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Chaos and information in two-dimensional turbulence
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By performing a large number of fully resolved simulations of incompressible homo-
geneous and isotropic two-dimensional turbulence, we study the scaling behavior of the
maximal Lyapunov exponent, the Kolmogorov-Sinai entropy, and attractor dimension.
The scaling of the maximal Lyapunov exponent is found to be in good agreement with
the dimensional predictions. For the cases of the Kolmogorov-Sinai entropy and attractor
dimension, the simple dimensional predictions are found to be insufficient. A dependence
on the system size and the forcing length scale is found, suggesting nonuniversal behavior.
The applicability of these results to atmospheric predictability is also discussed.
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I. INTRODUCTION

Turbulent fluid flows exhibit complex and, at first glance, apparently random motions. Con-
sequently, our ability to predict their behavior is limited. Given that such fluids are governed by
deterministic equations of motion, for example the Navier-Stokes equations for nonconducting
fluids, their lack of exact predictability appears paradoxical. This aspect of turbulent flows can
be understood as a consequence of deterministic chaos [1,2] and an extreme sensitivity to initial
conditions. As a result any error in measuring the state of the system, no matter how small,
will be amplified as the system evolves, resulting in a finite predictability time. Turbulent flows
are ubiquitous in the universe, occurring across a massive range of length scales and, as such,
quantifying their predictability may have wide-reaching applications. Furthermore, fluid turbulence
is in many ways representative of extended dynamical systems in general, and therefore such results
may also be of more broad interest.

The study of the chaotic properties of dynamical systems began with the pioneering work of
Lorenz [3], exploring what is effectively a low-dimensional model of the Navier-Stokes equations.
These ideas were then employed by Ruelle and Takens [4] to describe a mechanism by which
turbulence can be generated in a fluid flow. In applying the methods of chaos theory to the study
of turbulence, we consider the properties of individual trajectories through a suitably defined state
space of the system. This is in contrast to the more common approach of studying the statistical prop-
erties of turbulence through averaging [5] over time, space, or numerous realizations of the system.

Starting with the pioneering studies of Leith and Kraichnan [6,7], a large body of work dedicated
to the study of predictability in turbulent fluid flows has formed. These initial studies made use
of turbulent closure models to render the problem computationally feasible. Unfortunately, these
closure models have a number of shortcomings that may reduce their ability to correctly quantify
predictability in turbulence. Perhaps most notably, as they are typically defined in terms of ensemble
averaged quantities, they do not provide any information about the spatial structure of the flow
which is likely to influence predictability. Additionally, while these models are well-known to give
excellent agreement with the K41 theory of turbulence [8], the validity, or lack thereof, of K41 itself
is still unsettled [9]. As such, the applicability of the results of these models to true fluid turbulence
may be limited.
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As computing power increased, it became possible to perform predictability measurements in
direct numerical simulations (DNS) of turbulence. Since such simulations fully resolve all the
relevant scales of the system in both space and time, they provide far more reliable results when
compared to closures. However, such simulations come with a large computational expense, so
progress has been made at a moderate rate. This is especially true for predictability studies where
the computational cost is at least twice that of a standard simulation.

Historically, the majority of work regarding the predictability of fluid turbulence has centered
around the measurement of the maximal Lyapunov exponent of the system. This gives a measure
of the rate at which nearby trajectories in the state space diverge, and thus also provides a measure
of the predictability time of the system. Due to the aforementioned computational expense, these
studies began by focusing on the less-demanding case of two-dimensional turbulence [10,11] as
well as moderate Reynolds number three-dimensional turbulence [12]. More recently, a number of
studies at higher Reynolds number in three dimensions have been performed [13–15], as well as a
study into predictability in magnetohydrodynamic turbulence [16]. Each of these hydrodynamical
studies independently found that the maximal Lyapunov exponent scaled faster with the Reynolds
number than predicted by Ruelle [17] using the K41 theory. This is of particular interest, as by using
the multifractal model [18], developed in an attempt to capture the effects of internal intermittency
in turbulence, it can be shown that the maximal exponent should scale slower than predicted by
Ruelle [19], opposite to what was found in DNS.

It is also possible to study more than simply the behavior of the maximal Lyapunov exponent.
There exist as many exponents as there are degrees of freedom in the system and these are said
to form a Lyapunov spectrum. However, since the calculation of each additional exponent desired
comes with further computational cost, the study of the Lyapunov spectrum in fluid turbulence is still
at a comparatively early stage when compared to that of the maximal exponent, although seems to
be following the same path of development. Initially, studies were restricted to shell models [20–22]
but soon progressed to DNS studies in two [23,24] and three-dimensional Poiseuille flow [25], as
well as a highly symmetric homogeneous and isotropic turbulence (HIT) system [26]. By measuring
all of the positive Lyapunov exponents of a system, the Kolmogorov-Sinai (KS) entropy, which
quantifies the rate of information production of the system and gives a more accurate quantification
of predictability, can be estimated.

