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Interscale energy transfers at the vicinity of the turbulent/nonturbulent interface are from
small to large scales in directions close to the interface’s tangent plane where motions
are predominantly stretching, but from large to small scales in the other directions where
motions are predominantly compressive and significantly correlated with square angular
momentum. An important role in this predominance is played by the extreme compressive
motions which can be significantly more likely than extreme stretching motions even where
motions are on average stretching. The most intense interscale transfer rates and dissipation
occur when the interface is as far as possible from the wake centerline.
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I. INTRODUCTION

Typically for statistical physics, the number of degrees of freedom in fully resolved Navier-
Stokes simulations of turbulent flows is prohibitively large at high Reynolds numbers (ratio of
inertial to viscous forces). The turbulence problem is to reliably reduce the number of degrees of
freedom, either universally or in different ways in different universality classes. This reduced-order
modeling requires understanding of the nonlinear physics which determine turbulence dynamics
and statistics.

An important feature of many environmental, geophysical, and industrial turbulent shear flows
(turbulent wakes, jets, boundary/mixing layers, etc.) of very wide relevance, including for mixing
and cloud physics [1,2], is the presence of a sharp interface between potential nonturbulent
flow and vortical turbulent flow (first studied systematically by Corrsin and Kistler [3]). These
turbulent/nonturbulent interfaces (TNTI) pose a serious challenge to reduced-order modeling
because they are conceptually hard to reconcile with eddy viscosities [4] and they incorporate a
wide range of scales of motion. Intimately linked to this wide range of scales which characterize
turbulent flows is the energy cascade which is a direct consequence of nonlinearity at high Reynolds
numbers. To the authors’ knowledge, nothing is known about the energy cascade and interscale
energy transfers at the TNTI. Are these interscale transfers from large to small or from small to
large scales, and do they depend on orientation relative to the TNTI? How do they correlate with
local rotation, local stretching and compression, and perhaps also other nonlinear processes such
as turbulent transport? Do interscale transfers and turbulence dissipation depend on TNTI location?
This letter offers answers to these questions which concern essential turbulence physics of direct
relevance to reduced-order modeling, in particular coarse-grained representations of turbulence and
related subgrid-scale modeling for large eddy simulations where interscale energy transfer is key.
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We use data from a state-of-the-art massively parallel direct numerical simulation (DNS) of
spatially evolving axisymmetric and incompressible turbulent wake obtained by Dairay et al. [5].
In terms of free stream velocity U∞ and area L2

b of the bluff plate placed normal to the incoming
laminar free stream, the Reynolds number is U∞Lb/ν = 5000 (fluid’s kinematic viscosity ν). The
computational domain is long (120Lb) and data were reliably collected up to a distance x = 100Lb

from the plate. The spatial resolution increases with x/Lb and equals the Kolmogorov microscale ηK

at x = 60Lb where our study’s results were obtained. At x = 60Lb on the centerline, ηK ≈ 0.025Lb

and the Taylor and longitudinal integral length scales are λ ≈ 0.37Lb and L ≈ 1.97Lb.
We calculate statistics conditional on TNTI location within the x = 60Lb plane. We locate the

TNTI in the way that Zhou and Vassilicos [6] located it for the same DNS data set, by computing
the instantaneous area At within the x = 60Lb plane where the modulus ω of the instantaneous
enstrophy exceeds a threshold ωth. At decreases with increasing ωth, reaching zero at ωth = ωmax(t ),
the maximum ω in the x = 60Lb plane at time t . The presence of the TNTI manifests itself by a
plateau in the plot of At versus ωth/ωmax (this plot is similar whether ωth/ωmax is kept constant
in time or not), see Fig. 1 in Zhou and Vassilicos [6]. At x = 60Lb, At is about constant over the
ωth/ωmax range from about 2.5 × 10−4 to 10−2. This wide vorticity range is traversed over a thin
region of space, the TNTI, which explains the wide plateau in the At versus ωth/ωmax plot. In this
letter, we chose ωth/ωmax = 4 × 10−4 to locate points on the TNTI in the x = 60Lb plane.

