planar measure may indicate
otherwise. In both cases, their corresponding spectrum indicates fluctuations at low frequencies
thus confirming their very long-time dynamics evolution. In addition to its permanent asymmetry,
the POD mode 2 corresponds to the very low-frequency deviation mode as reported in Refs. [8,19]
for an axisymmetric body and which was shown by [1,4] to be responsible for the bistable dynamics.
To get a better insight into the action of the deviation mode, Fig. 13 compares streamlines in the
recirculation zone for mode 1, which corresponds to the symmetric part of the time-averaged field,
and the sum of modes 1 and 2, which corresponds to the time-averaged field. We can see that the
effect of the deviation mode is to gather the streamlines around one of the base diagonals.

Figure 14 shows that modes 3 and 4 are antisymmetric modes, which display a periodicity in
the streamwise direction. The time evolution of these modes is quasiperiodic as shown by the
time series and the spectra in Fig. 15. The characteristics frequencies lie in the range 0.19–0.24,
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FIG. 12. (Left) amplitudes of the first two POD modes; (right) power spectral density of the quasisteady
deviation mode |â2|2; the red and black lines, respectively, correspond to the two frequencies 0.08 and 0.2.
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FIG. 13. Streamlines of the field viewed from downstream (left) mode 1
√

λ1φ1
; (right) combination of

mode 1 and mode 2
√

λ1φ1
+ √

λ2φ2
.

with a maximum around 0.19. This frequency matches satisfactorily the vortex shedding mode
observed for oscillations in the spanwise direction in Grandemange et al. [1], Volpe et al. [29].
Similar observations are made for the symmetric modes 5 and 6 in Fig. 14 and the corresponding
temporal properties in Fig. 15. Their spectra display a maximum around 0.23, that is ascribed to the
vortex shedding mode with oscillations in the vertical direction. The existence of two frequencies,
a higher one corresponding to the vertical (smaller) and a lower one corresponding to the spanwise
(larger) dimension of the body is in agreement with Grandemange et al. [1], Volpe et al. [29]. This is
a general result for three-dimensional geometries (Kiya and Abe [30]). It is possible to measure the
magnitude of vortex shedding in, respectively, the horizontal (rKh) and the vertical (rKv) direction
by adding the energies of the corresponding modes so that r2

Kh = a2
3 + a2

4 and r2
Kv = a2

5 + a2
6.

The modes 7 and 8 in Fig. 14 are symmetric and clearly do not display streamwise periodicity.
The action of mode 7 in the horizontal mid-plane is to modulate the bubble zone which is either
inflated or shrunk, depending on the sign of a7 (Fig. 15, left). When a7 > 0, Fig. 14 shows that
strong negative fluctuations are present in the bubble, which delays reattachment, and vice versa.
The spectra shown in Fig. 15 (right) show that both modes 7 and 8 are characterized by a strong
energetic content at a frequency of 0.08, which suggests that these modes contribute significantly to
the wake pumping, as characterized by Rigas et al. [2], Volpe et al. [29], and Pavia et al. [14,31].

Modes 9 and 10, which are antisymmetric (Fig. 14), are more difficult to interpret. As noted
earlier, there is no guarantee that an individual POD mode corresponds to a well-defined physical
mechanism. The spectra in Fig. 15 (right) show that modes 9 and 10 are characterized by a mixture
of frequencies in an intermediate range 0.08–0.2, with a peak for both modes around 0.15. It is
therefore likely that these modes correspond to a superposition of different physical processes.

As a summary, we find some correspondence between the POD modes and the main global
modes that contribute to the wake dynamics reported in the literature: POD mode 2 is related to the
very low-frequency deviation global mode, modes 3 and 4 to vortex shedding with oscillation in the
horizontal direction, modes 5 and 6 to vortex shedding with oscillations in the vertical direction,
and modes 7 and 8 to (symmetric) wake pumping.

The POD decomposition allows to investigate quantitatively the correlations between the
temporal amplitudes of the modes associated with the global wake dynamics. We first compare
the intensity of the deviation mode given by (a2

2) with the magnitudes of the shedding mode in
the horizontal (spanwise) and the vertical direction. We can see in Fig. 16 that minima of a2

2 are
associated with high energy in horizontal vortex shedding. The correlation coefficient between
a2

2 and r2
Kv is strongly negative (−0.6). Due to the three-dimensional nature of vortex shedding,

horizontal and vertical shedding motions are correlated, so that a negative correlation is also
obtained between a2

2 and r2
Kh (−0.33). The negative correlation is consistent with the idea that a
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31

FIG. 14. Streamwise velocity contours of 3D POD spatial modes 3–10 (from top to bottom); (left)
horizontal section on body midheight plane y = −0.5; (right) vertical section at z = −0.4.
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FIG. 15. (Left) amplitudes of the modes an, n = 3, 5, 7, 9; (right) power spectral density of the 3D POD
mode amplitudes in the simulation |ân|2; the red and black lines, respectively, correspond to the two frequencies
0.08 and 0.2.

reduced deviation or asymmetry is accompanied by an increase in vortex shedding, which was
observed in control experiments of Refs. [9,18], as well as in Refs. [14,16].