Such is the computational expense in measuring the KS entropy, that only very recently, and
at moderate Reynolds number, has the scaling of the KS entropy in three-dimensional HIT been
measured [27]. Here it was found that the entropy scaled slower with the Reynolds number than
predicted using dimensional arguments and K41, although only marginally, however, the related
attractor dimension was found to scale faster. Both results should be interpreted with some caution
given the relatively low Reynolds numbers obtained. Owing to the reduced computational effort
required to study two-dimensional turbulence, a small investigation into the attractor dimension
scaling was performed in Ref. [23]. Computing power is now such that a systematic study of
the chaotic properties of two-dimensional turbulence can be performed and is the focus of this
investigation. Features of two-dimensional turbulence, although not truly realizable itself, can
be seen across a wide range of fluid systems. For example, in systems where one dimension is
constrained compared to the others, such that the fluid exists in a thin layer, two-dimensional effects
have been observed [28]. Moreover, in atmospheric measurements here on Earth [29] and elsewhere
in the solar system [30] evidence of two-dimensional phenomenology has been found. As such,
understanding the predictability of two-dimensional HIT may be of more relevance to atmospheric
predictability than the three-dimensional case in many situations.

This paper is organized as follows: in Sec. II we introduce a number of scaling predictions for
the maximal Lyapunov exponent, attractor dimension, and KS entropy in two-dimensional HIT.
Next, in Sec. III we discuss the numerical methods used in computing the chaotic properties we are
interested in, focusing on the computation of the Lyapunov spectrum. We then present the results
of our numerical study in Sec. IV and compare them to the theoretical predictions. Here, we find
unexpected corrections to the theoretical predictions which suggest an influence from the system
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size and forcing length scale, hinting at a lack of universality. Finally, in Sec. V we discuss the
implication of our results for two-dimensional HIT as a whole as well as possible applications to
less idealized fluid systems.

II. SCALING PREDICTIONS FOR TWO-DIMENSIONAL TURBULENCE

For the case of three-dimensional HIT, there exist a number of theoretical predictions for the
scaling behavior of the maximal Lyapunov exponent, attractor dimension and KS entropy. The
simplest of such predictions are all based on dimensional arguments and the K41 theory. These
ideas can be applied in an analogous way to two-dimensional HIT where the dual cascade picture
[31–33], caused by conservation of both energy and enstrophy, modifies the expected scaling
behavior.

The scaling behavior of the maximal Lyapunov exponent, λ1, in two-dimensional HIT can
be found by following the Ruelle argument [17] that on dimensional grounds it should be
proportional to the inverse of the fastest timescale in the flow. In three-dimensional HIT this is the
Kolmogorov timescale, corresponding to the small scales of the flow, which then suggests a scaling
with the Reynolds number. However, for two-dimensional HIT, assuming the energy spectrum is
E (k) ∼ k−3 in the direct cascade and therefore neglecting, for now, any logarithmic corrections,
there is only one timescale throughout the entire direct enstrophy cascade. This timescale, τ is
determined solely by the enstrophy dissipation rate, η, and is given by τ ∼ η−1/3. As such, we then
have

λ1 ∼ 1

τ
∼ η

1
3 . (1)

Therefore, at odds with the three-dimensional case, λ1 scales independently of the Reynolds number.
Furthermore, this suggests that in some sense the small scales of the flow retain information about
the larger scales.

Turning to the KS entropy, once again on dimensional grounds alone we can estimate the scaling
behavior. In this instance, the entropy should scale with the fastest timescale in the flow multiplied
by the total number of excited modes; see, for example, Refs. [34,35] for a description of this
argument applied to three-dimensional turbulence. To apply this method to two-dimensional flows,
we need to determine the scaling of the total number of excited modes, which is also the scaling of
the attractor dimension, dim(A). We do so by considering the ratio of the largest scales in the flow,
L, to the smallest given by the dissipation length scale, χ = (ν3/η)1/6 where ν is the viscosity. This
gives us

dim(A) ∼
(

L

χ

)2

∼ Re, (2)

which in turn implies that the KS entropy, hKS, will scale as

hKS ∼ 1

τ
Re = η

1
3 Re. (3)

It has been shown by Kraichnan that for a constant enstrophy flux in the direct cascade of two-
dimensional turbulence to exist there must be a logarithmic correction to the energy spectrum [36].
This correction will then affect the predicted scaling behavior of the various chaotic quantities we
are interested in. This was considered by Ohkitani [37] and introduces an additional logarithmic
dependence on the Reynolds number to each quantity as follows:

λ1 ∼ (η log Re)
1
3 , (4)

dim(A) ∼ Re(log Re)
1
3 , (5)
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and

hKS ∼ η
1
3 Re(log Re)

2
3 . (6)

These differ from the previous predictions only by logarithmic factors and thus may be hard to
distinguish in practice, as such we will not pursue these strongly here.

Finally, in Ref. [38] scaling predictions for the KS-entropy and attractor dimension were derived
for three-dimensional turbulence. These results were then extended to the two-dimensional case by
Lieb [39]. If the energy dissipation rate, ε, is taken to be constant throughout the fluid for the KS
entropy, then we have

hKS ∼ ε

ν2
V, (7)

where V is the volume of the system. For the attractor dimension it is found that

dim(A) ∼
√

ε

ν3
V. (8)

We note here that there also exist a number of more mathematically rigorous scaling laws for
some of these quantities; see, for example, Ref. [40]. These are typically expressed in terms of a
generalized Grashof number which can be related to the Reynolds number. The dimensional scaling
laws in Eqs. (1)–(8) are consistent with the rigorous upper bounds in Ref. [40], thus we will focus
on these simpler dimensional predictions in this work.

