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There is a continuing effort by turbulence researchers to provide improved turbulent
heat flux predictions for Reynolds-averaged Navier-Stokes (RANS) calculations of heat
transfer applications. In this paper, data-driven models are developed for the turbulent heat
flux prediction in wall jets with coflow using a gene expression programming (GEP)–based
machine-learning technique. The training data used as input to the optimization algorithm
are obtained by performing highly resolved large eddy simulations (LES) of nine cases
covering various flow and geometry conditions. The study examines whether predictive
RANS-based heat transfer closures can be trained that are robust to these physically
very different nine LES cases. The GEP heat flux closures were developed by adopting
the gradient-diffusion hypothesis with the optimization target being a nondimensional
parameter representing the inverse of a nonconstant turbulent Prandtl number (Prt ), with a
functional dependence on the velocity and temperature gradients. First, examination of the
turbulent Prandtl number calculated from time-averaged LES data showed a significant
deviation from the commonly assumed constant value of 0.9, with a more significant
dependence on the lip wall thickness than the blowing ratio. Second, a posteriori testing of
the developed closures by solving the RANS-based scalar transport equation using as input
the LES time-averaged velocity and turbulent viscosity showed a significant improvement
in the prediction of adiabatic wall effectiveness not only for the cases they were trained
on, but also for the entire matrix of LES cases. Finally, our best-performing model
(trained on the thickest lip wall case) was also evaluated in a full RANS context and a
significant improvement for the prediction of the adiabatic wall effectiveness was achieved,
in particular for the medium and the thin lip thickness cases. The lack of improvement
when testing the thickest lip wall case in a full RANS context indicates that for cases
with strong vortex shedding the effect of organized unsteadiness on the turbulent flow field
is important. In such cases, only modifying the heat flux model without improving the
RANS velocity field is not sufficient and other methodologies like deriving a model for the
Reynolds stress are necessary. Collectively, the current study demonstrates the ability of
the presented model-development framework in creating bespoke models that can provide
accurate predictions for a wide range of operating conditions.

DOI: 10.1103/PhysRevFluids.5.064501

I. INTRODUCTION

A wall jet is obtained by injecting a thin jet of fluid tangentially along a solid surface. Along with
the jet, there is often a coflow of different velocity and temperature. The interaction of these two flow
streams results in different length and timescales (i.e., distinct sets of characteristics and scalings),
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which has implications for mixing and heat transfer. Wall jets have a wide range of engineering
applications such as evaporation enhancement, boundary layer control on high-lift airfoils, cooling
of electronic equipment, thin film cooling, and combustion [1–7].

Kacker and Whitelaw [8] experimentally investigated this configuration using a range of fluid
and geometry conditions. In particular, they examined how the flow development and mixing are
influenced by these factors. Several subsequent numerical studies have used their experimental data
for the sake of numerical validation. Holloway et al. [9] and Joo and Durbin [10] used unsteady
RANS (URANS) and they observed significant differences to the experimental data, particularly
the adiabatic wall effectiveness (normalized wall temperature) was poorly predicted.

In wall jet applications, turbulent mixing in the vicinity of walls plays an important role and a
correct prediction of this mixing is of crucial importance. The high computational cost of direct
numerical simulations, DNS (resolving all flow scales), and large eddy simulations, LES (resolving
the majority of flow scales), precludes their use in most practical cases and especially for design
iterations in an industrial context. Instead, RANS (modeling all flow scales), due to its acceptable
cost, is still widely used as a means of modeling for designers. Nonetheless, RANS poorly predicts
the wall temperature because of the inability of RANS closures to reproduce the correct level of
turbulent mixing in the near-wall region.

In RANS, the turbulent heat flux is commonly modeled using the gradient diffusion hypothesis
(GDH), which dictates that the scalar flux is in the direction of maximum mean temperature gradient
(assuming full alignment of these two vectors) and the model acts as a turbulent diffusion term. The
diffusivity αt = νt/Prt is modeled as eddy viscosity νt over turbulent Prandtl number Prt . The eddy
viscosity is commonly modeled using a closure for Reynolds stress and the turbulent Prandtl number
is assumed to be constant. Prt = 0.9 is widely used in the literature [11–14]. It should be noted
that there are alternative approaches to the gradient diffusion hypothesis, such as the generalized
gradient diffusion hypothesis (GGDH) [15] that assumes that the turbulent diffusivity is proportional
to the Reynolds stresses. This may allow for a better representation of the anisotropic nature of the
turbulent diffusivity and also improve the alignment of the turbulent scalar fluxes with the gradients
of the mean scalar, particularly in complex three-dimensional flows. Nonetheless, one should be
aware that GGDH may not return the correct level of the scalar flux produced in the direction
normal to that of the gradient [16]. Also, the heat flux model then depends on the quality of the
Reynolds stress model.

Current standard RANS models for turbulent heat flux do not offer the predictive accuracy
required. For instance, the assumption of an equilibrium (or quasiequilibrium) between the eddy
viscosity and the eddy diffusivity by which the turbulent Prandtl number is assumed to be close
to unity may not be valid [17]. Data-driven turbulence modeling has recently shown promise
in rectifying some of the model deficiencies and improving RANS predictions via modifying
or constructing turbulence models by machine-learning tools [18,19]. In recent years, various
data-driven methodologies and machine-learning algorithms [20–22] have been applied to large,
high-fidelity data sets to modify the current or developing new turbulence closures. For example,
neural networks have been used for secondary flow predictions [23], modeling of anisotropic
tensor components of the Reynolds stress (RS) [24], turbulence modeling in subsonic flows around
airfoils [25], and predictions of temporally evolving turbulent shear flows [26]. Gaussian processes
have modeled corrective terms for channel flows [27] and zonal eddy viscosity models have been
proposed by training a decision tree algorithm using incompressible adverse pressure gradient flow
test cases [28]. Data-driven calibrations of RANS RS models have also been conducted using
experimental data for improved predictions in jet-in-crossflow configurations [29,30].

