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Motivated by specific data and accuracy requirements for building numerical databases
of turbulent flows, data compression using spatiotemporal subsampling and local resimu-
lation is proposed. Numerical resimulation experiments for decaying isotropic turbulence
based on subsampled data are undertaken. The results and error analyses are used to estab-
lish parameter choices for sufficiently accurate subsampling and subdomain resimulation.
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I. INTRODUCTION

In the field of computational fluid dynamics, the study of turbulent flows based on data generated
using direct numerical simulation (DNS) has occupied a prominent place in the literature over the
past several decades [1–5].

DNS provides spatial and temporal resolution down to the smallest and fastest eddies of a
turbulent flow. Therefore, the Reynolds number achievable by DNS is limited by computing power
and memory, and has been growing roughly at the rate expected from Moore’s law. The amount
of data generated by DNS is growing accordingly [6–10]. For instance, a simulation of turbulent
flow outputting four field variables (e.g., the three velocity components and pressure) on 20003

spatial grid points and integrated over, say, 5 × 104 time steps, will generate several Petabytes (PB)
of data. Researchers thus store only a few selected snapshots of the flow during the simulations,
and primarily rely on run-time analysis tools that are decided prior to the computation if time
resolved phenomena are to be studied. As a result, when new questions and concepts arise, massive
simulations must be performed over and over. Moreover, when storing snapshot data for later
analysis, the traditional means of sharing available data after DNS, e.g., [11], assumes that the
data are downloaded as flat files and consequently a user has to worry about formats and provide
the computational resources for analysis.

As a means to address these problems that challenge further growth of DNS and accessibility
of data, modern database technologies have begun to be applied to DNS-based turbulence research.
For instance, the Johns Hopkins Turbulence Database (JHTDB) [12–14] has been constructed and
has been in operation for about a decade, as an open public numerical laboratory. The system hosts
about 1/2 PB of DNS data including five space-time resolved data sets and several others with a
few snapshots available. Users have Web-service facilitated access to the data, among others using a
“virtual sensors” approach in which a user specifies the position and time at which data are requested
and the system returns properly interpolated field data. Other derived quantities such as gradients
[14] and fluid trajectories [15] are also available, typically delivered to within single-precision
machine accuracy. A hallmark of the system is the ability of users to access very small targeted
subsets of the data without having to download the entirety of the data. The system has been
successful at democratizing access to some of the world’s largest high-fidelity DNS of canonical
turbulent flows. JHTDB data have been used in over 160 peer-reviewed journal articles since its
inception, about 40 in 2019 alone.
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In recent years, the scale of DNS data has continued to grow further. The largest simulations now
generate data on about O(104) grid points in each of the three directions, so storing multiple time
steps to capture time evolution becomes very challenging, even in efficiently built databases. For
example, storing even only one large-scale turnover time of the 81923 isotropic turbulence data set
[6] would require storing about 80 PB. Over the next several years, it can be anticipated that even
larger-scale DNS will be performed, generating exabytes of data, far out of reach of anticipated
facilities and the approaches on which JHTDB is currently based.

It is therefore necessary to explore innovative tools for compressing simulation data for use in
conjunction with databases. Most of the general-purpose data compression algorithms are based on
analyzing the data representation, and can generally be classified as lossless or lossy. Lossless data
compression utilizes statistical redundancy [e.g. 16,17], while lossy data compression is to remove
unnecessary data, e.g., JPEG [18] and MP3 [19]. Lossless data compression tools are promising,
but for turbulence data where the flow’s small-scale structures contain nontrivial information at
each grid point the compression ratios can be expected to be somewhat limited. While we continue
current efforts along this direction and can expect further improvements, more aggressive tools will
be required for the very large data sets envisioned in the near future. Regarding lossy compression,
it is certainly appropriate for visualization and other applications where less fidelity is acceptable.
However, if one wishes, e.g., to capture accurate velocity gradients, lossy compression algorithms
in which the accuracy of primary variables is degraded, say, at the fourth decimal point, will already
lead to significant errors in gradients and will thus be insufficient for the purposes of turbulence
research.

It bears recalling that JHTDB enables users to receive interpolated data between spatial and
temporal grid points, using polynomial functions (Lagrange, spline, Hermite). Far more aggressive
data compression could be achieved if data could be stored more sparsely in both space and time.
However, when a user requests localized pieces of data that fall between coarsely stored positions
and/or times, one would need to revert to the dynamical equations (i.e., Navier-Stokes) to perform
a physics-based rather than a polynomial-based interpolation.

In this paper we explore and establish requirements for such a data compression method, named
“spatiotemporal subsampling and subdomain resimulation” (STSR). The method aims at enabling
users to recover data at close to machine accuracy (single-precision), based on very coarsely stored
data. While the method can greatly compress the amount of data to be stored, such savings have to be
balanced by the additional cost of processor (CPU or GPU) expense needed later on to accommodate
user queries.

Initial efforts attempting to reproduce DNS data using local resimulation (technical details to be
provided below) have shown a surprisingly narrow and stringent range of conditions under which
resimulation in a subdomain can generate data at the desired accuracy. That is to say, resimulation
that reproduces DNS at close to single-precision machine accuracy, the desired baseline accuracy
level, is more difficult to achieve than one may expect. Any small deviations from the conditions to
be developed can be shown to lead to significant errors. It will be observed that the errors do not arise
due to chaotic dynamics as we do not observe exponential divergence of state-space trajectories or
exponential growth of errors over time. The absence of chaotic divergence of dynamics may be due
to the strong constraints introduced by boundary conditions prescribed around closed subdomains,
i.e., that the ratio of subdomain size to viscous length scale is sufficiently small for synchronization
of chaos [20,21] to occur in the cases tested. Instead, errors are introduced due to small details of
numerical implementation, discretization, and order of operations that at first glance may appear
small and trivial but that can cause rather significant differences in results.

Therefore, the present paper aims to document the technical methodologies and tests performed
with considerable attention to detail. Section II introduces the basic idea of data compression for
turbulence databases using STSR. The desire to enable resimulations over localized spatial domains
precludes the use of spectral methods based on global basis functions. In this paper, we explore the
use of one of the most common discretization tools in computational fluid dynamics (CFD): second-
order finite differencing. The numerical scheme adopted in the present computations is described
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FIG. 1. Schematic of STSR. (a) Entire DNS domain containing a large (N3) number of grid points. (b) The
entire DNS domain is divided into small cube regions by the blue lines. (c) The storage scheme of the
spatiotemporal subsampling for resimulation. The data in the entire domain are stored at every Mt time step.
The data on the planes (blue lines) and on the outer planes (black lines) are stored at every time step. (d) When
data are required on grid points and time steps that are not stored in the database, a resimulation of a small
region which includes the queried grid point is performed to obtain the data.

in Sec. III. The methodology is tested in the decaying isotropic turbulence, a well-understood and
relatively simple flow described in Sec. III B. In Sec. IV, the influence of the boundary conditions
on reproducibility of the simulations, up to the desired level of machine precision, is examined.
The resimulation errors are studied in Sec. V in more detail, and their dependence on artificially
introduced noise in boundary conditions is established in order to better understand requirements
for reaching desired levels of accuracy, which are slightly relaxed from machine accuracy down
to relative errors at the order of ≈10−5 based on practical considerations. Section VI showcases
an application using the recommended parameters. Finally, conclusions are presented in Sec. VII.
The paper is limited to an account of the findings regarding methodology and requirements in
the context of a simple flow at moderate computational scale. Construction of a large turbulence
database system using the proposed STSR querying method is left as a future task.