III. NUMERICAL METHOD

To complete a model-independent study of the chaotic properties of incompressible two-
dimensional HIT, we perform DNS of the Navier-Stokes equations in two spatial dimensions with
a large-scale hypoviscous dissipation term

∂t ui + u j∂ jui = −∂iP + ν∇2ui + μ∇−2ui + fi,

∂iui = 0, i, j = 1, 2. (9)

Here, u(x, t ) is the velocity field, P(x, t ) is the pressure field, μ is the hypoviscosity and f (x, t )
is an external force that we will specify and discuss later in this section. To obtain our results we
have made use of the EddyBurgh code [41], a modification of that described in Ref. [42], and
as such we make use of the pseudospectral method with full dealiasing using the two-thirds rule.
To ensure the flow is well resolved, we ensure that kmax/kd � 1.25 for all our simulations, where
kd = 1/ld . In Ref. [25] it was found that insufficient resolution led to an underestimation of the
attractor dimension, though, by following the criteria above in Ref. [27] we found such issues were
avoided. To study the effect of the physical size of the domain on the chaotic properties of the
system, we have performed simulations in periodic boxes of side lengths π/2, π, and 2π . Details
of all simulations performed can be found in Tables I, II, and III.

To obtain a stationary state some form of large-scale dissipation is necessary, as otherwise the
inverse cascade will eventually lead to the formation of a condensate on the scale of the system
size [31]. In real world flows which show two-dimensional behavior, the large-scale dissipation is
given by friction between the two-dimensional flow and the three-dimensional system it is contained
within. As such, friction terms which depend on the fluid velocity either linearly or quadratically
are often used [43]. However, such terms have an effect on all scales of the flow, and given that
our predictions in Eqs. (1)–(6) depend on the small-scale enstrophy dissipation rate, we opt for a
large-scale dissipation that effectively does not act on the small-scales. As a consequence of the
large computational cost of our simulations, we have not tested how our results would be affected
by the use of friction as opposed to the inverse Laplacian used here. However, any difference should
be small. This inverse Laplacian term makes more sense in Fourier space where it becomes k−2,
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TABLE I. Simulation parameters for kmin = 1 data: σ is the standard deviation of the Kolmogorov-Sinai
entropy, Ns is the number of samples used in determining the entropy and attractor dimension, Ne is the
number of positive Lyapunov exponents, and χ = (ν3/η)1/6 is the two-dimensional analog of the Komogorov
length scale. For the attractor dimension a “—” indicates insufficient exponents were obtained to compute the
dimension.

hKS σ Ns Ne dim(A) η Re ν k f kmax χ Reμ

0.97 0.14 1037 19 49.37 0.028 183 0.001 3 20 0.057 1
2.88 0.22 1042 35 75.33 0.196 39 0.003 5 20 0.072 3
1.14 0.11 1040 – 67.62 0.474 10 0.005 7 20 0.080 7
0.74 0.09 280 23 46.23 0.016 210 0.0008 3 20 0.056 1
1.23 0.13 513 28 62.63 0.023 380 0.0005 3 41 0.042 1
1.42 0.18 1900 24 57.58 0.029 281 0.001 3 41 0.057 3
1.82 0.25 1900 26 62.24 0.058 400 0.001 3 41 0.051 4
2.51 0.31 1900 30 72.98 0.090 492 0.001 3 41 0.047 4
2.21 0.31 1900 28 69.07 0.113 560 0.001 3 41 0.045 6
2.40 0.34 1900 31 74.34 0.137 632 0.001 3 41 0.044 6
2.66 0.38 1900 32 77.06 0.168 694 0.001 3 41 0.043 8
1.77 0.29 423 13 29.57 0.564 64 0.0085 3 41 0.101 2
4.03 0.30 1900 51 114.58 0.106 204 0.001 5 41 0.046 9
5.45 0.46 1900 56 128.30 0.213 298 0.001 5 41 0.041 11
6.01 0.55 1900 59 135.38 0.319 358 0.001 5 41 0.038 14
6.36 0.58 1900 60 139.35 0.424 406 0.001 5 41 0.036 19
7.21 0.68 1900 65 149.38 0.525 456 0.001 5 41 0.035 20
7.87 0.74 1900 68 158.04 0.635 496 0.001 5 41 0.034 23
8.07 0.35 1900 74 168.57 0.229 180 0.001 7 41 0.040 9
12.17 0.50 1900 84 199.31 0.458 276 0.001 7 41 0.036 9
14.94 0.61 1900 94 226.20 0.692 339 0.001 7 41 0.034 11
17.65 0.71 1900 99 250.44 0.910 403 0.001 7 41 0.032 11
20.06 0.79 1900 108 277.12 1.153 459 0.001 7 41 0.031 11
22.39 0.87 1900 109 302.59 1.381 501 0.001 7 41 0.030 13
16.02 0.51 1900 111 257.03 0.556 182 0.001 9 41 0.035 12
23.57 0.67 1900 129 320.14 1.100 296 0.001 9 41 0.031 10
18.07 0.41 1900 139 304.91 0.592 112 0.001 11 41 0.035 15
27.69 0.59 1900 157 375.80 1.184 191 0.001 11 41 0.031 14
1.38 0.17 1557 27 57.59 0.029 279 0.001 3 84 0.057 3
4.70 0.40 1123 53 122.08 0.210 281 0.001 5 84 0.041 15
4.10 0.30 1195 50 113.11 0.106 207 0.001 5 84 0.046 9
1.55 0.22 254 16 32.78 0.263 86 0.005 3 41 0.088 2
3.58 0.32 744 31 66.31 0.727 47 0.005 5 41 0.075 5
4.26 0.29 671 – 96.77 1.012 25 0.0045 7 41 0.067 11
2.32 0.26 332 21 51.18 0.220 252 0.002 3 41 0.058 2
9.08 0.35 164 82 211.24 0.144 433 0.0004 5 84 0.028 4
1.32 0.25 526 26 69.18 0.022 436 0.00044 3 41 0.040 1
14.29 0.74 446 120 – 0.417 999 0.0003 5 84 0.020 8
18.08 0.55 450 131 – 0.385 397 0.0004 7 84 0.023 6
24.87 1.05 418 177 – 0.696 1297 0.0003 5 84 0.018 9
29.89 0.69 399 179 – 0.698 354 0.0004 9 84 0.021 7
23.64 0.56 464 150 – 0.710 218 0.0006 9 84 0.026 6
14.89 0.49 125 189 470.54 0.110 2187 0.000085 5 169 0.013 7
4.18 0.19 132 89 218.96 0.018 2631 0.000075 3 169 0.017 2
36.01 0.91 212 334 848.38 0.320 2000 0.000085 7 169 0.011 8
20.86 0.67 130 232 – 0.146 5902 0.000075 3 169 0.012 2
22.46 0.51 145 127 313.20 2.486 58 0.002 11 41 0.038 16
2.99 0.26 577 75 – 2.770 9 0.004 11 41 0.053 56
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TABLE II. Simulation parameters for kmin = 2 data.