The next step is to compare the evolution of the POD amplitudes with the base suction coefficient
CB = −Cpb where the pressure coefficient Cpb corresponds to the integral of the pressure over the
base of the body, which is shown in Fig. 17 (left). Figure 17 (right) shows that the base suction
coefficient is positively correlated with the amplitude of the wake deviation a3d

2 with a positive
delay of �tU/H ∼ 2.5 and with a maximum correlation coefficient of 0.55.

The time delay appears to have some significance as the correlation without time delay drops to
0.34. This suggests that the variations of the drag follow those of the mean deviation amplitude.
This is in agreement with the idea that an increase of the wake symmetry is followed by a
pressure change at the body base reducing the drag. The correlation between wake asymmetry
and drag has already been reported in Refs. [3,14], but the present study derives the cause and
effect relationship with a time delay of the order of the convective time. Figure 17 also shows that
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2 (t),a 2 (t +  t). 2 )
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vertical(Kv)

FIG. 16. (Left) energy of POD modes corresponding to quasisteady deviation a2
2, spanwise (r2

Kh = a2
3 + a2

4)
and vertical (r2

Kv = a2
5 + a2

6) vortex shedding intensities; vertical lines correspond to minima of a2
2; (right)

correlation coefficient between vortex shedding energy and quasisteady deviation energy. The largest value of
the correlation coefficient is −0.6 at zero time delay and is related with spanwise vortex shedding.
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FIG. 17. (Left) base suction coefficient CB = −Cp obtained by integrating the pressure over the rear of the
body; (right) correlation between the base suction coefficient and the POD amplitudes corresponding to the
steady deviation (a2, top), wake pumping mode (a7, middle), and vortex shedding modes (r2

Kh,v , bottom). The
time delays corresponding to vertical lines in the figure correspond to a value of four time units for a2 and −1.5
for a7.

a correlation coefficient of −0.55 with a negative delay of �tU/H ∼ −1.5 is observed between
the pressure and the amplitude of a7. Unlike the previous case, the correlation remains about
the same without no time delay (−0.51), so it is not possible to assign a physical relevance to the
small time delay observed. As seen above, a7 is associated with wake pumping: from Fig. 14 one can
see in the near wake that when a7 > 0 there are more negative fluctuations within the zone, so that
the size of the recirculation actually increases. This is consistent with the observation that the base
suction coefficient decreases as the recirculation length increases [32]. In contrast, the correlation
of the drag with the intensity of vortex shedding appears to be weaker (and negative).

The observations made above suggest the following picture: the flow is characterized by a
quasisteady wake deviation, vortex shedding modes, and low-frequency wake-pumping motion. The
drag coefficient depends on the global (symmetric) size of the bubble, which is associated with wake
pumping, as a longer bubble corresponds to a lower drag. It also depends on the magnitude of the
deviation mode: a lower drag corresponds to a decrease of asymmetry, and to an increase in the
intensity of vortex shedding.

VI. LOW-DIMENSIONAL MODEL

We now examine whether it is possible to model the behavior of the largest scales using a POD-
based model, even if the scales considered represent only a fraction of the total fluctuating kinetic
energy. Following the approach described in Refs. [27,33], we build a low-dimensional model to
reproduce the dynamics. We use a Galerkin approach to project the Navier-Stokes equations onto
the basis of spatial modes for a selected truncation, and obtain a set of ordinary differential equations
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TABLE II. Model linear coefficients and predicted energy.

n 1 2 3 4 5 6 7 8 9 10

Li −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05
〈a2

n〉M0 1 1 0.93 0.93 0.86 0.86 1.45 1.51 1.05 1.05
〈a2

n〉M 1 1.05 0.29 0.29 0.18 0.18 1.01 1.03 2.05 2.33

for the normalized amplitudes an(t ). Using tensor notation, the model is of the form

ȧn = Lnmam + Qnmpamap + Tn, (6)

where
(i) the linear terms contain the viscous dissipation

Lnm =
∫

ν�φ
m
.φ

n
dx (7)

and are indicated in Table II. For the ten-mode truncation they form a diagonal matrix L ∼ −0.05I .
The diagonal form of the matrix was also observed in channel flow [33].