A novel and quite different data-driven turbulence modeling framework has also been developed
[31] based on a form of symbolic regression known as gene expression programming (GEP) [32].
A significant feature of this machine-learning framework is that the result of the optimization
is a tangible mathematical expression (instead of just tuning coefficients) which can be easily
implemented into any computational fluid dynamics (CFD) solver. In addition, and possibly even
more importantly, physical insights can be achieved by inspecting the GEP-constructed models. A

064501-2



LARGE EDDY SIMULATIONS OF WALL JETS WITH …

comparison of neural networks and GEP to regress nonlinear stress-strain relationships showed very
similar predictive performance, yet the GEP optimization was at a fraction of the cost [33]. Further,
GEP was applied to high-pressure [34] and low-pressure [35] turbines and showed significant
improvement over the linear model. These studies looked primarily at the stress-strain relationship,
yet researchers are also exploring other model components. One group has successfully extracted
functional forms for intermittency transport, in order to model bypass transition [36,37].

There are a few machine-learning studies regarding heat-transfer problems. Random forest
regression has been applied to model the turbulent thermal diffusivity, for a gradient-diffusion
model in the scalar transport of temperature [38] with physical interpretation of data-driven models
applied to film cooling flows [39] being highly dependant on distance to the wall and turbulent eddy
viscosity. As mentioned, the turbulent wall jet with coflow presents a complex flow field, which
makes it difficult to characterize and predict with great accuracy using standard RANS models. In
our recent study [40], our GEP machine-learning tool was used to develop heat flux closures with
increased prediction accuracy for wall jets with coflow. Although improvements in the prediction
of the adiabatic wall effectiveness were observed combining a GEP-trained scalar flux model
with a trained RANS Reynolds stress model, the model’s robustness was not satisfactory and this
simultaneous combination of data-driven heat flux closures with Reynolds stress models in RANS
calculations made it difficult to isolate the source of error(s). In fact, the former models’ predictive
ability to provide more accurate temperature fields was questionable when applied across cases
with different flow and geometry conditions. This observation encouraged further investigations on
this configuration through training new GEP heat flux models with more robustness and predictive
capabilities in the context of RANS.

In this paper, GEP is hence used to develop physics-informed data-driven turbulent heat flux
closures based on gradient diffusion hypothesis with improved and robust prediction of RANS
temperature fields in wall jets with coflow. The high-fidelity data set as input to the training
algorithm comes from performing a matrix of nine highly resolved LES cases using our in-house
high-order compressible flow solver HiPSTAR [41], covering a wide range of flow and geometry
conditions. To focus on the turbulent heat flux closures only and isolate any other possible sources of
error(s), the RANS-based-scalar-transport equation is solved using as input the LES time-averaged
velocity field such that only contribution from the heat-flux closures (such as RANS standard eddy
diffusivity model and also newly GEP-trained models) is explored. The prediction accuracy and
robustness of the GEP models are discussed in detail.

II. FLOW CONFIGURATION AND COMPUTATIONAL SETUP

A. Flow configuration

A schematic of the flow configuration is shown in Fig. 1. At the inlet boundary, a cold wall jet
and a plane hot coflow with different speeds are specified, separated by a flat plate with thickness t .
This lip thickness controls the strength of the vortex shedding where the two different flows interact
and determines the development of the wall jet. In the present study, three different values of the
lip thickness normalised with the slot height (s) were considered, along with three different inlet jet
velocities. This leads to a total of nine cases featuring different combinations of lip thickness and
blowing ratios (BR) and exhibiting different physical phenomena. The inlet mean velocity profiles
were adapted from the experimental study of Kacker and Whitelaw [8]. Table I summarizes the
simulation parameters.

B. LES setup

The present large eddy simulations (LES) were performed with the in-house multiblock
structured compressible Navier–Stokes solver HiPSTAR [42]. After we apply the Favre-filtering
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FIG. 1. Computational domain (not to scale) and LES blocks.

operation (defined as f̃ = ρ f /ρ̄), the filtered Navier-Stokes equations for the conservation of mass,
momentum, and total energy are, respectively, as follows:

∂ρ̄

∂t
+ ∂ρ̄ũ j

∂x j
= 0, (1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũ j

∂x j
+ ∂ p̄

∂xi
− ∂σ̃i j

∂x j
= −∂ρ̄τ i j

∂x j
, (2)

∂ρ̄Ẽ

∂t
+ ∂ (ρ̄Ẽ + p̄)ũ j

∂x j
− ∂σ̃i j ũi

∂x j
+ ∂ q̃ j

∂x j
= − ∂

∂x j
(γCV ρ̄Qj + 1

2
Bj − Dj ). (3)

Here ρ is the density, uj is the velocity component in the x j direction, p is the pressure, T is the
temperature, and E = e + uiu j/2 is the total energy per unit mass where e = CV T and CV are,
respectively, the internal energy and the specific heat. The diffusive fluxes are given by

σ̃i j = 2μ̃S̃i j − 2

3
μ̃δi j S̃kk, q̃ j = −k̃

∂T̃

∂x j
, (4)

where Si j = 1
2 (∂ui/∂x j + ∂u j/∂xi ) is the strain rate tensor, and μ̃ and k̃ are the viscosity and thermal

conductivity corresponding to the filtered temperature T̃ .

TABLE I. Simulation parameters.