hKS σ Ns Ne dim(A) η Re ν k f kmax χ Reμ

0.89 0.20 886 11 23.78 0.084 217 0.001 4 40 0.048 2
4.93 0.47 231 61 161.52 0.066 3323 0.0001 4 83 0.016 3
14.01 1.05 232 141 – 0.252 2856 0.0001 6 83 0.013 9
3.69 0.51 232 33 83.73 0.322 771 0.0003 6 83 0.021 13
2.25 0.34 122 28 67.96 0.078 1284 0.0002 4 83 0.022 5
1.10 0.25 240 9 20.78 0.587 164 0.002 4 83 0.049 3
1.49 0.28 244 13 30.04 0.232 266 0.001 4 83 0.040 4
0.74 0.24 443 6 12.59 0.770 59 0.005 4 83 0.074 3
3.29 0.44 521 20 47.12 0.86 276 0.001 6 83 0.032 5
3.25 0.52 578 15 38.67 1.74 164 0.002 6 83 0.041 5

which highlights that it most strongly influences the large length scales of the flow. To quantify the
effects of this term, we use the hypoviscous Reynolds number, Reμ, where

Reμ = u

μL3
. (10)

This term is derived from the ratio of inertial to hypoviscous forces. As such, when it is small, the
hypoviscous term is dominant at the large scales. This allows us to ensure no large-scale condensate
has formed,

Notably, we do not employ any form of hyper-viscosity, which is very often used in two-
dimensional HIT simulations to increase the enstrophy inertial range. It is arguable that the use of
hyper-viscosity is akin to that of an effective viscosity employed in methods such as large-eddy
simulation, and as such acts as a form of closure. Hence, we choose to avoid any ambiguity
stemming from the use of hyperviscosity in this study.

Throughout this work, when we refer to the Reynolds number, Re, we are considering the
integral-scale Reynolds number. To define this we need to first define the integral length scale,
L, which gives the rough size of the largest eddys in the flow. It can be shown [44] by considering
the two point second order longitudinal velocity correlation function, that in two dimensions L is
given by

L = 2

E

∫ ∞

0
dk E (k)k−1. (11)

TABLE III. Simulation parameters for kmin = 4 data.

hKS σ Ns Ne dim(A) η Re ν k f kmax χ Reμ

0.89 0.41 123 6 15.84 1.436 321 0.0006 8 167 0.023 34
0.92 0.37 305 8 20.45 0.484 300 0.0004 8 339 0.023 28
1.71 0.59 558 10 24 3.675 421 0.00075 8 167 0.022 35
1.23 0.39 590 15 26.6 2.148 635 0.00045 8 167 0.019 37
1.34 0.33 120 16 38.05 0.056 1653 0.00005 8 339 0.011 22
0.22 0.13 392 5 8.11 0.619 9 0.005 8 83 0.077 7
4.01 0.73 588 31 68.85 0.893 778 0.00015 12 167 0.012 57
3.93 0.45 118 28 65 0.177 1092 0.0001 12 167 0.013 9
1.68 0.33 210 11 29.15 0.546 256 0.0004 12 167 0.022 8
1.32 0.26 300 6 18.06 0.324 137 0.00075 8 167 0.033 7
1.9 0.52 580 9 23.52 0.438 336 0.0005 8 167 0.026 15
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The integral scale Reynolds number is then given by

Re = UL

ν
, (12)

where U is the RMS velocity.