(ii) Tn is a closure term representing the contribution of the unresolved stresses (associated with
the modes excluded from the truncation) to the evolution of the amplitude an;

(iii) the quadratic terms Qnmp are obtained by projection of the nonlinear term, which yields
contributions of the form

QT
mpn =

√
λmλp

λn

∫
(φ

p
.∇φ

m
)).φ

n
dx. (8)

In order to obtain a symmetric expression in am and ap, we therefore define the coefficient Qmpn as
follows:

Qnmp =
√

λmλp

λn

1

2
(2 − δmp)

∫
(φ

p
.∇φ

m
) + φ

m
.∇φ

p
).φ

n
dx. (9)

Qmpn is equal to Qmpn when m = p and 1
2 (Qmpn + Qpmn) otherwise.

For the evolution equation of the amplitude an, 1 < n � 10, shown in Eq. (6), the interaction
coefficient of an with the mean mode, Qn1n, is essentially independent of n and its value is about
0.2. A physical interpretation of this is that each of the modes interacts directly and equally with the
mean mode, in particular its strong shear layers.

Generally speaking, the magnitudes of the quadratic coefficients Qnmp provide insight into the
interactions between the different modes. Table III contains the values of the quadratic coefficients

TABLE III. Quadratic interaction coefficients with the main mode Qn1m. Only coefficients larger than 0.1
are indicated; only coefficients larger than 0.4 (indicated in bold) are included in the model.

Qn1m m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

n = 3 0.21 0.91 −0.22 0.37
n = 4 −0.94 0.23 0.0 0.29 0.17
n = 5 0.22 1.09 0. 0.34
n = 6 −1.22 0.20 −0.12 −0.10
n = 7 0.17 0.16 −0.42
n = 8 0.55 0.4 0.17
n = 9 0.32 0.59 0.22 −0.86
n = 10 −0.88 −0.18 0.98 0.24
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Qn1m for 3 � n, m � 10. The values of largest magnitude, which were kept for the model are
indicated in bold.

A. Simplified model

We first consider a simplified version of the model by making the following assumptions:
(i) we assume that the first two modes a1 and a2 are constant, since they respectively correspond

to the symmetric and antisymmetric part of the time-averaged field;
(ii) we neglect quadratic terms of small magnitude, since the dynamics are expected to be

dominated by the largest interaction coefficients;
(iii) we model the energy transfer to the unresolved modes by assuming local equilibrium, which

means that their effect is to compensate for the production term, i.e., the interaction with the mean
shear (mode 1). This means that

Tn = (−Ln − Qn1na1)an. (10)

This leads to the following form for the model, which we will refer to as M0:

ȧ1 = 0 (11)

ȧ2 = 0 (12)

ȧ3 = 0.91a4 (13)

ȧ4 = −0.94a3 (14)

ȧ5 = −1.09a6 + 0.49a9 (15)

ȧ6 = 1.22a5 (16)

ȧ7 = −0.42a8 (17)

ȧ8 = −0.55a5 + 0.44a7 (18)

ȧ9 = −0.6a4 − 0.86a10 (19)

ȧ10 = −0.88a3 + 0.98a9. (20)

We can see that except for a dependence of the evolution of mode 5 on mode 9, there are only
interactions between modes with the same symmetry with respect to the vertical midplane reflection:
(3,4,9,10) on the one hand and (5,6,7,8) on the other hand. The interactions between the normalized
amplitudes (a2i−1, a2i ), 2 � i � 3 are of the form ȧ3 = −q3a4, ȧ4 = q4a3, ȧ5 = −q5a6, ȧ6 = q6a5,
with qi > 0. It can be shown that the system can be rewritten as ˙a2i−1 = −ωi(

λ2i
λ2i−1

)1/2a2i, ȧ2i =
ωi(

λ2i−1

λ2i
)1/2a2i−1, which correspond to propagative oscillatory solutions for the amplitudes

√
λnan,

in agreement with the convective dynamics expected for the corresponding Kármán modes.
The frequencies |ωi| = 2π fi identified for the pairs (3,4), (5,6), (7,8), and (9,10) are about 0.92,

1.15, 0.43, 0.9, which correspond to frequencies (or Strouhal numbers) of 0.15, 0.18, 0.07, and 0.14.
This is in good agreement with the main frequencies identified in the simulation. We emphasize that
this prediction of the relevant time scales is based exclusively on the spatial structure of the modes,
which are extracted from a set of samples arbitrarily separated in time. Since the computation is
based on the derivatives of the spatial modes, some uncertainty exists in the determination of the
time scales.