II. RESULTS AND DISCUSSION

To answer our questions on interscale energy transfers at the TNTI we need a scale-by-scale
energy budget that is local in space and time. This budget is the fully generalized Kármán-Howarth
equation, i.e., the version of the Kármán-Howarth-Monin-Hill (KHMH) equation directly derived
from the incompressible Navier-Stokes equations for the instantaneous velocity field [7,8] without
Reynolds or other decomposition, without averaging operations, and without assumptions about the
turbulence. This is the evolution equation for |δu|2, where δu ≡ u − u′ is the difference of fluid
velocities between points x and x′, u ≡ u(x, t ) and u′ ≡ u(x′, t ). It is expressed in terms of centroid
X = (x + x′)/2, separation vector r = x − x′, and time t as follows:
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where ρ is fluid density and δp = p(x) − p(x′) is the pressure difference across the two points.
We define an average energy over scales smaller than r = |r| as E (X , r, t ) = 3

πr3

∫
V (X ,r) d3r|δu|2,

where the integral is over the volume V (X , r) of a sphere of diameter r centered at X . E (X , r, t )
typically varies as r2 for r � O(ηK ) and oscillates around a constant when r is so large that fluid
velocities at x and x′ fluctuate independently. The evolution equation for E (X , r, t ) is obtained
by applying operation 3

πr3

∫
V (X ,r) d3r to all terms in Eq. (1), and the left side of this evolution

equation is ∂
∂t E + 3

πr3

∫
V (X ,r) d3r ∂

∂rk
(δuk|δu|2). Using the divergence theorem, this left side’s second

term is proportional to a scale-space flux because
∫

V (X ,r) d3r ∂
∂rk

(δuk|δu|2) = ∫
∂V (X ,r) d2rδu · r̂|δu|2,

where
∫
∂V (X ,r) d2r is an integral over the surface of the sphere of diameter r centered at X and

r̂ ≡ r/r. Simplifying further, the left side becomes ∂
∂t E + 3

π

∫
d
δu·r̂

r |δu|2 where 
 is the solid
angle. The interscale transfer rate 3

π

∫
d
δu·r̂

r |δu|2 (space-scale flux if multiplied by r3) vanishes at
r = 0 and tends to 0 as r grows indefinitely. At a given finite scale r, a scale-space flux from large
to small or from small to large scales corresponds to a negative or positive 3

π

∫
d
δu·r̂

r |δu|2 and
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FIG. 1. Plots in the (rn/δ, rt/δ) plane (wake width δ at x/Lb = 60) of (a) 〈δu · r̂|X I〉, (b) 〈δu · r̂|δu|2|X I〉,
(c) 〈(δu · r̂)3|X I〉, (d) 〈δu · r̂|r̂ × δu|2|X I 〉, (e) the Pearson correlation coefficient C between δu · r̂ and |r̂ × δu|2
conditional on X I and (f) the flatness of δu · r̂ conditional on X I . The magenta line in plots (a) to (f) is where
〈δu · r̂|X I〉 = 0. The black line in plots (b) to (e) is where the quantity plotted is 0.

contributes a growth or decrease of E (X , r, t ) in time. In highly inhomogeneous/anisotropic flows,
particularly in the vicinity of the TNTI, the interscale transfer rate does not necessarily dominate the
behaviour of E (X , r, t ) as the terms on the right side of the equation involve a pressure-velocity term

− ∂
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3
πr3
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ρ
(δukδp) and a term − ∂

∂Xk

3
πr3
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2 , which may dominate. This

latter term includes mean advection and production terms as well as the spatial turbulent transfer rate

− ∂
∂Xk

3
πr3
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V (X ,r) d3r (uk−Uk+u′

k−U ′
k )|δu|2

2 where Uk and U ′
k are mean flow velocity components obtained

by averaging over time at x and x′, respectively.
A forward space-scale flux from large to small scales corresponds to predominance of com-

pression, δu · r̂ < 0, so that
∫

d
δu·r̂
r |δu|2 is negative. Conversely, space-scale flux from small
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FIG. 2. Plots in the (rn/δ, rt/δ) plane (wake width δ at x/Lb = 60) of (a) 〈�|X I〉/〈εr |X I〉 and
(b) 〈Tu|X I 〉/〈εr |X I 〉.

to large scales corresponds to predominance of stretching, δu · r̂ > 0, so that
∫

d
δu·r̂
r |δu|2 is

positive. Incompressibility implies
∫

d
δu · r̂ = 0. As fluid elements approach the TNTI without
vorticity and obtain vorticity by crossing it, their velocity normal to the TNTI changes depending
on reorientation of their motion (which suddenly becomes vortical) and on a sudden decrease in
pressure [4,9]. If this normal velocity change helps sustain the TNTI, then one may expect δu · r̂
to be negative for r̂ around the normal to the TNTI, and by virtue of

∫
d
δu · r̂ = 0, one may

also expect δu · r̂ to be positive for r̂ close to tangent to the TNTI. Indeed, compressive relative
motions in the direction normal to the TNTI and stretching relative motions in directions tangent
to the TNTI sustain the TNTI. The question arises whether the interscale transfers at the TNTI
reflect a TNTI self-sustaining mechanism so that δu · r̂|δu|2 < 0 for r̂ in the vicinity of the TNTI’s
normal and δu · r̂|δu|2 > 0 for r̂ in the vicinity of the TNTI’s tangent plane. The question which
follows is to know the sign of the resulting aggregate interscale transfer rate

∫
d
δu·r̂

r |δu|2 at the
TNTI.