A. Forcing

Due to the presence of dissipative terms in the Navier-Stokes equations, energy must be
injected into the system for a statistically stationary state to be achieved. To ensure our results are
independent of the way this energy is injected, we have made use of two different forcing functions.
Indeed, we find the choice of forcing does not affect our results. The first of these functions is
defined as

f (k, t ) =
{

(ε/2E f )u(k, t ) if |k| ≈ k f ,

0 else,
(13)

where E f = E (k f ) is the energy in the forcing band and ε is the energy injection rate. More
explicitly, the forcing acts on the ring of modes satisfying k f − 1/2 < |k| � k f + 1/2. This forcing
has been widely used for studies of three-dimensional turbulence and allows the rate of energy
injection to be held constant in time.

The second forcing employed is a δ-correlated in time stochastic force with amplitude

famp =
⎧⎨
⎩

√
2ε
dt if |k| ≈ k f ,

0 else,
(14)

where dt is the simulation time step. This choice then ensures that 〈u · f 〉 = ε, i.e. on average
the energy injection is given by ε. This method of forcing is used commonly in simulations of
two-dimensional turbulence. Once again the forcing function is active only on modes which satisfy
k f − 1/2 < |k| � k f + 1/2.

B. Computation of the Lyapunov spectrum

In chaotic systems there exists a Lyapunov exponent for every degree of freedom. As such, it is
possible to define a set of such exponents, arranged in descending order, known as the Lyapunov
spectrum. This concept can be defined in more formal terms and a good account of this for the case
of fluid turbulence is given in Ref. [38]. As is typical in the literature [1], we take the KS entropy to
be given by the sum of positive Lyapunov exponents

hKS =
∑
λi>0

λi. (15)

Therefore, in each case we need to measure a number of exponents. Unfortunately, the method
to compute these exponents comes with a number of computational challenges. First, a priori we
do not know in advance the number of positive exponents. Second, each exponent requires the
simultaneous integration of another velocity field, and finally, many iterations are required to obtain
averaged values for the exponents. Consequently, computing the KS entropy for fully resolved
turbulent flows is computationally very expensive.

Here we breifly summarize the algorithm put forward by Benettin [45] for measuring multiple
Lyapunov exponents. We begin by evolving a reference velocity field, u0, until it reaches a
statistically steady state. We then make M copies of this field, labeled ui, i = 1 . . . M. A unique small
perturbation field is then applied to each copy. This perturbation field has a Gaussian distribution
with zero mean and a variance of size δ0, chosen such that the perturbation may be considered
infinitesimal. For each field we use the finite time Lyapunov exponent (FTLE) method [1] and
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measure the growth of the difference fields δi(t ) = ui − u0, rescaling the difference to its original
size at time intervals of 
t

ui(k,
t ) = u0(k,
t ) + ui(k,
t ) − u0(k,
t )

δ0
, (16)

such that each perturbation continues to grow in the correct direction. The FTLEs are then given by

γi(
t ) = 1


t
ln

( |δi(
t )|
δ0

)
, (17)

and the Lyapunov exponents λi are found by averaging over many iterations. Currently, this
algorithm simply measures the largest Lyapunov exponent M times, as this growth in this direction
of the phase space will dominate all others. To circumvent this issue, we orthogonalize the δi after
each measurement of the γi using the modifed Gram-Schmidt algorithm. For details of how this
algorithm is defined for DNS of HIT, see Refs. [24,46]. If an infinite number of iterations were
performed, then this algorithm would return exponents ordered such that λ1 > λ2 > · · · > λM . As
a result of a finite number of iterations, our spectra are not monotonically decreasing, however, the
ordering achieved is reasonable as it is in Refs. [25,27]. This ordering property allows us to be
confident we have found all positive exponents by choosing M large enough that a tail of negative
exponents persist after averaging. This orthogonalization step scales with M2 and thus becomes a
major bottleneck in these calculations. Additionally, we note that, as in Refs. [25,27], we perform
this procedure in the state space of the system, as opposed to in the tangent space as utilized
in Ref. [24]. By ensuring our perturbation field is small enough, these two methods should give
consistent results.

When using the stochastic forcing function, extra care must be taken in the implementation of
this algorithm. If a new random force is generated for each of the M copy fields, then the forcing acts
as an effective perturbation every time-step and destroys the exponential divergence of the fields.
Therefore, if a stochastic force is being used, then the random force should be generated only once
each time-step and then this force is applied to all fields.

C. Sampling errors

In the computation of the Lyapunov exponents using the algorithm described in the previous
section, an average must be performed to find the value of each exponent. The mathematical
definition of the Lyapunov exponent calls for an average over an infinite number of iterations of the
FTLE algorithm. Of course, in practice this cannot be done and only a finite number of iterations
are performed. As a consequence, sampling errors are introduced into the computed mean value of
each exponent.

Such errors are further complicated in the case of turbulent fluid flow by the fact that, depending
on the sampling frequency, the values obtained may be highly correlated. Typically, to avoid the
complications these correlations cause, samples are taken at larger time intervals. However, given
the massive numerical cost involved in the computation of many Lyapunov exponents, this is only
viable for very low resolution cases.