II. SUBSAMPLING AND LOCAL RESIMULATION

In this section, the basic concept of the proposed STSR approach is explained, together with an
estimate of the data compression that can be achieved. Figure 1 is a two-dimensional (2D) schematic
of a DNS domain and the storage scheme of the data to enable later resimulation. The flow domain
inside the box in Fig. 1(a) represents the entire, or global, domain of the original simulation, e.g.,
from a simulation of isotropic turbulence, channel flow, boundary layer, etc. The global domain
consists of a large number of grid points; in three dimensions, say, N3 = NxNyNz. By enforcing
initial and boundary conditions on the global domain boundaries, the simulation is advanced forward
in time, at a time step δt . The objective is to store a limited amount of data at each time step
in order to enable resimulation of a subregion of the global domain. For this purpose, the global
domain is divided into small subvolumes marked by the blue boundaries [Fig. 1(b)] corresponding
to planes in a three-dimensional (3D) domain. For simplicity, the subvolumes here have the same
shape and dimensions but the discussion and general results to be presented can be considered
quite general. While the main simulation is performed, the state vector (i.e., velocity and pressure
fields for incompressible flow) is stored on these planes. If the size of an individual resimulation
subdomain is Ms, in three dimensions there will be 3(N/Ms) such planes, each of size N2.
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Moreover, in order to limit the CPU cost of resimulation, after a number of time steps, the state
vector data are stored at every grid point in the global domain. This occurs every Mt time steps, i.e.,
after a time equal to Mt δt [see Fig. 1(c)]. In the rest of this paper, tn = n δt represents the physical
time, while n represents the time step of the DNS. For a simulation lasting a total time T , the total
number of full 3D fields to be stored is thus equal to ≈ T/(Mtδt ).

After the direct simulation in the global domain has been completed and the subsampled data
stored, data at a specific spatial and temporal location (x, t) may be required, for example, to
examine local flow states in particularly interesting subregions of the flow or to track particles
through the flow. In general these locations do not correspond to stored data, and the data must be
evaluated by reevaluating the flow evolution in the host subvolume and time interval [Fig. 1(d)].

Similar to the global domain, the flow in the resimulation subdomain is governed by the
continuity and Navier-Stokes equations. The numerical solution requires the initial and boundary
conditions. Suppose there exists an integer n such that [t0 + nMtδDNS < t < t0 + (n + 1)MtδtDNS],
i.e., the time at which data are sought t lies between two instances where the entire global domain
was stored. The data stored at (t0 + nMtδDNS) can then be used as the initial condition, and the plane
data on the subdomain boundary that were stored at every time step between times (t0 + nMtδDNS)
and t provide the boundary conditions needed for resimulation. Unless otherwise stated, the original
simulation and its resimulation will adopt the same time step for forward integration of the
governing equations.

To fix notation, in the rest of this paper the “global domain” refers to the domain of the original
simulation [the black enclosing box in Fig. 1(d)]; a “subdomain” refers to the much smaller region
containing a queried point or sets of points [the yellow region in Fig. 1(d)]; and “resimulation”
refers to numerical solution of the governing equation in this subdomain using initial and boundary
conditions extracted during the original computation and stored in the STSR database.

With the proposed approach, only a small fraction of data is stored and the fields can be
reconstructed on demand from simulations within the small subregions. The data compression
(inverse) ratio c can be estimated as

c ≈ N3 + 3N2(N/Ms)(Mt − 1)

N3Mt
= 1

Mt

(
1 − 3

Ms

)
+ 3

Ms
, (1)

where N is the number of grid points in each direction in the entire domain.
Hence, if, for example, Ms = 128 is used, and we store only every Mt = 200 full 3D fields, the

total storage requirement is about 2.8% of the original data. Performing the resimulation in the
M3

s subdomain is certainly much faster than doing a resimulation in the original full 3D volume:
the CPU cost of resimulation is approximately Mt (12M3

s + M3
s log2 Ms). Depending on the ratio of

cost of storage and computation, as well as depending on patterns of data queries and usage, the
optimal values of Ms and Mt could vary significantly. For now we simply observe that the 81923

grid database with ≈104 time steps mentioned in the introduction requiring over 80 PB of storage
would require only about 2.2 PB if stored using subsampling with Ms = 128 and Mt = 200, and the
computational cost of the resimulation is only O(10−6) of the cost of the full simulation.

The approach becomes particularly attractive in studies where only small subregions of the flow
need to be interrogated later on. For example, in particle tracking studies, one only needs velocities
in the immediate vicinity of particles to be used for interpolation. In other studies, researchers may
want to zoom into areas where extreme events such as core of vortices or high dissipation take
place. Or, one may wish to obtain a one-dimensional (1D) spectrum along some representative
lines through the flow requiring data only along those lines rather than the entire domain. In such
scenarios, storing the entire data or having to perform resimulation in the entire domain would be
unnecessary and waste computational/storage resources.

One might consider that the present methodology is similar to data assimilation [20,22–24] or
“nudging” [25] to deal with incorporation of incomplete and/or imperfect (noisy) data. In nudging,
a penalization term is included in the Navier-Stokes equations, so that the resimulation result would
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be pulled towards the original (observation) data. In that case, deviation in the initial condition is
allowed, and the resimulation result will match the original data after several time steps, depending
on initial condition, penalization term, flow condition, etc. However, the number of time steps
needed for the resimulation to catch up to the original data is difficult to assess without using the
correct initial condition. Therefore, for the purpose of reusing the DNS data, providing the correct
initial condition becomes a necessary condition in this paper.

III. NUMERICAL SCHEME AND FLOW CONFIGURATION

Incompressible flow of a Newtonian fluid satisfies the continuity and Navier-Stokes equations
written here in skew-symmetric form:

∇ · u = 0, (2)

∂u
∂t

+ 1

2
[∇ · (u ⊗ u) + (u · ∇ )u] = −∇p + ν∇2u, (3)

where u = (u, v,w)T is the velocity vector, t is time, and ν is the fluid kinematic viscosity. The
three velocity components u, v, and w correspond to the x, y, and z directions, respectively, and p
is pressure divided by density. The advection term in Eq. (3) is expressed in the skew-symmetric
form which conserves kinetic energy and reduces aliasing errors [26]. However, other forms of the
advection term can also be adopted.

A. Temporal and spatial discretization

A δp-form prediction-correction algorithm [27–29] is used to decouple the velocity and pressure:

u∗ − u(n−1)

δt
= −Conv. + Diff. − G(p(n−1)), (4)

DGφ(n) = Du∗

δt
, (5)

u(n) = u∗ − δtGφ(n), (6)

p(n) = p(n−1) + φ(n), (7)

where δt is the time step, superscript (·)n denotes the nth step, Conv. is the discretized convective
term, Diff. is the discretized diffusive term, G is the discretized gradient operator, D is the
discretized divergence operator, and φ is the pressure difference between two time steps. The
advection term can be advanced in time explicitly using the explicit Euler or second-order Adams-
Bashforth (AB2) scheme; the viscous term can be advanced using the Euler, AB2, or implicit
Crank-Nicolson (CN) scheme.