To answer these questions, we start with identifying those numerical mesh points in the x =
60Lb plane where ω is closest to ωth. These points are on the TNTI. (Details of the procedure to
locate the TNTI are in Ref. [6].) We compute n = ∇ω2/|∇ω2|, the unit vector normal to the TNTI
in 3D space, and select those particular points X I on the TNTI where ω(X I + cLbn) > ωth and
ω(X I − cLbn) < ωth for 0 < c < 1. These are the points on the interface which do not face folds
over scales smaller than about 2/3 of the wake width δ(x) at x = 60Lb (given that δ ≈ 1.55Lb at
x = 60Lb). We therefore limit our study to those points on the TNTI where folds do not contribute
to the TNTI’s interscale transfer properties. With our very strict criterion 0 < c < 1, we consider
about half the points on the TNTI, but this proportion is much larger for a smaller range of positive
values of c, in which case our analysis can be expected to carry over up to smaller maximum values
of r.

We then compute the angle θr between n and r (cos θr = n · r̂) and an angle φr which locates
the projection of r on the local tangent plane normal to n. Finally, we calculate the conditional
averages 〈δu · r̂|δu|2|X I〉 and 〈δu · r̂|X I〉 by averaging over 375 randomly selected instantaneous
velocity fields from 15 000 time steps and over φr . These averages are conditioned on the TNTI
points X I and are plotted in Figs. 1(a) and 1(b) as functions of rn/δ and rt/δ where rn = n · r and
r2

t = r2 − r2
n (tan θr = rt/rn). The results in all our figures [except Fig. 2(b)], stay very similar if

the fluid velocity u is replaced by the fluctuating velocity u − U where U is the mean flow velocity
obtained by averaging over time.

Figures 1(a) and 1(b) show that 〈δu · r̂|δu|2|X I〉 and 〈δu · r̂|X I〉 are both negative above the
magenta line, i.e., for angles θr below about 50◦, and both positive below the black line in Fig. 1(b),
i.e., for angles θr above about 70◦–75◦. In this average sense, the interscale transfers at the selected
TNTI points seem to be a reflection of compressive motions for r more or less aligned with the
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normal to the TNTI and a reflection of stretching motions in directions more or less aligned with the
TNTI’s tangent plane at points X I . Because of these compressive and stretching motions which
sustain the TNTI, interscale transfers in the range rn/δ < 1.0 and rt/δ < 1.0 are from large to
small scales for angles θr below about 50◦ but from small to large scales for angles θr above about
70◦–75◦.

Surprisingly, in the range of angles θr between about 50◦ and about 70◦–75◦, where the
motions are stretching on average, i.e., 〈δu · r̂|X I〉 is positive, the interscale transfer is on average
“compressive,” i.e., 〈δu · r̂|δu|2|X I〉 is negative. To better understand this intermediate range of
angles where interscale transfer is from large to small scales even though fluid element pairs tend to
separate on average, we use the decomposition

〈δu · r̂|δu|2|X I〉 = 〈(δu · r̂)3|X I〉 + 〈δu · r̂|r̂ × δu|2|X I〉, (2)

which shows that 〈δu · r̂|δu|2|X I〉 can indeed be negative when 〈δu · r̂|X I〉 is positive if 〈(δu ·
r̂)3|X I〉 is negative enough or if 〈δu · r̂|r̂ × δu|2|X I〉 is negative enough or if both are negative.
This decomposition states that the interscale energy transfer consists of a transfer of longitudinal
energy and a transfer of rotational energy.