Case t/s BR Reslot Uf s (m/s) Tslot (K) Tf s (K)

A1 1.14 1.26 ≈ 12 000 19.2 273 323
A2 1.14 1.07 ≈ 10 000 19.2 273 323
A3 1.14 0.86 ≈ 8 000 19.2 273 323
B1 0.63 1.26 ≈ 12 000 19.2 273 323
B2 0.63 1.07 ≈ 10 000 19.2 273 323
B3 0.63 0.86 ≈ 8 000 19.2 273 323
C1 0.126 1.26 ≈ 12 000 19.2 273 323
C2 0.126 1.07 ≈ 10 000 19.2 273 323
C3 0.126 0.86 ≈ 8 000 19.2 273 323
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TABLE II. LES grid resolution for each block shown in Fig. 1. Note (Nx × Ny × Nz) represent the number
of grid points in the streamwise, wall-normal, and spanwise directions, respectively.

LES blocks t/s = 1.14 t/s = 0.63 t/s = 0.126

Block 1 (80 × 128 × 66) (80 × 128 × 130) (80 × 128 × 130)
Block 2 (1600 × 128 × 66) (1600 × 128 × 130) (1600 × 128 × 130)
Block 3 (1600 × 128 × 66) (1600 × 64 × 130) (1600 × 64 × 130)
Block 4 (1600 × 128 × 66) (1600 × 128 × 130) (1600 × 128 × 130)
Block 5 (80 × 128 × 66) (80 × 128 × 130) (80 × 128 × 130)

The effect of the subgrid scales (SGS) appears on the right-hand side of the governing equations
through the SGS stresses τi j ; SGS heat flux Qj ; SGS turbulent diffusion ∂Bj/∂x j ; and SGS viscous
diffusion ∂Dj/∂x j . These quantities are defined as

τi j = ũiu j − ũiũ j, (5)

Qj = ũ jT − ũ j T̃ , (6)

Bj = ρ̄(ũ jukuk − ũ j ũkuk ), (7)

Dj = σi jui − σ̃i j ũi. (8)

The SGS turbulent and viscous diffusion terms [i.e., Eqs. (7) and (8)] are neglected in this study.
This is a valid assumption for low to moderate Mach number flows [43]. The wall adapting local
eddy viscosity (WALE) model [44] was used for modeling of the subgrid-scale stresses. The WALE
model theoretically features the correct near-wall scaling for the subgrid-scale (SGS) eddy viscosity
and also is appealing in that no explicit filtering is required and the eddy viscosity is built through
only local information [45]. For the density-weighted filtered energy equation, the subgrid-scale
heat flux contribution was modeled using subgrid-scale eddy viscosity. It is noteworthy that the
ratio of averaged SGS eddy viscosity to molecular viscosity was well below unity, suggesting highly
resolved LES. Therefore, for our LES with sufficiently refined grid, the subgrid-scale contribution
is negligible as compared to that of the resolved scales.

A fourth-order accurate central differencing scheme was used for the spatial derivatives in the
streamwise and wall-normal directions, combined with a spectral method based on the FFTW3
library in the spanwise direction. In addition, skew-symmetric splitting was used to stabilize the
convective terms. A five-stage, fourth-order-accurate Runge- Kutta time integrator was used for the
temporal discretization.

The LES grid is composed of five blocks as depicted in Fig. 1. The grid resolution for each block
is shown in Table II. It should be noted that for the thick-lip cases (t/s = 1.14) 32 Fourier modes
were used in the spanwise direction, while the other cases (i.e., t/s = 0.63 and t/s = 0.126) had
64 Fourier modes, corresponding to 66 and 130 collocation points, respectively. In the LES, only
mean profiles were prescribed at the inlet and no fluctuations were added. Characteristic boundary
conditions were used for the free stream and at the outlet a zonal characteristic boundary condition
was employed [46], using 50 streamwise grid points, beginning at x/s ≈ 90. All walls were set
to no-slip boundaries and adiabatic temperature conditions were used. It should be noted that the
computational domain was initialized with uniform temperature and velocity fields at T = 323 K
and U = 19.2 m/s, respectively.

The simulations were run using a constant nondimensional time step equal to 6 × 10−4 to
satisfy the CFL condition. All cases were initially run for 360 time units, based on slot height
and free-stream velocity, to let the initial transient pass. The LES were then continued for another
270 time units in order to collect averaged quantities and statistics. Additional LES were conducted
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on different grids and the LES were run for longer and no difference in the results were observed,
thus ensuring that the results were grid independent and statistically converged, respectively.

C. RANS-based scalar flux closures

1. The scalar transport equation

Given high computational cost of LES in most practical cases in design context, RANS is still
widely used as a means of modeling. However, two sources of errors are associated with RANS
calculations: Reynolds stress closures (e.g., Boussinesq approximation) and heat flux models. To
isolate the latter, we assume we know velocity field and other inputs to heat flux models accurately
(from time-averaged LES in this case). The transport of mean temperature, a passive scalar, for an
incompressible flow field is given in the nondimensional form as follows:

∂T

∂t
+ ui

∂T

∂xi
= 1

Re Pr

∂2T

∂xi∂xi
− ∂u′

iT
′

∂xi
, (9)

where

x = x∗

Lre f
, ui = u∗

i

ure f
, t = t∗ ure f

Lre f
, T = T ∗

Tre f
. (10)

In the above, x and t are the spatial coordinate vector and time, respectively. In addition, ui is
the i component of velocity vector, T is the temperature, Re is the Reynolds number, and Pr is
the Prandtl number. It should be also noted that asterisk and overbar represent dimensional and
time-averaged variables, respectively. The use of the incompressible framework can be justified as
follows. First, the free-stream velocity and maximum jet velocity is well below Mach 0.3. Second,
small temperature differences between the jet flow and the free stream imply that buoyancy effects
can be neglected from the mean momentum equation. Thus, the energy equation can be decoupled
from the momentum equations, allowing for the temperature field to be solved passively.