The model was integrated from a random initial condition, and the amplitudes ai, 3 � i � 10 are
represented in spectral space in Fig. 18. As expected, the frequencies of the model coefficients agree
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FIG. 18. Power spectral density of the 3D POD mode amplitudes 3–10 |â3D,M0
n |2 in the simplified model;

the red and black lines, respectively, correspond to the two frequencies 0.08 and 0.2.

well with the dominant frequencies identified in the previous section for the amplitudes of the modes
in the simulation. The amplitudes of the modes are also close to their expected values, as shown in
Table II. These results indicate that the main temporal dynamics of the flow can be recovered from
the quadratic interactions between spatial POD modes, even if the snapshots are obtained with large
separations, which is evidence of the predictive abilities of the POD-based model.

B. Switches

We now examine if and how switches can be reproduced by a more complex version of the
model, which will be referred to as M. The model is obtained by relaxing the assumptions of the
simplified model, presented in the previous paragraph, as follows.

(i) The second mode is allowed to vary.
(ii) Feedback is provided between the unresolved terms and the modes of the truncation.
As shown in Ref. [27], we assume that the rate of energy transferred to the small scales depends

on the energy available in the largest scales. If more energy is available in the large scales, then more
energy is extracted by the small scales and conversely. This leads to us to introduce a time-varying
viscosity term, so that the effect of the unresolved terms is modelled as

Tn = Anan + εn, (21)

where
(i) the time-averaged value 〈An〉 satisfies

〈An〉 = −Ln − Qnn1; (22)

(ii) An contains a linear part and a quadratic part.

064612-18



PROPER ORTHOGONAL DECOMPOSITION ANALYSIS AND …

The details of the modelling procedure can be found in Refs. [27,34]. We have

Tn =
⎛
⎝〈An〉 + αn

N∑
p�1

λp − αn

N∑
p�1

|ap|2
⎞
⎠an + εn, (23)

where

αn = − 〈An〉
2

∑N
p�2 λp

.

The value of αi was evaluated to be around 0.5. Since the model was found to be largely insensitive
to the exact values of αi, in what follows a constant value of αi = α = 0.5 was used for all modes
for the sake of simplicity. Examination of (21) and of the POD eigenvalues shows that about 50%
of the turbulent viscosity is dependent on the amplitude of mode a2. In that sense the structure of
the model displays similarities with both Refs. [8] and [28]’s model, which includes a cubic term in
a2. However, it is derived from entirely different physical arguments.

(iii) εn represents Gaussian noise representing the high-frequency component due to the pres-
ence of unresolved scales. The r.m.s. value σn of each noisy perturbation εn used to integrate the
model was determined using σn ≈ |An|. We used σ2 = 0.09 and σi = 0.04 for 3 � i � 10.

The modified model reads:

ȧ1 = 0 (24)

ȧ2 =
(

L2 − α

10∑
2

a2
pλp

)
a2 + ε2 (25)

ȧ3 =
(

L3 − α

10∑
2

a2
pλp

)
a2 + 0.71a4 + ε3 (26)

ȧ4 =
(

L4 − α

10∑
2

a2
pλp

)
a2 − 0.74a3 + ε4 (27)

ȧ5 =
(

L5 − α

10∑
2

a2
pλp

)
a2 − 1.09a6 + ε5 (28)

ȧ6 =
(

L6 − α

10∑
2

a2
pλp

)
a2 − 1.2a5 + ε6 (29)

ȧ7 =
(

L7 − α

10∑
2

a2
pλp

)
a2 − 0.42a8 + ε7 (30)

ȧ8 =
(

L8 − α

10∑
2

a2
pλp

)
a2 − 0.55a5 + 0.44a7 + ε8 (31)

ȧ9 =
(

L9 − α

10∑
2

a2
pλp

)
a2 − 0.6a4 − 0.86a10 + ε9 (32)

ȧ10 =
(

L10 − α

10∑
2

a2
pλp

)
a2 − 0.88a3 + 0.98a9 + ε10. (33)

The quadratic terms in the expression for a2 are not included in the model as their magnitude was
small (we checked that including these terms in the equations did not change the dynamics reported
below).
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FIG. 19. (Left) POD amplitude a2; top: experiment (2D); bottom: model M (3D); (right) histogram of a2.