Figure 1(c) shows that 〈(δu · r̂)3|X I〉 has the same sign as 〈δu · r̂|δu|2|X I〉 effectively everywhere
in the (rn, rt ) plane. However, Fig. 1(d) shows the same for 〈δu · r̂|r̂ × δu|2|X I〉. Furthermore, these
three different conditional statistics have comparable magnitudes effectively everywhere in the
(rn, rt ) plane. To explain the sign and magnitude of the local interscale transfer rate 〈 δu·r̂

r |δu|2|X I〉
one therefore needs to take both 〈(δu · r̂)3|X I〉 and 〈δu · r̂|r̂ × δu|2|X I〉 into account. For this, we
use a second decomposition, namely,

〈δu · r̂|r̂ × δu|2|X I〉 = 〈δu · r̂|X I〉〈|r̂ × δu|2|X I〉 + CσCSσL, (3)

where σCS and σL are standard deviations (conditional on X I ) of δu · r̂ and |r̂ × δu|2, respectively,
and C is the Pearson correlation coefficient conditional on X I between compression/stretching
relative velocity δu · r̂ and |L|2, L ≡ 1

2 r × δu being the angular momentum per unit mass of the
fluid elements at x and x′ with respect to the centroid X . The plot of C [Fig. 1(e)] shows a small
but significant negative correlation between δu · r̂ and |L|2 nearly everywhere in the (rn, rt ) plane
(except in a small region along the rt/δ axis). Compression at the TNTI has some positive correlation
with the square of the angular momentum relative to the TNTI, particularly for orientations of
r normal to the TNTI and up to about 45◦ to that normal, and particularly for r/δ smaller than
about 0.4.

We can now explain the sign of the local interscale transfer at points X I on the TNTI. From
Eqs. (2) and (3), this sign is determined by the signs of 〈(δu · r̂)3|X I〉, 〈δu · r̂|X I〉 and C. In the
(rn, rt ) plane region where θr is below about 50◦, all these signs are negative [Figs. 1(a), 1(c)
and 1(e)]. Consequently, the interscale transfer at our selected TNTI points X I is from large to small
scales for angles up to about 50◦ to the TNTI’s normal [Fig. 1(b)] because of the predominantly
compressive motions and because of the significant correlation of these compressive motions with
angular momentum at these angles. The compressive motions contribute via negative values of both
〈(δu · r̂)3|X I〉 and 〈δu · r̂|X I〉 at these orientations, meaning that extreme compressive motions are
significantly more likely than extreme stretching motions and that motions are also compressive on
average. The presence of extreme events is confirmed by Fig. 1(f) which shows that the flatness
of δu · r̂ conditional on TNTI points X I is larger than about 4 throughout the (rn, rt ) plane and
increases up to values close to 8 with increasing θr . In the intermediate range of angles θr from
about 50◦ to about 70◦–75◦, the motions become stretching on average, i.e., 〈δu · r̂|X I〉 becomes
positive [Fig. 1(a)], but remain negatively skewed, i.e., 〈(δu · r̂)3|X I〉 remains negative [Fig. 1(c)].
In this range of angles, the interscale transfer at the selected TNTI points X I remains from large to
small scales [Fig. 1(b)] and the compressive motions remain responsible for this forward transfer but
in a different way. It is now the fact that extreme compressive motions are significantly more likely
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than extreme stretching motions and that the compressive motions remain correlated with angular
momentum which keeps this interscale transfer flowing from large to small scales. The negative
values that these two effects contribute to 〈δu · r̂|δu|2|X I〉 [Eqs. (2) and (3)] overcome the positive
value of 〈δu · r̂|X I〉〈|r̂ × δu|2|X I〉 in this intermediate range of angles θr where the motions are now
stretching on average.

As the angle θr grows beyond 70◦–75◦, the motions become predominantly stretching both on
average and also in the sense that extreme stretching events become more likely than extreme
compressive events [Figs. 1(a) and 1(c)]. Furthermore, the correlation between compressive motions
and angular momentum is weaker in the vicinity of the TNTI’s tangent plane. In fact, C does not only
take weaker negative values but even small positive ones for some values of rn and rt [Fig. 1(e)].
The result [Fig. 1(b)] is a small positive 〈δu · r̂|δu|2|X I〉 [Eqs. (2) and (3)] and therefore a weak
average interscale backscatter at these orientations.

The next question concerns the sign of the time-average conditional on X I of the re-
sulting aggregate interscale transfer rate 3

π

∫
d
δu·r̂

r |δu|2 at the TNTI. This conditional time-

average is 12
∫ π/2

0 dθr sin θr〈 δu·r̂
r |δu|2|X I〉 and it equals 12

r3

∫ r
0 drr2

∫ π/2
0 dθr sin θr〈�|X I〉 where

� ≡ �(X , r) ≡ ∂
∂rk

(δuk|δu|2). In Fig. 2(a), the plot of 〈�|X I〉/〈εr |X I〉 in the (rn, rt ) plane (2εr is
the sum of the kinetic energy dissipation rates at x and x′) shows that 〈�|X I〉 is negative everywhere
within 0 � rn/δ � 1.0 and 0 � rt/δ � 1.0 except in a small region at the top left of this region of
the (rn, rt ) plane where it takes small positive values. Clearly,

∫ π/2
0 dθr sin θr〈�|X I〉 is negative

for all r/δ � 1.0: despite the combined forward and backscatter interscale transfers at different
orientations with respect of the TNTI, the resulting aggregate interscale transfer at the TNTI is from
large to small scales for all scales r � δ.