The heat flux term is usually assumed in the direction of maximum mean temperature gradient
and modeled using the gradient diffusion hypothesis as follows [standard eddy diffusivity model
(EDM)]:

u′
iT

′ = −αt
∂T

∂xi
, (11)

where the diffusivity αt = νt
Prt

is modeled as eddy viscosity (νt ) over turbulent Prandtl number (Prt ).
The eddy viscosity is commonly modeled using a closure for Reynolds stress and the turbulent
Prandtl number is assumed to be constant. As mentioned in the introduction, Prt = 0.9 is widely
used in the literature. This simple choice of constant Prt indicates that the turbulence acts to
isotropically diffuse the heat, which is known not to be the case, except perhaps for simple free shear
flows [47]. In the present study, a different approach is chosen and a model for turbulent Prandtl
number is obtained as a function of velocity and temperature gradients using the machine-learning
framework outlined below.

2. The machine-learning framework

For the present optimization, we choose to use gene expression programming (GEP), a symbolic
regression algorithm that returns mathematical equations [32]. We prefer GEP to other tools for
several reasons; primarily, we deem the portability and transparency of returning an equation, a
valuable characteristic of the process, as it allows for inspection and interpretation of the generated
model terms.

In GEP, a close cousin of genetic programming [48], the optimization evolves an initial set of
randomly generated candidate solutions (“Create initial populations” block in Fig. 2) by analogy to
Darwin’s survival-of-the-fittest theory. Each solution is represented as a recursive tree structure.
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z

FIG. 2. The GEP heat flux model development flowchart.

Fitness of each individual is evaluated based on a cost function. Selection, or survival of the
fittest (“Apply selection” block in Fig. 2) then acts as a filter on the population by weighting the
chance of survival in favor of more fit solutions, directing the search away from poorer functional
forms. Genetic mutation and reproduction operators then modify these trees [“GEP operators
(mutation, reproduction)” block in Fig. 2]. In gene expression programming, mutation is the most
important genetic operator. It modifies genomes by changing an element with another (flipping some
digits of a string). The accumulation of many small changes over time can create great diversity.
Multiple parent reproduction (crossover) is also a genetic operator used to combine the genetic
information of two parents to generate new offspring (solutions). Good mutations are retained via
the natural-selection process. This causes the population of candidate solutions to iterate toward an
optimum solution. For more information, see the work of Koza [48] and Ferreira [32], which are
both excellent introductions. The specifics of applying GEP to turbulence models was introduced in
detail in Weatheritt and Sandberg [31].

An in-house evolutionary algorithm, which is based on GEP and capable of symbolic regression
of scalar, vector, and tensor fields [31], is used. Data-driven closures for turbulent heat flux are
developed by adopting the gradient-diffusion hypothesis through minimizing the cost function,

CostFun(αgep) = 1

V

∑
m∈V

{
u′

iT
′ + αgepνt

∂T

∂xi

}(m) {
u′

iT
′ + αgepνt

∂T

∂xi

}(m)

, (12)
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FIG. 3. Instantaneous temperature fields obtained from LES for various lip wall thicknesses (t/s) and
blowing ratios (BR). Note that for each plot the streamwise and the wall-normal extents are respectively
x/s = −4 : 30 and y/s = 0 : 10 (not to scale).

which is the mean-square error of Eq. (11), where αt = αgepνt . Note that V represents the points
of our training region. Therefore, the target for optimization is a nondimensional parameter, αgep,
which can be considered as the inverse of a nonconstant turbulent Prandtl number with a functional
dependence on the velocity and temperature gradients,

αgep = f (I1, I2, J1, ..., J5), (13)

where, considering the present statistically two dimensional flows, the function αgep is formed by
constructing independent invariants from si j = Si j

ω
, wi j = �i j

ω
, and ϑi = k0.5

β∗ω
∂T
∂xi

given as follows (a
subset of those given in Ref. [38]):

I1 = si js ji, I2 = wi jw ji, J1 = ϑiϑi, J2 = ϑisi jϑ j, J3 = ϑisi js jkϑk,

J4 = ϑiwi jw jkϑk, J5 = ϑiwi j s jkϑk . (14)

In Eqs. (12) and (13), the turbulence eddy viscosity (νt ) and the specific turbulence dissipation (ω)
are, respectively, needed in our data-driven solutions. As such, νt and ω are obtained through a
frozen approach in which we hold the true (high-fidelity) velocity and Reynolds stress constant and
solve the ω transport equation only, resulting in νt = k

ω
, which is consistent with both the high-

fidelity database used and the turbulence model equations. Hence, apart from the frozen approach
to obtain νt , there is no CFD involved in the machine-learning process, which enables us to quickly
create heat flux models, typically in less than 10 core minutes.

Figure 2 shows a schematic summarizing the optimization framework in which the standard GEP
algorithm is used [32] and tasked with generating functions for αgep out of Eq. (14) by minimizing
the cost function defined in Eq. (12). As a result, a data-driven GDH-based closure for the turbulent
heat flux is obtained that can be easily used in in any available flow solver. For the current study, we
use the open source solver OpenFOAM.

III. RESULTS AND DISCUSSION

A. General flow structure from LES

Figure 3 shows instantaneous temperature fields of the nine LES cases described earlier in
Table I. As can be seen, these cases feature different behaviors. Significantly larger vortices are
observed, forming behind the lip wall in the thick-lip cases compared with those generated by the
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FIG. 4. Instantaneous Q-criterion field (nondimensional isolevel 2) colored with the temperature field
obtained from LES cases A1 (a), B2 (b), and C3 (c).

thin-lip ones. This leads to different levels of turbulent mixing of hot and cold fluid seen for the
thicker lip cases.