The effect of the feedback term on the dynamics of the model is that if there is less energy
in mode a2, the higher-order modes will extract less energy, which will allow mode a2 to grow.
Conversely, if mode a2 becomes too large, the energy transfer to the higher-order modes will be
increased, which will in turn affect the energy of mode a2.

Figures 19 and 20 show results of the model integration for a noise amplitude of about 0.15.
Figure 19 (left) shows the 3D coefficient a3d

2 predicted with the model M along with the 2D
coefficient a2d

2 in the experiment, which appears a relevant comparison since, as shown in the
previous section, there is a reasonably good correlation between a2 in three dimensions and two
dimensions (0.6). The model displays time scales of O(1000) between switches, in agreement with
experimental observations. Figure 19 (right) shows that the histogram of the amplitude is similar to
that observed in the experiment in Fig. 6. This shows that the model is able to reproduce deviations
in a way that is consistent with experiments. As Fig. 20 indicates, modes 3 to 10 are characterized
by relatively fast oscillating time scales and slower amplitude variations. The frequencies of the
amplitudes are shown in Fig. 20 (right) and compare relatively well with those measured in the
simulation, given the crudeness of the truncation. Table II (last line) shows that the magnitude of
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FIG. 20. (Left) amplitudes of 3D POD amplitudes of modes 3, 5, 7, and 9 in the model; (right) power
spectral density of POD amplitudes in the model |â3d,M

n |2; the red and black lines, respectively, correspond to
the two frequencies 0.08 and 0.2.
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the normalized POD amplitudes is relatively well estimated by the model with values of about
0.2–2 for the last modes of the truncation (we emphasize that the model contains only 20% of
the total fluctuating energy). The main dynamics of the largest scales are therefore captured by
the model. Again the specificity of the model is that it is able to extract essential dynamical
features of a complex flow by combining projection of the Navier-Stokes equations with general,
data-independent assumptions.

VII. CONCLUSION

We have applied proper orthogonal decomposition to the 3D numerical simulation of the flow
behind an Ahmed body at Re = 104. Reflection symmetry was applied to the computed data set in
order to compensate for the relatively short time of the simulation, which precludes the observation
of switches in the wake deviation. Both possible quasisteady states are thus included in in the
augmented space of realizations, but it should be noted that the symmetrization procedure cannot
provide a description of the switching process itself.

As a consequence of the enforced statistical symmetry, the flow can be decomposed into
symmetric and antisymmetric structures. The mean flow consists of a symmetric recirculation
bubble and an antisymmetric deviation, the effect of which is to gather flow streamlines around
one of the base diagonals. 2D POD analysis was performed in the near wake in the simulation and
compared with experimental results obtained for the same geometry. Despite the discrepancy in
Reynolds number between the simulation and the experiment, an excellent agreement was observed
for both the spatial structure and temporal statistics of the POD modes.

2D results were then confronted with a 3D approach. The energetic importance of the quasisteady
wake deviation was established. The evolution of this global 3D deviation mode was relatively well
captured by 2D measurements in the near wake. The next most energetic patterns are associated
with vortex shedding and wake pumping. Characteristic frequencies were identified for each type of
structure. Structures associated with wake pumping were characterized by a low frequency of about
0.08. Both symmetric and antisymmetric structures associated with vortex shedding in, respectively,
the vertical and spanwise direction were characterized by dominant frequencies of 0.19 and 0.23 in
the far wake. A strong negative correlation was noted between the intensity of the vortex shedding
modes and the magnitude of the deviation mode. In addition, increases in the base drag were
found to correspond to an increase of the deviation mode magnitude, along with a shrinkage of
the recirculation zone associated with wake pumping.

Finally, POD-based low-dimensional models were derived for the largest scales of the flow.
The energy content of the modes was correctly captured by the model. A simplified model was
able to single out the main frequencies of the POD amplitudes observed in the simulation from
the spatial modes, regardless of the time separation between the snapshots used to compute
POD. This predictive ability of the model is remarkable in view of the slow convergence of the
decomposition, which reflects the complexity of the flow. A more elaborate version of the model
was also considered. The approach is consistent with Rigas et al.’s model [8] and in particular the
structure of the model would be the same if the POD truncation was limited to two modes. By
accounting for the effect of the unresolved modes with a feedback term, the POD-based model was
able to reproduce the characteristics of the switches in the wake deviation. The success of the model
supports the idea that wake switching is triggered by higher-order modes.
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