A number of methods for computing the sampling error of correlated data have been developed
for use in DNS [47,48]. They share a common feature in that they both make use of an extension
of the central limit theorem to weakly dependant variables; see Ref. [49] for details. We focus on
the method detailed in Ref. [48] and use it to find the standard deviation in our measurments of
the exponents, and thus the Kolmogorov-Sinai entropy. Importantly, this method lets us make use
of all the possibly correlated samples we have and as such is an efficient use of our computational
effort. For the case of the entropy, these errors are tabulated in Tables I, II, and III. Also listed are
the number of samples taken for each simulation.

In Fig. 1 we show a partial Lyapunov spectrum from a 5122 simulation. Here, it is clear that
the largest exponents take the longest time to converge, as was reported in Ref. [25]. For the lesser
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FIG. 1. Partial Lyapunov spectrum from 5122 simulation, highlighting that the error is concentrated in a
small number of the largest exponents.

exponents, their error bars are smaller than the points themselves. Given that the Kolmogorov-
Sinai entropy is determined by the sum of a large number of exponents, the influence of the largest
exponents reduced convergence is damped by the quick convergence of the remaining exponents.
As such, the largest relative errors are found in cases with very few positive exponents.

IV. RESULTS

A. Maximal Lyapunov exponent

As discussed in Sec. II, depending on the form of the energy spectrum in the direct entrophy
cascade region, there exist two possible scaling predictions for the maximal Lyapunov exponent,
λ1. The first of these predictions is valid if the energy spectrum takes the form E (k) ∼ k−3 and is
given by Eq. (1), notably, this prediction has no Re dependence and is determined solely by the
enstrophy dissipation rate, η. We note here that in our simulations, given the high computational
demands imposed by the computation of a large number of Lyapunov exponents, we only achieve
modest resolution. To illustrate this, in Fig. 2 we show the energy spectra from the highest resolution
simulation in our data-set. It is clear that the spectrum in the enstrophy cascade region is steeper than
k−3. This is not surprising given the resolution achieved, and has been observed in previous studies
[50,51]. In Fig. 3 we show λ1 against η and we find our data is well fit by a power law of the
form λ1 = αη1/3, with α = 0.42 ± 0.01. The calculation of the maximal exponent only requires the
simultaneous integration of two velocity fields and is much less resource intesive when compared to
the calculation of the entropy and attractor dimension. As such, by computing the maximal exponent
in separate simulations, the number of samples is far larger, Ns ≈ 5 000 in all cases, leading to small
error.

It was suggested by Kraichnan [36] that for the enstrophy flux to be constant in the direct cascade
inertial range, then there should be a logarithmic correction to the energy spectrum. This alters the
scaling prediction of Eq. (1) to that of Eq. (4) and introduces a dependence on Re. To test this we
plot in Fig. 4 the product λ1τ , which, if Eq. (1) is correct, should be constant for all Re, against
the Reynolds number. In doing so, we find λ1τ slowly increases with Re, with the data being well
fit by a power law of the form λ1τ = βReγ , where β = 0.16 ± 0.02 and γ = 0.16 ± 0.02. Due
to the difficulties in accurate measurement, we choose not to test the logarithmic scaling with Re
predicted in Eq. (4); however, Fig. 4 does demonstrate that the maximal exponent does have a
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FIG. 2. Energy spectrum from a 5122 simulation with k f = 7 and kmin = 1. Dashed line shows k−3 scaling.

weak dependence on the Reynolds number. This weak dependence is in line with the logarithmic
correction to the energy spectrum suggested by Kraichnan.

B. Kolmogorov-Sinai entropy

We turn now to the KS entropy for forced two-dimensional turbulence. Once again, in Sec. II we
presented two scaling predictions derived via dimensional arguments. The first Eq. (2) is derived for
the case where there are no logarithmic corrections to the energy spectrum, whilst Eq. (5) is valid
with these corrections. Both cases have a dependence on the enstrophy dissipation time and the
Reynolds number, with the corrected prediction introducing an additional logarithmic dependence
on Re. Due to the cost of computing the KS entropy scaling quickly with Re (see Ref. [27] for the

10−2

10−1

100

10−3 10−2 10−1 100 101

λ
1

η

FIG. 3. Plot of the enstrophy dissipation rate, η, against the largest Lyapunov exponent, λ1. Dashed line
shows the fit 0.42η1/3.
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FIG. 4. Plot of Re against the largest Lyapunov exponent multiplied by the enstrophy dissipation time
η−1/3. Dashed line shows a power-law fit with 0.16Re0.16.

three-dimensional case which is more severe but illustrative), our results likely will not be able to
quantify this logarithmic dependence, so we will focus on the prediction of Eq. (1).

Upon testing the prediction of Eq. (2) against our data we find there is no scaling behavior and
the value of hKSτ varies by orders of magnitude for the same value of Re. Within this data-set there
are a range of different values used for the forcing length scale k f , as well as three different physical
box side lengths. If we fix the box side length at 2π , then we find what has the appearance of three
separate close to parallel lines, one corresponding to each value of k f . This shows there is some form
of scaling with the integral scale Reynolds number, but that this is not the full picture. In Ref. [23]
the dimension of the attractor in two-dimensional HIT was found to be dependent on k f ; however,
the exact dependence was not investigated. As such, the fact that our results for the entropy also
show a k f dependence is not overly surprising, despite being at odds with Eq. (2).