Figure 4 gives a clearer picture of this observation by presenting the instantaneous vortical
structures with the Q criterion (the second invariant of the velocity gradient tensor), colored with
the temperature field. Three cases, A1, B2, and C3 (diagonal of the cases’ matrix) are depicted.
It is observed that the larger scale structures generated behind the thick-lip wall carry the hot
coflow stream toward the wall much earlier than in the thin-lip case. For the thick-lip case, the
first interaction of a large vortical structure with the wall occurs around x/s = 5 [Fig. 4(a)], leading
to an increase in the wall temperature, whereas for the thin-lip case [Fig. 4(c)], it appears that the
wall does not feel the hot stream before x/s > 25. This observation will be more quantitatively
substantiated by examining the adiabatic wall effectiveness for these cases.

The effect of different lip thicknesses and blowing ratios on the flow dynamics close to the wall
is investigated using the time-averaged coefficient of friction (Cf ) on the lower wall, as shown in
Fig. 5. The coefficient of friction is defined as

Cf = τw

1
2ρU 2

f s

, (15)

where τw is the shear stress at the wall and Uf s is the freestream velocity. As can be seen, increasing
the blowing ratio for a given lip thickness (e.g., cases A3 to A1) does not lead to a significant
difference in the near wall behavior of these cases, particularly for x/s < 5 (close proximity of
the jet exit). For x/s > 5, a similar trend is still observed, albeit with the magnitude of Cf being
dependent on the blowing ratio. It should be noted that for the thick lip condition (A1)–(A3), there
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FIG. 5. Mean coefficient of friction along the lower wall.

is a narrow region 2 < x/s < 5 with a negative value of Cf , indicating the presence of a recirculation
zone. Figure 5 also shows that increasing the lip thickness at a given blowing ratio (e.g., cases C1,
B1, and A1, respectively) plays an important role in changing the Cf profile so that the wall senses
the flow activity above at a significantly earlier distance after the jet exit for the higher blowing ratio
(case A1) compared to the lower one (case C1). This can be attributed to the strong shedding of big
vortices observed previously in Fig. 4 for case A1.

Figure 6 shows the normalized mean streamwise velocity (U/Uf s) and temperature [θ = (T −
Tf s)/(Tslot − Tf s)] at four locations downstream of the jet exit. Of note is that increasing the blowing
ratio (BR) at a given lip thickness (t/s) (e.g., cases A3 to A1) results in nearly the same temperature
profile, despite the obvious changes in the velocity fields occurring with increasing BR. Looking
at the area below the slot height (y/s < 1, the region of interest for cooling purposes), increasing
t/s at a fixed BR (e.g., cases C1, B1, and A1, respectively) significantly changes both the dynamics
and the thermal behavior. This is because of increased mixing of the hot free stream with the cold
jet flow due to the large, coherent, vortices generated for thicker lips (see again Fig. 4). This carries
heat to the wall for the first few slot heights after the jet exit, which in turn reduces the adiabatic
wall effectiveness (i.e., θ at y = 0) as can be seen in Figs. 6(ii)(b)–6(ii)(d).

Figure 7 shows profiles of Reynolds stresses (rms values) for a number of streamwise locations.
In the near-wall region, the normal stress Rxx exhibits larger values compared to the shear stress Rxy.
However, away from the wall, where the jet interacts with the coflow, these two stress components
have comparable magnitudes up to several slot heights downstream of the jet exit. Overall, it is
of note that both increasing BR at a given t/s and increasing t/s at a fixed BR result in higher
Reynolds stresses, which is more pronounced in regions near to the jet exit. The former is attributed
to producing higher momentum by increasing the blowing ratio and the latter is associated with
stronger vortex shedding by increasing the lip thickness.

Figure 8 depicts profiles of turbulent heat fluxes (rms values) for the same locations shown
previously in Fig. 7. Consistent with the Reynolds stresses, turbulent heat-flux profiles exhibit
larger amplitudes close to the jet exit compared to those further downstream. Overall, at x/s = 3,
streamwise turbulent heat flux features a negative peak in the shear layer near the slot height y/s = 1,
and a positive peak near the lip thickness. The negative peak highlights that positive streamwise
fluctuations associated with fluid motion near the wall bring hot free-stream fluid from above the
shear layer down, to mix with the cold jet fluid underneath. Considering the wall-normal turbulent
heat flux, only negative peaks in the profiles are observed, indicating that transport across the
shear layer and from the wall is driven by positive wall-normal velocity fluctuations and negative
temperature fluctuations. It is worth mentioning that increasing BR at a given t/s leads to nearly the
same turbulent heat flux profiles, in particular much further downstream. However, increasing t/s at
a fixed BR again brings about significant differences, which are more distinct in regions near to the
jet exit.
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FIG. 6. Normalized mean streamwise velocity (i) and temperature (ii) in a number of locations downstream
of the jet exit.

B. Statistics of turbulent Prandtl number (Prt ) from LES

The turbulent Prandtl number can be calculated from the time-averaged LES data as follows:

PrLES
t = ν

opt
t

α
opt
t

, (16)

where

ν
opt
t = −1

2

Si jai j

S2
mn

and α
opt
t = −

u′
iT

′ ∂T

∂xi

∂T

∂x j

∂T

∂x j

. (17)

Note that ν
opt
t is the optimal eddy viscosity and α

opt
t is the optimal eddy diffusivity from LES.