A variant of the projection method referred to as the p form [30,31] ignores the pressure gradient
term in the prediction step (4), and therefore φ(n) in the Poisson equation (5) is an approximation
of the full pressure at the new time step, i.e., p(n) = φ(n). A notable difference between the herein
adopted δp and the p forms is in the boundary conditions: (i) the boundary condition of the elliptic
pressure equation is the pressure difference in the δp form, and the pressure in the p form; (ii) in
terms of the velocity, in order to ensure second-order accuracy, one should enforce u∗ = u� on the
boundary of the computational domain � in the δp form, but u∗ = u� + δt Gp(n−1)

� in the p form.
In the present paper, the δp form is adopted throughout. Although not presented here, use of the p
form does not affect our results or conclusions.

A staggered grid [32] is used in order to avoid checkerboard pressure oscillations. The
spatial derivatives are approximated with second-order central finite differences. In light of the
computational cost of the pressure equation (5), it is important to ensure that the resimulation does
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TABLE I. Statistics of decaying isotropic turbulence in the global domain (2563). The statistics are the
same to within four digits for the five different time steps used, except for the quoted CFL numbers which are
based on the case δt = 4 × 10−3.

Time rms velocity Dissipation Renumber Kolmogorov scale CFL

t u′ ε Rλ η u′δt/
x umaxδt/
x

0 0.6024 0.0770 113.24 0.01795 0.0982 0.4013
2 0.5185 0.0645 91.67 0.01876 0.0845 0.3699

not compromise any of the efficiency of the global solver. For instance, if the global domain is
triply periodic, Fourier transform can be adopted in all three dimensions and the solution of (5)
is inexpensive. The resimulation subdomain is, however, not periodic; we nonetheless adopt a fast
Poisson solver using discrete sine and cosine transforms [33]. Details on the pressure Poisson solver
used in resimulations are provided in Appendix A.

B. Flow configuration: Decaying isotropic turbulence

The flow adopted in this paper as an example application of STSR is decaying isotropic turbu-
lence in three dimensions. The global domain has dimensions 2π × 2π × 2π , and is discretized
uniformly using 2563 grid points (N = 256); the grid spacing is h = 
x = 0.02454. The domain is
periodic in all three spatial directions. Time integration of the viscous and convective terms starts
with one Euler step at the initial condition, and is subsequently evolved using AB2. A snapshot from
a 10243 isotropic turbulence data set [12] in JHTDB is used as the initial condition, subsampled
every four grid points. After a transient of a few hundred time steps, all velocity and pressure fields
are stored and designated as the initial condition (t = 0, n = 0) of our set of numerical experiments.

The kinematic viscosity is set to ν = 2 × 10−3 in order to provide appropriate resolution of the
viscous scale at the initial time. Five different time steps will be used, δt = {4, 2, 1, 0.5, 0.25} ×
10−3. Simulations are advanced from t = 0 to 2. Some basic statistics of the simulation of this
decaying isotropic turbulence are listed in Table I. These were verified to be accurate to within four
digits for the various choices of the time step; the reported CFL values are based on the largest
δt = 4 × 10−3. The kinetic energy and dissipation spectra are shown in Fig. 2. The dissipation
spectra are displayed in Kolmogorov units, showing that the simulation is very well resolved in
space (note that the spatial resolution is much better than than in the JHTDB original data even if
using fewer points since here we simulate a much lower Reynolds number with a much higher ν).

FIG. 2. Radial (a) kinetic energy and (b) dissipation spectra at the start of the simulation t = 0 and the end
of the simulation t = 2. The black straight line in (a) has a slope of −5/3.
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FIG. 3. (a) Contour plot of pressure distribution on a randomly selected slice in the 323 subdomain
resimulation at a randomly selected, representative, time step. The dash contour lines are the original
simulation, while the solid contour lines are the resimulation. (b) εϕ,∞ as a function of time t . (c) rms error
εϕ,rms as a function of time t . In the resimulation, the velocity boundary conditions are u and the pressure
boundary condition is Neumann type. (d) L∞ vorticity errors as a function of time. All plots are for the case
δt = 4 × 10−3.

While performing the simulation in the global domain, data are stored at every time step to be
used for later analysis and comparison with resimulation results. For the sample resimulations and
numerical experiments to be described in the next section, a subdomain consisting of 323 grid points
is selected (i.e., Ms = 32) located at a random location within the global domain. To compare results
from resimulation to the original global domain simulation, a normalized local error is defined
according to

εϕ (x, y, z, t ) = |ϕOS(x, y, z, t ) − ϕRS(x, y, z, t )|
rms(ϕOS)

, (8)

where ϕ could be any quantities, such as u, v, w, p, or vorticity components ωi; rms(·) is the
root-mean-square (rms) value within the subdomain; OS refers to the original simulation; and RS
refers to the resimulation. We focus on the L∞ errors evaluated as a function of time within the
subdomain, εϕ,∞(t ), which is a stringent upper bound on the resimulation errors.

IV. PRELIMINARY RESULTS

As a first test we consider a resimulation starting from the initial condition at t = 0. One can
use the velocity and pressure fields at n = 0 as the resimulation initial condition. The boundary
conditions at time step n are u(n)

rs,� = u(n)
os,� for velocity and (∂φ

(n)
RS/∂n)

�
= (∂φ

(n)
OS/∂n)

�
for pressure

increment. Above, n denotes the outward pointing normal unit vector to the boundary � (distinct
from time step n).

Using these initial and boundary conditions, the resimulation is integrated in time between t = 0
and t = 2 (i.e., for 500 time steps for the case δt = 4 × 10−3). Figure 3(a) shows a comparison
of the pressure distribution on a representative plane and time. While overall the agreement may
appear good, there are some noticeable differences especially near the lower left and upper right
boundaries.

More quantitatively, the maximum error (L∞) and rms error over the subdomain are shown as
functions of time in Figs. 3(b)–3(d). The error is large already at the first resimulation time step
and then remains at similar order of magnitude. The L∞ and rms errors of velocity and pressure are
of order 10−3, and vorticity errors are about one order of magnitude higher and could reach near
10%; these errors are too large compared to our stated desired level of accuracy. (We have found the
vorticity errors are typically one order of magnitude higher than velocity, so we only show vorticity
results towards the end when showing results of acceptable levels of accuracy.)

An interesting observation is that the errors do not grow exponentially, suggesting that the
observed errors are not caused by chaotic dynamics as one may have initially suspected based
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FIG. 4. Comparisons of (a) u∗, (b) v∗, and (c) ∇ · u∗ between the resimulation and the original simulation.
Blue (thin) and red (thick) symbols denote the quantities in resimulation match/mismatch to the original
simulation data.

on the nonlinear character of the governing equations. The reason might be that the subdomain
size is relatively small so that even if there are differences between the two fields the resimulation
dynamics are slaved to the original dynamics by the imposed boundary conditions.