To correct the prediction in Eq. (2) to account for this forcing scale dependence, we will consider
what was found in Ref. [24], where it was observed that the attractor dimension grew at the same
rate as the number of modes in the inverse energy cascade inertial range. Using this a reasonable
ansatz for the correction factor, C, is

C ∼
(

k f

kmin

)2

, (18)

where kmin is determined by the side length, x, of the box our fluid resides within using

kmin = 2π

x
. (19)

The typical choice in simulations is x = 2π restricting the allowed wave numbers to integer values.
By choosing x = π and x = π/2 we have kmin = 2 and kmin = 4, respectively. Since energy is
injected at k f , then a natural lower bound for the inverse cascade is kmin, and thus C has the desired
scaling behavior. We then consider a corrected scaling prediction for the KS entropy of the form

hKSτ

(
kmin

k f

)2

∼ Re. (20)

Using this new scaling prediction, our data is shown in Fig. 5. It can be seen that all points fall on a
straight line, thus indicating a power-law scaling. We find the data is well fit by a power law of the
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FIG. 5. Plot of Re against the Kolmogorov-Sinai entropy hKS scaled by the enstrophy dissipation timescale
and the ratio of k f to kmin, fit corresponds to 0.0018Re0.9. The values of (kmin, k f ) are varied and displayed as
(1,3) red (×), (1,5) red (�), (1,7) red (◦), (1,9) red (	), (1,11) red (∇), (2,4) blue (�), (2,6) blue (�), (4,8)
black (�), and (4,12) black (◦).

form hKSτ (kmin/k f )2 = aReb, with a = 0.0018 ± 0.0005 and b = 0.9 ± 0.03. There is a notable
spread in this data which we do not believe to be solely the result of sampling errors, which are
reasonably small in general. Instead, this spread is likely explained by the use of the correction
factor C defined in Eq. (18). This factor does not contain any information regarding the structure of
the underlying flow and is merely a ratio of length scales. However, without the use of such a term,
no scaling at all is found for simulations with differing k f and kmin values. It is likely a more flow
specific correction can be found, but we do not pursue that here.

We now turn our attention to the scaling prediction given in Eq. (7). It is interesting that this
prediction must also be corrected by C, or else the same issue of different scaling behaviors for each
value of k f and kmin appears once more. We show this in Fig. 6 in which we have nondimensionalized
the entropy using

√
ν/ε. The spread in the data here is more pronounced than for the simpler scaling

of Eq. (3); once more this is a combination of small sampling errors and the use of the correction
factor C, the effect may be exacerbated in this case by the logarithmic scale and small values on the
y axis.

Our data thus shows that the scaling of the Kolmogorov-Sinai entropy for two-dimensional
turbulence exhibits a dependence on both the forcing length scale and the system size. This is very
much at odds with the picture in three-dimensional turbulence, where we found the the scaling of
the entropy is very close to that predicted in the K41 theory, depending only on small scale features
of the flow [27]. This is perhaps best explained by considering the nature of the triadic interactions
in two-dimensional turbulence. In Ref. [52], it was shown that nonlocal triad interactions have an
important effect on both the energy and enstrophy inertial ranges. When viewed in physical space
this manifests itself in the appearance of long-lived coherent vortices, which then influence the small
scales. As such, the fact that in two dimensions the large scales have a direct effect on the chaotic
properties of the flow should not come as a surprise.

C. Attractor dimension

By computing a large enough subset of the Lyapunov spectrum, it is also possible to make an
estimate of the dimension of the attractor for forced two-dimensional HIT. To do so, we make use
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FIG. 6. Plot of the scaling prediction for the Kolmogorov-Sinai entropy given by Ruelle and Lieb. The
values of (kmin, k f ) are varied and displayed as (1,3) red (×), (1,5) red (�), (1,7) red (◦), (1,9) red (	), (1,11)
red (∇), (2,4) blue (�), (2,6) blue (�), (4,8) black (�), and (4,12) black (◦).

of the Kaplan-Yorke conjecture [53], which suggests the attractor dimension can be found using

dim(A) = j +
∑ j

i=0 λi

|λ j+1| , (21)

in which j is the index of the Lyapunov exponent such that

j∑
i=0

λi � 0, and
j+1∑
i=0

λi < 0. (22)

From this definition, it is clear that the computation of the attractor dimension will require more
exponents than needed for the Kolmogorov-Sinai entropy. This definition makes quantifying the
effect of the error in the Lyapunov exponents on the attractor dimension difficult. Any fluctuation in
values of the exponents will effect the value of j in a complex manner. As such, we do not include
the standard deviation of the attractor dimension in Table I, II, or III, but it is likely to be of the order
of the error in the Kolmogorov-Sinai entropy as both quantities are derived from the same data.