Further, Si j and ai j are the strain rate tensor and the anisotropy tensor, respectively.
The probability density function (PDF) of the turbulent Prandtl number is shown in Fig. 9

extracted from LES data. The interesting observation is that there is a broad distribution of Prt

for the LES cases, indicating that a constant turbulent Prandtl number of 0.9 (a commonly used
value as discussed in earlier sections) is questionable in general. In fact, the distributions show a
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FIG. 7. Reynolds stresses [normal stress Rxx (i) and shear stress Rxy (ii)] in a number of locations
downstream of the jet exit.

strong deviation from the commonly used value toward smaller magnitudes of Prt . Furthermore, the
Prt for the thickest lip case with different blowing ratios (cases A1–A3) lies predominantly between
0 and 0.6 (having an almost similar probability), with a sudden drop beyond this range; i.e., in no
parts of the domain does it get close to Prt = 0.9. This indicates that there is no substantial effect of
changing the blowing ratio for a given lip thickness on Prt , consistent with earlier results presented.
However, altering the lip thickness for a given BR (cases A1, B1, C1) results in a significant change
of the PDF profiles, which is also consistent with the previous results of the mean and rms quantities.
As can be seen, the PDF becomes narrower and its distinct peak moves toward unity as we go for the
thinner lip walls. This therefore highlights that for the thinnest lip case the assumption of Prt = 0.9
is more reasonable. Nonetheless, for cases with strong vortex shedding such as the thickest lip cases
studied here, assuming a constant turbulent Prandtl number with value 0.9 is not a good assumption.
This assumption will be revisited later in this paper.

The mean turbulent Prandtl numbers (computed from the PDFs) for the LES cases are also
presented as a function of lip thickness for different blowing ratios. As can be seen in Fig. 10, for a
given blowing ratio, Prmean

t decreases significantly with the lip thickness increase. This observation
is directly associated with the size of vortices formed behind the lip wall as the smallest Prmean

t is
seen for the thickest lip case with the biggest shedding vortical structures. Figure 10 also shows
that, at a given lip wall thickness, Prmean

t increases with increasing the BR, and this variation is
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FIG. 8. Turbulent heat fluxes [streamwise component u′T ′ (i) and wall-normal component v′T ′ (ii)] in a
number of locations downstream of the jet exit.

more pronounced for bigger t/s. This again highlights the effect of a bigger lip wall thickness on
generating complex flow physics that cannot be described simply with a constant Prt . Indeed, the
common practice in the literature, i.e., considering a constant Prt = 0.9, should be revisited. In the
current study, we therefore present the use of the high-fidelity data sets for data-driven Prt model
development.

C. Adiabatic wall effectiveness of standard eddy diffusivity model

Figure 11 shows the adiabatic wall effectiveness [ηwall = (Twall − Tf s)/(Tslot − Tf s)] for the
three LES cases depicted previously in Fig. 4. As can be seen, consistent with the observations
in Fig. 4, for the thick- and medium-lip cases, there is a sudden drop in ηwall a few slot heights
downstream of the jet exit, starting from x/s > 5, due to enhanced mixing caused by the large-scale
structures. In contrast, for the thin-lip case, the effect of the hot coflow on the wall is negligible
up to x/s ≈ 25 as the cooling flow is not rapidly mixed with the hot free stream flow due to lack
of large-scale vortex shedding. These results indicate that the chosen LES cases feature significant
differences in their physical behavior and part of the current study is to assess whether heat transfer
closures can be trained for steady calculations that are robust to these very disparate cases.
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FIG. 9. Probability density function (PDF) of the turbulent Prandtl number Prt calculated from time-
averaged LES data using Eq. (16).

Figure 11 also compares the adiabatic wall effectiveness between the time-averaged LES results
and the results of solving the scalar-transport equation [Eq. (9)] using as input the LES mean velocity
field, the frozen eddy viscosity (νt ) obtained from LES as defined earlier, and the standard EDM
with a commonly assumed value of 0.9 for the turbulent Prandtl number (Prt ). As can be seen,
using the scalar-transport calculations with Prt = 0.9 significantly over predict the adiabatic wall
effectiveness for all cases, particularly for the thickest lip wall.

It is therefore understood that the assumption of an equilibrium (or quasiequilibrium) between
the eddy viscosity and the eddy diffusivity by which the turbulent Prandtl number is assumed to be
close to unity may not be valid. This is the motivation for constructing data-driven models for the
turbulent heat flux using the machine-learning framework described earlier.

FIG. 10. The mean turbulent Prandtl numbers for the LES cases as a function of lip thickness (t/s) for
different blowing ratios (BR).
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FIG. 11. Comparison of ηwall obtained from LES, and the solution of the scalar transport equation [Eq. (9)]
as input the time-averaged LES velocity field with the standard eddy diffusivity model with Prt = 0.9 for cases
A1 (a), B2 (b), and C3 (c).

D. Training region and proposed heat flux models

Machine-learning models are generated with the above described framework using the three LES
cases discussed in Figs. 4 and 11. The three different models are then tested on all other cases to
assess their robustness.

Two training regions are explored for the heat flux modeling as depicted in Fig. 12. In terms of
the wall normal extent, these regions encompass 0 � y/s � 3. However, the streamwise locations of
the regions differ, with the first region covering 30 � x/s � 85 and the second one extending from
0 � x/s � 85. For the first region, the mechanism of diffusion occurs primarily due to turbulence
(stochastic unsteadiness) and not vortex shedding (deterministic unsteadiness). Figure 13 compares
the adiabatic wall effectiveness obtained by solving the scalar-transport equation [Eq. (9)] using
different heat flux models for case A1, including GEP heat-flux closures developed in these two
training regions and also the LES turbulent thermal diffusivity [see Eq. (17) for α

opt
t ]. In the scalar-

transport solution, the GEP models were applied to the whole computational domain after x/s � 0.
The case with α

opt
t also determines the best possible improvement that we may achieve via our

data-driven closures.
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I

II

FIG. 12. Training regions for the turbulent heat flux model development.