Naturally we anticipate that if the subdomain was sufficiently large simply providing boundary
conditions would not guarantee that the two trajectories would not diverge eventually in time due
to chaotic dynamics in the domain interior. Regardless of the origin of the observed errors, we have
experimented with a number of parameters such as the time step and spatial resolution, and the basic
conclusion remains that the errors are significant and far from the desired accuracy for our database
application. Aiming to reduce these errors, we analyze the source of the discrepancy and identify
the appropriate choice of implementing initial and boundary conditions in order to greatly reduce
these errors.

A. Resimulation boundary conditions: u versus u∗

Consider the resimulation procedure from the initial condition n = 0 to the first time step n = 1.
At time step n = 0, the initial conditions are based on u(0)

OS and p(0)
OS of the global computation,

and therefore the resimulation matches that state exactly.
Since u(0)

RS and p(0)
RS match the global simulation, the convective, diffusive, and pressure gradient

terms inside the resimulation subdomain are correct.
Because the momentum equations are both integrated with an Euler method in the original

simulation and the resimulation to the first time step n = 1, u∗ inside the subdomain is the same as
in the original simulation [blue thin arrows in Figs. 4(a) and 4(b)]. Meanwhile, u(1)

OS on � are applied
as the velocity boundary conditions. However, the data on and outside the subdomain boundary are
also u∗ in the original simulation, since they lie within the global domain. Thus, the resimulation
does not match the original computation on and outside the subdomain boundary [red thick arrows
in Figs. 4(a) and 4(b)].

The source term of the Poisson equation is then computed, and the comparison with the original
simulation is shown in Fig. 4(c). Considering two grid points as examples, the source term at point
1 is calculated from surrounding values of u∗

RS, all of which are identical to the original simulation.
Thus the source term is correct (blue small dots). However, at point 2, the values of u∗ at left and v∗
above are different from the original simulation, thus the source term at this grid point differs from
the global solver (red big dots).

The Poisson equation with perturbed source term is solved and uRS and φRS therefore contain
errors.
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FIG. 5. Errors εϕ,∞ as a function of time (for the case δt = 4 × 10−3). In the resimulation, the velocity
boundary conditions are u∗, and the pressure boundary condition is (a) Neumann type and (b) Dirichlet type.

The above discussion shows that the choice of velocity boundary conditions leads to errors in the
resimulation outcome, as reported in Fig. 3. The remedy is to adopt u∗

OS as the velocity boundary
condition in the resimulation procedure.

Thus, switching procedures, now the values of u∗
OS at the boundaries of the subdomains were

stored during the global simulation. These were subsequently used for boundary conditions in
the local resimulation procedure. The resulting L∞ errors are reported in Fig. 5(a). Indeed the
resimulation velocities and pressure agree with the global computation results exactly, to within
machine precision.

References [34] and [35] showed that Dirichlet and Neumann pressure boundary conditions
are equivalent, to within a constant. We confirmed the same behavior for the resimulations
by performing a test with pressure Dirichlet boundary conditions φRS = φOS on the subdomain
boundary �. The resimulation errors, shown in Fig. 5(b), are still at machine accuracy, the same as
those in the resimulations with the pressure Neumann boundary conditions (note that in both cases
u∗

RS = u∗
OS is enforced on �).

B. Crank-Nicolson scheme

In simulations of nonhomogeneous flows such as wall-bounded turbulent flows, the viscous term
may limit the time step due to the stability restriction. Therefore, this term is often discretized in time
using the CN scheme in order to mitigate the stability restriction. Using CN, Eq. (4) is approximated
with the alternating direction implicit (ADI) method according to

(1 − Ax )(1 − Ay)(1 − Az )u∗ = δt
[−Conv. + 1

2νL(u(n−1)) − G(p(n−1))
] + u(n−1), (9)

where Ax = 1
2νδtLx, Ay = 1

2νδtLy, Az = 1
2νδtLz, Conv. = αcC(u(n−1)) + βcC(u(n−2)) is the inte-

grated advection term, L is the discretized Laplacian operator, and Lx, Ly, and Lz are the discretized
Laplacian operators in the x, y, and z directions. The procedure for solving the above equation
consists of evaluating u∗ in each of the three directions successively.

(i) Solve for u∗1 in the x direction, where (1 − Ax )u∗1 equals the right-hand side of Eq. (9) with
x boundary conditions.

(ii) Solve for u∗2 in the y direction, where (1 − Ay)u∗2 = u∗1 with y boundary conditions.
(iii) Solve for u∗ = u∗3 in the z direction, where (1 − Az )u∗3 = u∗2 with z boundary conditions.
In Sec. IV A, it was demonstrated that u∗ should be the velocity boundary condition if both the

original and resimulation algorithms are explicit Euler/AB2. When CN/ADI is adopted, however,
different intermediate velocity boundary conditions are required. Specifically, u∗1 should be applied
on the boundaries during the inversion of the x-diffusion term, u∗2 should be applied on the
boundaries during the solution in the y direction, and u∗ = u∗3 should be applied on the boundaries
in the final z direction.
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FIG. 6. Resimulation errors with different velocity boundary conditions, which are (a) u∗1, u∗2, and u∗3

in the corresponding directions; (b) u in all directions; and (c) u∗ = u∗3 in all directions. In all plots, 
t =
4 × 10−3. See Fig. 5 for legend.

We demonstrate this requirement by performing the original/global simulation and the resimu-
lation using the CN scheme as described above, and compare the results with cases in which some
of the specific directional requirements for u∗ are relaxed. The resimulation errors with the correct
boundary-condition implementation are shown in Fig. 6(a). The resimulation errors remain near
10−14 for all velocities and pressure. As comparison, the resimulations with either u or u∗ = u∗3

(the last step of the ADI) velocity boundary conditions are also performed. Both produce significant
error levels, between 10−3 and 10−2 [Figs. 6(b) and 6(c)].

V. ANALYSIS OF DOMINANT SOURCES OF ERRORS

In Sec. IV A, the correct velocity boundary conditions for resimulation were shown to be u∗. It
was shown that using u∗ on the boundaries based on surface data stored at every DNS time step, and
replicating the precise time advancement scheme at every time step between the original DNS and
the resimulation, yielded machine accuracy from resimulation. However, in practical applications of
STSR, one may wish to relax some of these requirements. For example, one may wish to store the
boundary values not at every time step and use moderate subsampling (e.g., snapshots of the 10243

isotropic turbulence data set in JHTDB are stored only every ten simulation steps, and temporal
polynomial interpolation is used to find data between stored time steps). Or, one may wish to use
a different time-advancement scheme during the initial time stepping of the resimulation. Each of
these approaches will induce some additional error and prevent the resimulation to reach machine
precision. In order to establish a clear understanding of these errors, it is useful to quantify the
amplification of errors by the resimulation procedures.

In order to lay the foundation for the subsequent discussions, we intentionally add noise to the
boundary-condition values u∗. We use zero-mean Gaussian white noise and define the contaminated
boundary condition on the boundary �, for example, for the u component, as

u∗
σ = u∗[1 + σN (0, 1)], (10)

where σ represents the rms of the added noise as multiple of the original signal. Moreover, N (0, 1)
is the standard normal distribution with zero mean and unit variance. Similar noise perturbations are
added to the two other components v∗ and w∗, and pressure increment φ, at all time steps n > 0.