Spatial energy transfers turn out to be as important as, if not even more important than, the
interscale transfers at the TNTI, and to even correlate with them in the (rn, rt ) plane. Compare
the plot of 〈�|X I〉/〈εr |X I〉 in Fig. 2(a) with the plot of 〈Tu|X I〉/〈εr |X I〉 in Fig. 2(b), where

Tu ≡ − ∂
∂Xk

(uk−Uk+u′
k−U ′

k )|δu|2
2 is the spatial nonlinear energy transport rate in Eq. (1). The scales and

orientations where the local interscale transfer rate takes its highest positive values correspond
to those where the local spatial transfer rate takes its highest negative values. These scales
(rn in particular) are comparable to the centerline Taylor length scale λ (≈0.24δ at x = 60Lb).
Furthermore, the small upper left corner in the (rn, rt ) plane where 〈�|X I〉 is positive (and small) is
also the only region in this plane where 〈Tu|X I〉 is negative (and small). The magniture of 〈Tu|X I〉
is typically about twice the magnitude of 〈�|X I〉. Both interscale and spatial energy transfers result
from the Navier-Stokes convective nonlinearity and this must be the root cause of their correlation.
However, future investigations at much higher Reynolds numbers should reveal the extent to which
this correlation may be due to the relatively small separation of scales between λ and δ in our DNS
data (where the Taylor length-based Reynolds number Reλ = 57 at x/Lb = 60 on the centerline)
and/or the extent to which this correlation is an essential part of energy transfers in locally or
statistically inhomogeneous situations.

Having analyzed interscale transfers in the vicinity of and relative to the TNTI we now investigate
whether the position of the TNTI relative to the centerline y = z = 0 affects interscale transfers
and dissipation. We calculate radial TNTI positions RI (φ, t ) in the (y, z) plane at x = 60Lb by
finding the TNTI’s intersections with radial straight lines in this plane which cross the centerline’s
position y = z = 0 with an azimuthal angle φ. Relatively rarely, there are more than one intersection
between the straight line and the TNTI, in which case the recorded RI value is the largest. We
define �a(X , r, t ) = ∫

d
� and consider locations X in the x = 60Lb plane. For such locations,
�a(X , r, t ) = �a(R, φ, r, t ). We focus on r ≈ λ as the interscale transfer rate is highest near this
length scale at the TNTI and calculate averages over time and φ of �a(R, φ, 0.4Lb, t ) (λ ≈ 0.38Lb

at x = 60Lb), the kinetic energy dissipation rate ε(X , t ) = ε(R, φ, t ) and ω(X , t ) = ω(R, φ, t )
conditional on RI . These conditional averages (plotted in Fig. 3) are functions of R and RI . They all
take their largest magnitudes when RI is between 2δ and 3δ, the furthest distances from the centerline
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compression, 
-scale transfer

Non-turbulent region

Turbulent region

-scale transfer,
average stretching 
with strong 
compression events 

stretching,
up-scale transfer

(d)

FIG. 3. Averages conditional on RI of (a) �a, (b) ε, (c) ω as functions of RI and R and (d) summary
schematic of the three intercale transfer regions at the TNTI.

where the TNTI is found. The actual value of R does not seem to matter other than it should not be
smaller than about δ/5 for these three conditional averages to achieve high magnitudes when RI is
so large. The high magnitudes of �a are negative, reflecting interscale transfers from large to small
scales on average.

III. CONCLUSION

The most intense average interscale transfer and the most intense average dissipation and ω occur
when the TNTI is furthest from the centerline and do so more or less uniformly all the way from the
TNTI to a finite distance from the centerline. Occurrences of large patches of high enstrophy may
simultaneously cause the TNTI to be pushed far from the centerline and interscale transfers to be
intense and forward with high dissipation. At the TNTI, interscale transfers are weak and backward
in directions close to the TNTI’s tangent plane because of straining motions but forward in the other
directions because of compressive motions. The interscale transfer at the TNTI is forward where
extreme compressive motions are more likely than extreme stretching motions even when motions
are stretching on average [see summary schematic in Fig. 3(d)]. A positive correlation exists at the
TNTI between compressive motions and angular momentum magnitude. This correlation makes a
forward contribution to interscale energy transfers at the TNTI.
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