As can be seen in Fig. 13, significant improvement for the prediction of the adiabatic wall
effectiveness is achieved with the machine-learning models. Of note is that the heat flux model
developed on the second region results in an underprediction of the adiabatic wall effectiveness
(or equivalently overprediction of the turbulent heat flux) further downstream of the jet exit for
x/s > 30, compared with the best-case scenario of using the scalar transport approach with the
LES turbulent heat diffusivity. However, the GEP model constructed using the first training region
performs well in this region, with a level of overprediction for x/s < 30. Altogether, in what follows
in the present study, only the first training region is considered for the model development in which
the mechanism of turbulence diffusion (stochastic) does not markedly include the vortex shedding
(deterministic) effect. The heat flux closures (αmod

t = αgepνt ) developed for the three LES datasets
using training region I are as follows:

FIG. 13. Comparison of the adiabatic wall effectiveness obtained from different flux models for case A1.
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Case A1:

αmod,1
t = {6.806I2 − 109.407J1 + 2.0J2 + 2.368}νt . (18)

Case B2:

αmod,2
t = {0.517I1 − 0.06I2 − 20.585J1 − 11.9J4 + 2.235}νt . (19)

Case C3:

αmod,3
t = {3.0I2 − 2.505I1 + J1 − 1.019J3 + J4 − 28.0I1I2

+ I1(43.44I2 − 109.76)(J1 − I1

+ J2 + J3) + 1.653}νt . (20)

In addition to the three models developed on the three LES cases, another model was created
by taking the average of these LES data sets [the scalar invariants (Ik, Jk), the turbulent heat flux
(u′

iT
′), and the eddy viscosity (νt )] and feeding the averaged fields into the optimization algorithm:

αmod,4
t = {2.247J1 − 3.15I2 − 0.0198I1 − J2 − 4.0J3 + 7.247J4 + 1.995}νt . (21)

It should be noted that since the present GEP optimization is a stochastic, supervised machine-
learning approach, by running the framework with a new initial guess, we get a different form of
the mathematical expression as the output of the optimization, but with the same performance when
tested a priori and a posteriori.

It is of importance to understand the differences that these models offer in comparison with
the EDM with Prt = 0.9. Figure 14 shows the turbulent thermal diffusivity αt calculated from
time-averaged LES (αLES,opt

t ), the EDM with Prt = 0.9 (αEDM
t ), and the developed GEP closures

at two different axial locations. As can be seen, α
LES,opt
t is significantly underpredicted by αEDM

t ,
whereas there is an excellent agreement between αGEP

t and the LES profiles. This indicates that
the optimization framework has performed well in developing the heat flux closures, and the GEP
models can therefore be evaluated with confidence a posteriori in the RANS framework.

Figure 15 shows the PDF of the turbulent Prandtl number along with the contribution from only
the constant term in each developed data-driven model [i.e., Eqs. (18), (19), and (20)] illustrated
with an arrow. As can be seen, the contribution of the basis functions (i.e., nonconstant terms) to
the PDF of Prt becomes significant when the lip wall thickness increases. As such, for the thinnest
lip wall case [see Fig. 15(c)] [where the deviation from the contribution of only the constant term in
Eq. (20) is not as significant as for the thicker lip wall cases] assuming a constant Prt = 0.6 appears
to be reasonable; however, the large deviations for bigger lip wall thickness cases highlights the roles
played by the basis functions in the models. The latter also indicates the value of including local
mean flow behaviors in the model for the turbulent Prandtl number (i.e., providing a nonconstant
Prt as function of velocity and temperature gradients).

E. Comparison of modeled and LES adiabatic wall effectiveness

Figure 16 shows the adiabatic wall effectiveness (ηwall ) of all the nine LES cases calculated using
the heat flux models developed earlier. As can be seen, when the model trained on a particular lip
thickness is used on the other blowing ratios of that geometry, there is a significant improvement in
the ηwall prediction, which is consistent across all cases. Further, it is also of importance to examine
the adiabatic wall effectiveness profiles when a particular model is used on a different geometry and
blowing ratio from how it was developed, e.g., when trained models are applied to cases previously
unseen. A significant and consistent improvement in the results is again observed for the thick and
medium lip thickness geometries using the data-driven models αmod,1

t , αmod,2
t , and αmod,4

t . However,
by applying these models to the thin-lip case, a level of underprediction of the ηwall is observed;
nonetheless, the profiles have improved considerably compared to those of the EDM with Prt = 0.9.
There is an overprediction of the ηwall when the model trained on the thinnest geometry (αmod,3

t )
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FIG. 14. Turbulent thermal diffusivity αt calculated from time-averaged LES (αLES,opt
t ), standard eddy

diffusivity model with Prt = 0.9 (αEDM
t ), and the developed GEP closures [i.e., αmod,1

t , Eq. (18); αmod,2
t , Eq. (19);

and αmod,3
t , Eq. (20)] for cases A1 (i), B2 (ii), and C3 (iii) at x/s = 30 (a) and x/s = 45 (b).

is applied to the other geometries, but the ηwall profiles are still remarkably improved compared to
the Prt = 0.9 case. This observation can be attributed to the smaller flow structures in the thinnest
lip case compared to the thicker lip wall geometries (see Fig. 4 for a clearer picture). In the former,
the vortex shedding frequency is higher and does not persist for a long downstream distance, while
in the latter the low-frequency vortex shedding is produced by the lip wall that persists for a large
distance downstream.

Table III quantifies the percent error reduction in the prediction of the adiabatic wall effectiveness
by using the data-driven turbulent heat flux models compared with the EDM with Prt = 0.9,

〈
EEDM − EGEP

EEDM

〉
100, (22)
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FIG. 15. The PDF of the turbulent Prandtl number along with the contribution from only the constant term
in each developed data-driven model [i.e., αmod,1

t , Eq. (18); αmod,2
t , Eq. (19); and αmod,3

t , Eq. (20)] illustrated
with arrows.

with

Emodel =
√√√√∫ Lx

0 (ηmodel − ηLES )2 dx∫ Lx

0 η2
LES dx

. (23)

As can be seen, using the GEP models on the cases on which the training was performed (the
highlighted cells in Table III), a significant error reduction between 71 and 93% is obtained.
Applying these models to other cases unseen in the model development also leads to a considerable
error reduction; in particular, the model (αmod,1

t ) developed on the thickest lip wall (t/s = 1.14)

TABLE III. The percent error reduction in the prediction of the adiabatic wall effectiveness by using the
data-driven turbulent heat flux models compared with the standard eddy diffusivity model (EDM) with Prt =
0.9.