Resimulation experiments are performed for four different levels of σ (10−4–10−10) using u∗
σ and

∂φσ /∂n as boundary conditions. The resimulation errors εu,∞ are shown in Fig. 7(a) as a function
of t with different noise levels σ ; only u errors are plotted for clarity. Although the noise levels are
different, the errors are qualitatively similar at different values of σ and only differ in magnitude.
Figure 7(b) shows the scaling of maxt [εϕ,∞] with σ . The results clearly show that resimulation
errors grow linearly with the magnitude of the added noise level in the boundary conditions.

It should be noted that, in the above analysis, the noise is added to the boundary conditions at
all time steps after the initial condition, i.e., n � 1, and the resimulation errors are proportional to
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FIG. 7. Resimulations with different levels of noises added to the velocity boundary conditions u∗.
(a) Resimulation errors εu,∞ against t . Only u errors are plotted for clarity. It has been checked that v, w,
and p errors behave similarly. (b) max[εϕ,∞(t > 0)] as a function of σ . The dashed line has a slope of 1. In
both plots, δt = 4 × 10−3.

the input errors. If the noise is added at the initial condition across the entire resimulation domain
at n = 0, similar results are obtained (not shown here).

A. Reexamination of u boundary-condition errors

We have seen that the resimulation errors are proportional to the input errors. We now revisit the
errors discussed in Sec. IV A, where we first naively applied u as the velocity boundary conditions,
to explain the observed errors based on the findings that errors are linearly proportional to boundary-
condition errors.

From Eq. (6), one can easily show that the difference between u(n) and u∗ is second order in time:

u(n) − u∗ = −δt∇φ(n) = −δt∇(p(n) − p(n−1)) ∼ −(δt )2 ∇
(

∂ p

∂t

)
. (11)

Based on the results in Fig. 7, one would then expect that applying u as boundary conditions in
the resimulation would lead to second-order errors in δt . This expectation was tested by performing
the global and resimulations with different values of δt and prescribing u as the velocity boundary
condition in the resimulations. The resulting resimulation errors are plotted in Figs. 8(a) and 8(b).
As in Fig. 7(a), εϕ,∞ behave qualitatively similar for different values of δt . The maximum errors,
maxt [εϕ,∞], are reported in Fig. 8(c). Surprisingly, the pressure errors are only first order in δt , while
the velocity errors are second order, as expected. In addition, we find that the pressure errors recover
second-order accuracy at n > 1 [Fig. 8(d)]. In fact, Figs. 8(c) and 8(d) show that the maximum
pressure errors are first order in δt for n � 1, but second order for n > 1. This observation suggests
that the pressure errors are of first order at n = 1 but second order afterwards. The inset of Fig. 8(b)
shows the pressure errors near n = 0, while Fig. 9 shows the u and p errors along a line in the center
of the subdomain.

A brief explanation follows: assume the initial field of the resimulation matches the original
global computation. In the first time step, if u(1)

OS is used as the velocity boundary condition, i.e.,
u∗

� = u(1)
OS, the subdomain now contains O(δt2) errors at the boundaries:

ε(u∗) =
{

u(1) − u∗ = (δt )2 ∂
∂x ( ∂ p

∂t )|n=1 = δt2ζn=1 on the boundaries
0 inside the subdomain

, (12)
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FIG. 8. Resimulations with u as the velocity boundary conditions using different time steps. (a) u errors
εu,∞ as a function of time, t . (b) Pressure errors εp,∞ as a function of time t . The inset is a zoom near t = 0. In
(a) and (b), lines from top to bottom represent simulations with δt = 4 × 10−3, 2 × 10−3, 1 × 10−3, 5 × 10−4,
and 2.5 × 10−4, respectively. (c) max[εϕ,∞(n � 1)] as a function of δt . (d) max[εϕ,∞(n > 1)] as a function of
δt . In (c) and (d), the dashed line has a slope of 1 and the dash-dotted line has a slope of 2.

where ζ = ∂
∂x ( ∂ p

∂t ). From the right-hand side of Eq. (5) and Fig. 4, the source term of the Poisson
equation will therefore have O(δt ) errors due to the errors at the subdomain boundaries:

DGε(φ(1) ) = Dε(u∗)

δt
=

{
δt2ζn=1/hδt = δtζn=1/h on the boundaries
0 inside the subdomain

, (13)

FIG. 9. Relative errors of (a) u and (b) p along a line in the center of the subdomain at the first (solid) and
second (dash-dotted) time step in the δt = 4 × 10−3 case.
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Even though the nonzero source terms only exist at the boundary nodes in Eq. (13), the errors in
φ contaminate the entire subdomain due to the ellipticity of the Poisson operator. Thus φ errors, as
well as p errors, are hδtζn=1 = O(δt ) at n = 1. It is important to note here that ε(φ(1) ) is linearly
distributed in the subdomain [can be verified analytically to be a solution of Eq. (13), or refer to
Fig. 9(b)]. As a result, the gradient of ε(φ(1) ) is uniform in the correction step, leading to a uniform
δt2ζn=1 error in the velocity within the subdomain:

ε(u1) = ε(u∗) − δtGε(φ1) = δt2ζn=1 = O(δt2). (14)

At the second time step n = 2, u∗ have uniform O(δt2) errors both inside the subdomain and
on the boundaries: the errors inside the subdomain, δt2ζn=1, come from u(1) (see above), while the
errors on the boundaries, δt2ζn=2, come from the new velocity boundary conditions. The leading
O(δt2) errors of u∗ are canceled out during the calculation of the divergence of u∗,

Dε(u∗) =
{
δt2ζn=2 − δt2ζn=1 = δt3 ∂ζ

∂t |n=1 on the boundaries
δt2ζn=1 − δt2ζn=1 = O(δt3) inside the subdomain

, (15)

leading to second-order errors in the source term of the Poisson equation, also in the pressure field
at n = 2. In addition, the velocity errors remain at second order:

ε(u(2) ) = ε(u∗) − δtGε(φ(2) ) = O(δt2) − δtO(δt2) = O(δt2). (16)

The preceding analysis thus demonstrates that the observed errors when using u instead of u∗
as boundary conditions for resimulation scale in expected ways with the size of time step. If one
wanted to use u instead of u∗ for resimulation, however, the required time steps would be too small
to be practical for purposes of the STSR.

B. Errors from mismatch in temporal discretization

The above results all assumed that the resimulation starts from an Euler scheme, same as
the original computation which at n = 0 also began using an Euler step. This ensures that the
resimulation could calculate the intermediate velocity inside the subdomain correctly as seen
in Fig. 4, and reproduce the original simulation data precisely, when using the u∗

OS boundary
conditions.

However, in applications of STSR, the resimulation will typically start at any of the stored
original simulation time steps, i.e., when n equals any integer multiple of Mtδt . Recall that the
original simulation used AB2 time stepping at those times, not Euler. As a result, for the resimulation
to reproduce the original computation, it must adopt an AB2 scheme from its start. However, this
requirement can only be met if two consecutive time steps are stored to be used as initial condition.
Otherwise, with a single field, the resimulation must adopt a first Euler step and will therefore
deviate from the original AB2-based computation.