Naturally, the numerical computation of the attractor dimension comes at a severe computational
cost. However, as with the entropy, when compared to the three-dimensional case, the calculation for
the attractor dimension is more favorable and a reasonable measurement of the scaling behavior can
be made. The results of this measurement are displayed in Fig. 7 in which we have plotted against
Re the scaling prediction of Eq. (2) corrected by the scaling factor C described previously. Upon
doing so, we find the data is well fit by a power law of the form dim(A)(kmin/k f )2 = cRed with
c = 0.055 ± 0.02 and d = 0.78 ± 0.04. As with the entropy, we also find that when considering
the Ruelle-Lieb prediction of Eq. (8), the correction factor is once again necessary and this is
demonstrated in Fig. 8. Although the scatter is less in these figures, it is still present. This is again
a result of a combination of sampling error and the use of the corrective term C. Notably, it is clear
that data points with either low Re or higher kmin, which have the fewest positive exponents, show
the largest spread.

The attractor dimension gives a measure of the total number of active degrees of freedom in the
flow. In Ref. [24], the attractor dimension was found to grow with the width of the energy inertial
range. Our results are in agreement with this finding, although we also find a contribution from
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FIG. 7. Plot of Re against the attractor dimension, dim(A) scaled by the ratio of k f to kmin, fit corresponds
to 0.055Re0.78. The values of (kmin, k f ) are varied and displayed as (1,3) red (×), (1,5) red (�), (1,7) red (◦),
(1,9) red (	), (1,11) red (∇), (2,4) blue (�), (2,6) blue (�), (4,8) black (�), and (4,12) black (◦).

the enstrophy inertial range due to the dependence on the ratio of large to small scales in the flow
measured by Re.

D. Lyapunov spectrum

It is also of interest to investigate the shape of the Lyapunov spectrum, in particular, the
distribution of exponents about λ ≈ 0. It was suggested by Ruelle [38,54] that it may be possible
for the distribution of exponents to become singular about this point. Using the GOY shell model
[21,22] it was found that in both two and three dimensions the distribution of exponents did indeed
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FIG. 8. Plot of the attractor dimension scaling prediction given by Ruelle and Lieb. The values of (kmin, k f )
are varied and displayed as (1,3) red (×), (1,5) red (�), (1,7) red (◦), (1,9) red (	), (1,11) red (∇), (2,4) blue
(�), (2,6) blue (�), (4,8) black (�), and (4,12) black (◦).
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FIG. 9. Lyapunov spectra normalized by hKS and dim(A). The results of a number of simulations are shown
here to highlight the similarity property of the spectra.

become singular. However, it was later suggested that this divergence was caused by the numerical
discretization employed in these works [55].

In Fig. 9, we show the Lyapunov spectra from a number of our simulations scaled by both their
Kolmogorov-Sinai entropies and the attractor dimensions, such that the spectra collapse onto a
single curve. From this figure, it is clear there is no divergence around λ ≈ 0 in our simulations. This
is consistent with what was found in three-dimensional turbulence [25,27,56], although it should
be noted that in Ref. [56] a “kneelike” structure was found around λ ≈ 0, which is also seen in
simulations of Rayleigh-Bénard convection [57]. This structure does not, however, appear to be a
true divergence.

V. CONCLUSION

This work has been focused on the calculation of a number of standard measures of chaos in two-
dimensional forced incompressible HIT using pseudospectral DNS. A number of scaling predictions
for these quantities have been made in the literature and, using our numerical results, we have
tested a subset of them. It was found that the maximal exponent displays a weak dependence on
the Reynolds number of the flow, consistent with the logarithmic correction to the energy spectrum
suggested by Kraichnan. However, it was seen that for the Kolmogorov-Sinai entropy and attractor
dimension, the predictions made on dimensional arguments were not sufficient. Corrections relating
to the forcing length scale and system size were then found to be required. It is suggested that these
corrections are required due to nonlocal effects in two-dimensional turbulence as a result of coherent
vortices.

When comparing these results to three-dimensional turbulence, it is found that these chaotic
properties scale with Re far more slowly in two-dimensional turbulence. Futhermore, since these
chaotic properties depend on large-scale details of the flow in two dimensions, as opposed to only
on small scale features in three dimensions, they provide further evidence of nonuniversality [58] in
two-dimensional turbulence. Given the two-dimensional phenomenology seen in the atmospheres of
the Earth and Jupiter [29,30], this may have important implications for atmospheric predictability. In
reality, this two-dimensional phenomenology is not the entire story, as such systems are likely more
accurately described by thin layer turbulence [59,60]. In thin layer turbulence, it is found that there
are a number of critical points where the system transitions from purely three-dimensional behavior
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to coexisting two and three-dimensional phenomenology, and then from this state to purely two-
dimensional turbulence [59]. It is in fact not just thin layer systems in which this kind of behavior is
seen. Indeed, in systems undergoing rotation, as well as stratification and influence from an external
magnetic field, a similar transition from three-dimensional to two-dimensional behavior is seen
[61–63]. The predictability of such would be of interest to study and compare with the idealized
cases of pure HIT in two and three dimensions.

Such is the complexity of atmospheric systems, that even all of the variants discussed above only
begin to scratch the surface. As such, simplified models which approximate the true dynamics of the
atmosphere are often used. These models also exhibit sensitivity to initial conditions and, in some
cases, Lyapunov spectra have been measured [64]. In one such case in a coupled atmosphere-ocean
model [65], a large number of near zero Lyapunov exponents are found, suggesting a possible
divergence in the spectra. Whether this divergence is simply a feature of the simplified model or of
the true dynamics is an interesting question, however, given the computation cost of even the simple
case studied in this work, its answer is likely some way off.
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