In order to demonstrate the errors incurred by an initial Euler step, we perform the following
experiment: the data on the entire domain are stored at t = 1, meaning the initial condition for the
resimulation is now uOS and pOS at t = 1. The resimulation starts there with a single Euler scheme
and then continues with AB2.

At the first time step after the initial condition, the Euler scheme will introduce local truncation
errors of O(δt2) into the resimulation. The resimulation errors are shown in Fig. 10. Similar to the
case which uses u as the velocity boundary condition (Sec. V A), the p errors are first order in δt at
the first time step, but second order afterwards. On the other hand, velocity errors are always second
order.

In addition, we considered another case to explore errors incurred if the time stepping scheme
used in the resimulation is always different from that in the original one. We performed resimulation
with the Euler scheme from t = 1 and for all time steps, rather than for the first step only. In this case,
the Euler scheme has global errors of O(δt ) compared to AB2. The errors are shown in Fig. 11. The
u errors increase over t . This is due to the cumulative effect of the local truncation errors committed
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FIG. 10. Resimulation error evolution when using an Euler scheme at the first time step and then continuing
with AB2 (1 � t � 2). The original simulation used the AB2 scheme. (a) u error εu,∞ against t . (b) p error εp,∞
against t . In (a) and (b), lines from top to bottom represent simulations with δt = {4, 2, 1, 0.5, 0.25} × 10−3,
respectively. (c) εϕ,∞ against δt at the first time step. (d) max[εϕ,∞] against δt after the first time step. In (c) and
(d), the dashed line has a slope of 1 and the dash-dotted line has a slope of 2.

in each step from the Euler scheme. As a result, the velocity errors grow from second order to first
order [see Figs. 11(c) and 11(d)]. On the other hand, the p errors are already first order at the first
time step, and retain that scaling, consistent with Euler’s global truncation errors O(δt ).

C. Errors from temporal substepping

In the previous section, it was shown that the resimulation has O(δt2) errors if started with an
Euler scheme at an arbitrary time. These errors are too large for reproducing a DNS database using
realistic values of δt . For example, when δt = 4 × 10−3, even if we discard the results at the first
time step, the relative errors between the original and resimulation are approximately 10−3–10−2

in subsequent time steps. Using an initial Euler step in the resimulation compared to AB2 in the
original computation results in an initial error that persists in time—consistent with the behavior
when artificial errors were included in the initial conditions. Although one could store an extra
snapshot so that the resimulation starts with AB2 and obtain error-free data, this approach would
appreciably increase the storage requirements.

Rather than storing two time steps, we examine a different approach that does not increase the
required storage but only increases CPU cost during resimulation: temporal substepping.

This idea aims to minimize the error between the original single AB2 step and many smaller
steps the first of which is Euler followed by AB2.

Consider integration from t to t + δt . The analytic integration could be approximated by an AB2
scheme or an Euler scheme both with a time step size δt . We have already seen in the previous
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FIG. 11. Resimulations using and Euler time advancement throughout (1 � t � 2). The original simulation
always uses the AB2 scheme. (a) u error, εu,∞, against t . (b) p error, εp,∞, against t . In (a) and (b), lines from
top to bottom represent simulations with δt = {4, 2, 1, 0.5, 0.25} × 10−3, respectively. (c) εϕ,∞ against δt at
the first time step. (d) max[εϕ,∞] against δt after the first time step. In (c) and (d), the dashed line has a slope
of 1 and the dash-dotted line has a slope of 2.

section that the differences between AB2 and Euler schemes lead to resimulation errors. Usually,
an AB2 scheme produces smaller errors than Euler compared with analytic (true) values. On the
other hand, the time step from t to t + δt could also be divided into, say, k subtime steps: the size of
each subtime step is thus δt/k [see Fig. 12 for an example with k = 4]. Integration from t to t + δt
would then be computed using Euler in the first subtime step, then AB2 in the remaining (k − 1)
subtime steps. The numerical integration results will approach the true value with increasing number
of substeps k. The single full-time-step Euler integration is the special case with k = 1. Thus, one
could expect that the errors between the single full-time-step AB2 integration and the integration
with temporal substepping would decrease first, then increase, and finally reach an asymptotic value
as the number of time substeps k increases: the asymptotic value is the errors of the AB2 scheme
itself. Ideally, there will be a k with which the resimulation errors are minimized, even though this
optimized k, if it exists, would be different from one simulation to another.

FIG. 12. Schematic of temporal substepping with four subtime steps.
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FIG. 13. (a) The L∞ relative errors compared with the reference resimulation (k = 1000). The symbols
represent the resimulations with subtime steps, while the lines represent the original simulation with the AB2
scheme. The colors of the horizontal lines represent the same variables as the symbols. (b) Resimulation errors
compared with the original simulation data, εϕ,∞. In both plots, the dash-dotted line has a slope of 2.

Beyond t + δt , the resimulation can proceed with AB2 using the original time step δt . For
example, the solution at t + 2δt can be computed from information at t and t + δt ; similarly the
solution at t + 3δt can use the information at t + δt and t + 2δt and so on.

The boundary conditions on � at the subtime steps can be approximated from temporal
interpolation of u∗

OS from the original simulation data. For instance, in the example below, the
boundary conditions between t and t + δt are obtained by applying the piecewise cubic Hermite
interpolating polynomial on stored boundary conditions (plane data) at t − δt , t , t + δt , and t + 2δt .

For demonstration, we perform a resimulation of the original computation with δt = 4 × 10−3,
starting from t = 1 and advancing the simulation until t = 2. Resimulations with different numbers
of temporal substeps k, as well as the original AB2 scheme, are compared. Recall that k = 1
is equivalent to the resimulation performing the entire first step with the Euler scheme. In this
example, the results from a resimulation with k = 1000 subtime steps are used as the reference data
to approximate the “true, exact” values which are unknown. We discard the first few δt to avoid
including the pressure jump as seen in the previous examples.

Figure 13(a) shows the maximum relative errors compared with the reference data for 1 < t < 2.
The symbols denote the errors between the resimulation and the reference data, which decrease as
k increases. In fact, the errors are proportional to k−2, or the square of the size of the time substep
(δt/k)2, since the temporal scheme is AB2 in the resimulation. The horizontal lines represent the
errors between the original AB2 simulation and the reference data. The errors of the AB2 scheme
itself are about 10−5–10−4. Also from Fig. 13(a), it is clear that the errors between the resimulations
(symbols) and the original DNS (lines) decrease and then increase as k increases. However, it should
be noted that the differences between the symbols and lines do not equal to the actual errors between
the resimulations and the original DNS, εϕ,∞.

The resimulation errors εϕ,∞, shown in Fig. 13(b), decrease at a rate of second order in k before
about k = 6, and then become nearly constant. Although an optimal k is not observed, the drop of
the errors is about two orders of magnitude in the current example. The asymptotic values of εϕ,∞
are also the AB2 errors shown in Fig. 13(a). This example shows that the resimulation errors could
decrease by two orders of magnitude with only ten additional time substeps within the first δt from
the initial condition, and the minimum errors are bound by those of the AB2 integration scheme in
the original simulation.
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FIG. 14. (a) The interpolation errors of boundary conditions. (b) εϕ,∞ with interpolated boundary condi-
tions. The resimulation is from t = 1 to 2, but only t = [1, 1.2] is plotted here to more clearly display the
oscillations of the errors. The resimulation starts with the AB2 scheme using an extra snapshot provided. The
time step size is δt = 2 × 10−3.

D. Temporal subsampling for the boundary conditions

In all previous examples, the resimulations adopted boundary-condition data that were stored
at every time step during the original DNS. This may not be necessary or feasible. As mentioned
before, the snapshots of the 10243 isotropic turbulence data set in JHTDB are stored only every ten
simulation steps. When data are queried between the two stored time steps, they are obtained with
temporal interpolation and the errors are approximately 10−6 (we could not determine whether the
interpolation errors are lower than 10−6, because the data on JHTDB are stored in single precision).
Here we examine the impact of temporal interpolation of temporally subsampled boundary data for
resimulation.

We have seen that the resimulation errors are proportional to the errors in the boundary
conditions. Thus, if the boundary conditions are stored every few (Mt,bc) time steps and temporal
interpolation is used during resimulation, the errors in the resimulation will be directly proportional
to the interpolation errors. Figure 14 shows an example: the time step of the simulation is δt =
2 × 10−3. The boundary data are stored at every Mt,bc = 5 time steps, actually close to the time
step requirement based on CFL (based on maximum velocity) equaling to unity. Cubic spline
interpolation with three points before and after the query point is used for temporal interpolation.
The L∞ relative errors of the interpolated boundary-condition fields on the � planes are shown
in Fig. 14(a). The oscillations of the errors are apparent, vanishing at each of the 5δt time
instants in which boundary data are known exactly. The resimulation starts at t = 1 using the
AB2 scheme with an extra snapshot provided, and runs until t = 2. As a result, no other errors
are introduced in the resimulation, except those due to the temporal interpolation of the boundary
conditions. The maximum interpolation errors over time for {u, v,w, p} are {1.47, 1.54, 1.64,
9.66}×10−5 [Fig. 14(a)]. The resimulation errors εϕ,∞ [Fig. 14(b)] for {u, v,w, p} are {2.66, 2.08,
2.30, 24.2}×10−5: all are only slightly higher than the interpolation errors. The oscillations of the
resimulation errors are caused by the oscillatory errors of the temporal interpolation of the boundary
conditions.

VI. SUMMARY: RECOMMENDED CHOICES FOR STSR

The previous section has documented separately errors to be expected from various parameter
choices for STSR. Here we now combine the various choices that may be expected in an actual
implementation of STSR: we use u∗ on the boundaries stored at every Mt,bc = 5 DNS time steps,
use k = 10 for the initial temporal subsampling during the first time step of resimulation, use cubic
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FIG. 15. (a) Contour plot of u on a randomly selected slice. (b) Contour plot of z-component vorticity on
a randomly selected slice. In (a) and (b), color contours are the original simulation, while the black dashed
contour lines are the resimulation. (c) L∞ errors of u- and z- component vorticity.

polynomial temporal interpolation of the stored u∗ and p boundary values to interpolate to the
resimulation time step δt , and integrate between t = 1 and 2.

Figure 15 compares two fields at t = 2 from the resimulation to the original simulation: (a) u
velocity and (b) z-component vorticity ωz (computed using centered finite differencing). The contour
lines of resimulation fields and the original ones are on top of each other.

Figure 15(c) shows the corresponding evolution of the L∞ errors. The vorticity error is about
one order of magnitude higher than the velocity error and is about 10−4. This level of difference
between resimulation and original DNS is acceptable and falls within the desired guidelines.

VII. CONCLUSIONS

In the present paper, we propose an idea of data compression for numerical simulation results
of incompressible fluid flow. The entire simulation domain of the original simulation is divided
into multiple small subregions by planes. The data in the entire domain are stored, say, at every
few hundred or thousand time steps, while data on the dividing planes are stored at every time
step, or subsampled every few time steps. Once data at an arbitrary position and time are needed, a
resimulation of the small cube region (subdomain) which includes that point is performed. The data
stored in the entire domain are used as the initial condition, while the planar data surrounding the
subdomain are used as the boundary conditions.

It is found that if the numerical scheme in the resimulation matches the original simulation
exactly the resimulation will produce error-free results. On the other hand, any mismatch between
the resimulation and the original one can produce significant errors, exceeding the minimum error
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levels one would like to enforce for a database that contains spatially and temporally subsampled
data.

For example, it was found that resimulation errors are too high when using velocity and pressure
differences (or pressure) for the boundary condition. It was shown that the correct velocity boundary
conditions for the resimulation should be the intermediate velocity after the projection step: this is
because the boundaries of the subdomain are still the internal part of the entire domain of the original
simulation.

Another example is that the resimulation should use the same time integration scheme as the
original simulation. This poses a challenge if only one snapshot of the initial field is provided: the
resimulation must start with an Euler scheme while the original simulation has been advanced with
an AB2 scheme. The challenge can be resolved by storing extra snapshots so that the resimulation
could start with the AB2 scheme as well, or could be improved using Euler-AB2 integration with
several subtime steps to approximate the first AB2 integration in the original simulation. We have
shown that the latter approach saves storage space, and can also reduce the resimulation errors by
two orders of magnitude with only ten subtime steps added in the first original time step.

The findings also imply that if the original simulation contains source terms in the Navier-Stokes
equations, such as in forced isotropic flow, these source terms must also be recorded together with
the original simulation and included in the resimulation.

Tests using boundary data with added noise show that resimulation errors remain linearly
proportional to the errors in the boundary conditions. This observation helps explain several trends
in resimulation errors. Also, it provides a guideline about how much temporal subsampling of the
boundary data may be used. The resulting errors in resimulation will be proportional to the errors
caused by temporal interpolation on the boundary data. Experiment shows that the resimulation
error is similar to the interpolation errors of the boundary conditions. Thus, in a real application,
one could carefully control the interval of two stored plane data and achieve further compression of
the simulation data.

A sample application combining all of the recommended subsampling parameters and resimu-
lation strategies shows relative maximum error in velocity on the order of 10−5 to 10−4, which is
acceptable and leads to errors of less than 0.1% in velocity gradients. These levels are acceptable
for applications of building numerical turbulence databases like JHTDB. It is worth reiterating
that the errors in the numerical experiments performed here did not reveal exponential growth in
time, at least not over the tested time horizons. From the viewpoint of data assimilation [20,22–
24], synchronization of chaos [21], and nudging [25] of Navier-Stokes turbulence, the present
results have implications on the effectiveness of time-evolving boundary conditions to constrain and
effectively synchronize or nudge the dynamics. In prior work [20] it was shown that providing the
correct large-scale Navier-Stokes dynamics at all wave numbers down to ≈0.2kη (i.e., corresponding
to grid spacing of ≈15η) leads to eventual slaving (synchronization) of the smaller scales, while
coarser truncation leads to chaotic divergence of trajectories at the small scales (similar results were
obtained later in [21]). Here we show something different: that domains of significantly larger size
(30η)3 can still remain slaved to the dynamics at all scales provided the data at the boundaries
contain scales down to the smallest viscous scales (DNS resolution). A more systematic analysis,
such as testing how large the resimulation subdomain can be made before the boundary information
is no longer able to synchronize the dynamics in the core of the subdomain, is beyond the scope of
the present paper.

The subsampling and local resimulation technique described in this paper could also be applied
on unstructured meshes, as long as the correct information is stored during the original simulation
and the resimulation uses exactly the same method as the original simulation, but the compression
ratio will be grid-topology dependent. If a spectral method is used in the original simulation (such
as in several of the existing JHTDB data sets), using local resimulation with, e.g., finite differencing
will lead to significant errors. If the spectral method is used only in one or two directions, like
channel flow, good accuracy can be achieved if the resimulation domain consists of all 1D “pencils”
or 2D “slabs.” However, if the spectral method is used in all three directions, the present technique
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cannot reproduce error-free data unless the resimulation is performed on the entire (large) domain,
which is expected to be prohibitive.

We remarkthatalternative resimulation methods, e.g., based on machine learning tools instead of
grid-based CFD methods, could be considered. For instance, one could apply physics informed
neural network methods [36] to train an artificial neural network constrained by Navier-Stokes
equations to predict field data at desired points and time using similar types of initial and bounding
surface data as used in the present method as inputs (see also [37] for a recent example). The
present results documenting errors to be expected from Navier-Stokes based resimulation can serve
as a useful reference or benchmark to which to compare such alternative methodologies.

Finally, although this paper is focused on turbulence in incompressible flows, extensions of
the basic idea and methodological requirements to other fields of computational physics appear
possible. Also, other compression tools can be applied on top of the present technique. For example,
one can use wavelet methods [38] to further compress the planar and volumetric data.
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APPENDIX: FAST POISSON SOLVER FOR RESIMULATION

In this Appendix, details about a spectral fast Poisson solver for Eq. (5) used in resimulations are
described. Since the resimulation subdomain is in general not periodic, a fast Poisson solver using
discrete sine and cosine transforms [33] is implemented.

Consider a one-dimension Poisson equation,

∇2ψ = b, (A1)

on a uniform grid xi = ih (i = 1, . . . , N ), where h = 
x is the constant grid spacing. The Poisson
equation discretized with second-order central finite differences is

ψi−1 − 2ψi + ψi+1

h2
= bi, i = 1, . . . , m, (A2)

and can be represented in Fourier space as

λ jψ̂ j = b̂ j, j = 1, . . . , N, (A3)

where λ = −k′2 is the eigenvalue and k′ is the modified wave number. Thus, the Poisson equation
can be solved in three steps: (i) calculate b̂ j from the forward the Fourier, sine, or cosine transform
of b; (ii) find ψ̂ j = b̂ j/λ j from Eq. (A3); and (iii) calculate ψ from the inverse transform of ψ̂ j .
The transforms used in (i) and (iii) and the eigenvalues λ j depend on the boundary conditions and
are listed in Tables II and III. In Table II, “DFT” refers to the discrete Fourier transform, “DST-II”

TABLE II. The transforms used in steps 1 and 3 in the fast Poisson solver.

Boundary conditions Forward Backward

Periodic (x0 = xm, xm+1 = x1) DFT Inverse of DFT
Dirichlet on cell faces
(x1 + x0 = 0, xm+1 + xm = 0) DST-II Inverse of DST-II
Neumann on cell faces
(x1 − x0 = 0, xm+1 − xm = 0) DCT-II Inverse of DCT-II
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TABLE III. The eigenvalues used in step 2 in the fast Poisson solver.

Boundary conditions Eigenvalues

Periodic (x0 = xn, xm+1 = x1) λk = − 4
h2 sin2 (k−1)π

m
Dirichlet on cell faces
(x1 + x0 = 0, xm+1 + xm = 0) λk = − 4

h2 sin2 kπ

2m
Neumann on cell faces
(x1 − x0 = 0, xm+1 − xm = 0) λk = − 4

h2 sin2 (k−1)π
2m

refers to type-II discrete sine transform, and “DCT-II” refers to type-II discrete cosine transform.
For nonhomogeneous boundary conditions, b1 and bn can be modified in order to absorb the values
at the boundaries.

When λ1 = 0, an additional equation is required; e.g., with the periodic or Neumann boundary
conditions in all directions one could simply set ψ̂1 = 0 leading to a zero-mean solution. It should
also be noted that this algorithm gives the least-square solution for the discretized Poisson equation
if the compatibility condition

∑
bi = 0 is not satisfied.

The discrete Fourier, sine, and cosine transforms are included in various libraries, including
FFTW and FFTPACK. If a DST-II or DCT-II is not implemented, e.g., in the Intel Math Kernel
Library (MKL), it can be computed via a DCT-III combined with O(2n) pre- and postprocessing.

Extension of the algorithm to three dimensions is straightforward: (i) calculate b̂ j1 j2 j3 from the
forward transform of b; (ii) find ψ̂ j1 j2 j3 = b̂ j1 j2 j3/λ j1 j2 j3 , where λ j1 j2 j3 = λ j1 + λ j2 + λ j3 ; and (iii)
calculate ψ from the backward transform of ψ̂ j1 j2 j3 .

If the grid is nonuniform in only one direction, e.g., in channel or boundary-layer flows, the
spectral approach is adopted in all dimensions where the grid is uniform, and a tridiagonal solver is
adopted in the direction of grid stretching (see Moin [39, Sec. 6.2.1] for an example). In fact, solving
a tridiagonal linear system is faster than Fourier transforms, since the former has a computational
cost O(N ), which is less than that of fast Fourier transform, O(N log N ).

The current fast Poisson solver is faster in time and saves the memory compared with a Poisson
solver implementing a sparse matrix solver. Table IV compares the time spent in solving the discrete
Poisson equation using sparse matrix lower-upper (LU) decomposition, FFT, and DST/DCT. When
the grid is composed of 1283 points, the LU decomposition requires extensive memory and in our
tests using limited resources (as one would like to use during resimulation) it runs out of memory.
The solution using DST/DCT requires approximately twice the time of the DFT, and only one-
dimensional DST/DCT is available in the majority of numerical libraries. Nevertheless, DST/DCT

TABLE IV. Time spent in solving the discrete Poisson equation with a sparse matrix solver, FFT or
DST/DCT. The timing has a resolution of 10−3 s, and is averaged over 100 runs. In the LU decomposition
method, only the solution phase (i.e., forward and backward substitutions after the LU decomposition) is timed.
The hardware is Intel Core i5-7500 (four Cores, 3.4 GHz) and 16-GB memory. The code uses an Intel FORTRAN

compiler, Intel MKL, and OPENMP in Windows. The parallelization of the sparse matrix solver and the DFT
is implemented in Intel MKL, while that of DST/DCT is implemented by authors using OPENMP. In the 1283

case, the LU decomposition runs out of memory.

Grid points LU decomposition DFT DST/DCT

323 0.0082 s <10−3 s <10−3 s
483 0.0357 s <10−3 s 0.0016 s
643 0.1137 s 0.0019 s 0.0035 s
963 0.5451 s 0.0052 s 0.0101 s
1283 N/A 0.0109 s 0.0234 s
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outperforms the direct solver based on the sparse matrix LU decomposition, and its scalability is
superior.
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