BR 1.26 1.07 0.86

t/s
αmod,1

t 71% 68% 66%
αmod,2

t 71% 68% 65%
1.14

αmod,3
t 41% 39% 36%

αmod,4
t 63% 60% 60%

αmod,1
t 96% 91% 83%

αmod,2
t 96% 93% 83%

0.63
αmod,3

t 56% 50% 46%
αmod,4

t 90% 81% 73%

αmod,1
t 63% 81% 83%

αmod,2
t 53% 33% 35%

0.126
αmod,3

t 80% 88% 86%
αmod,4

t 68% 51% 55%
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FIG. 16. Comparison of the adiabatic wall effectiveness obtained from different flux models.

case at BR = 1.26 performs well across all the cases with an error reduction of 83–96% for the
medium-lip cases (t/s = 0.63) and of 63–83% for the thinnest lip geometries (t/s = 0.126). It
should be noted that, as discussed earlier, the model trained on the thinnest lip wall case (case
C3) shows a better improvement in the ηwall profiles of this geometry with an error reduction in
the range of 80–88%; nevertheless, applying the other models on this geometry still remarkably
improves the results. It is also worth noting the model trained by feeding the averaged fields of the
three LES cases A1, B2, and C3 to the machine-learning algorithm [i.e., model 4, see Eq. (21)]
performs properly across all the cases with an error reduction of 51–90%. Altogether, these results
indicate that the heat flux models developed in the present study are predictive models and are able
to significantly improve the prediction of the adiabatic wall effectiveness for very different operating
conditions.

We previously showed that a model trained in a particular flow and geometry condition can also
lead to significant improvement in the prediction of adiabatic wall effectiveness when used for cases
unseen in the training procedure. For example, as shown in Table III, the model (αmod,1

t ) developed
on the thickest lip wall (t/s = 1.14) case at BR = 1.26 performs well across all the cases with a
significant error reduction of 63–96%. This can be regarded as a means of robustness for the models
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FIG. 17. PDF of basis functions (a) I1, (b) I2, (c) J1, and (d) J2 calculated from time-averaged LES data.

developed in the present study. To further investigate this matter, a statistical analysis was also
performed on a selection of the basis functions [Eq. (14)] for different ranges of flow and geometry
conditions. Figure 17 shows probability density functions (PDF) of basis functions I1, I2, J1, and
J2 calculated from time-averaged LES data. As can be seen, the thickest lip cases with different
blowing ratios (cases A1–A3) show approximately similar probability, indicating that there is no
significant effect of changing the blowing ratio for a given lip thickness on the basis functions.
Nonetheless, changing the lip thickness for a given blowing ratio (cases A1, B1, C1) leads to a
significant alteration of the PDF profiles, particularly for I1 and I2, where the peaks moves from
the origin. Collectively, these observations are consistent with the earlier results presented for C f

(Fig. 5) and Prt (Fig. 9). This suggests that the developed GEP models can be relied upon outside of
the parameter space they were developed on. Again, the model trained on case A1 has been shown
to significantly improve the adiabatic wall effectiveness across all the cases studied here.

F. Comparison of modeled and LES temperature field

We have so far shown the capability of the data-driven turbulence heat flux models to improve
the predication of the adiabatic wall effectiveness. It is also of significance to know whether the
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FIG. 18. Comparison of the normalized temperature field obtained from different flux models.

temperature field away from the wall has consistently improved. Figure 18 therefore shows the
normalized temperature profile η at two axial locations (x/s = 25 and x/s = 50) as a function
of wall-normal direction (y/s) for the three cases A1, B2, and C3, using the developed models
compared with the LES data and the EDM with Prt = 0.9. As can be seen, a significant improvement
in the temperature field prediction away from the wall is also achieved across all the cases with
different data-driven models, consistent with the improvements observed earlier for the adiabatic
wall effectiveness shown in Fig. 16 and Table III. These results again highlight the capability of the
developed GEP-based heat flux models in improving the prediction of the temperature field for the
turbulent wall jets with coflow cases studied here.

G. Evaluation of the GEP models in a pure RANS context

We have previously shown the prediction accuracy and robustness of the GEP models when
solving the scalar-transport equation [Eq. (9)] using as input the LES mean velocity field and the
frozen eddy viscosity (νt ) obtained from LES. We chose this strategy to focus on the turbulent heat
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FIG. 19. Comparison of the adiabatic wall effectiveness (ηwall ) obtained from time-averaged LES and
RANS for cases A1 (a), B2 (b), and C3 (c).

flux closures only and exclude any other possible sources of error(s) such that only the contribution
from the heat-flux closures (such as RANS standard eddy diffusivity model with Prt = 0.9 and also
newly GEP-trained models) could be explored.

In this part, the performance of our best-performing model [i.e., αmod,1
t Eq. (18) trained on the

thickest lip wall at BR = 1.26] is evaluated in a pure RANS context for the three cases A1, B2,
and C3 (diagonal of the full test matrix). The baseline 2D RANS calculations were conducted
via the k − ω SST turbulence model using the standard EDM with a commonly assumed value
of Prt = 0.9. The scalar-transport equation [Eq. (9)] was also solved using as input the baseline
RANS velocity and eddy viscosity (νt ) fields with αmod,1

t Eq. (18). Figure 19 compares the adiabatic
wall effectiveness between the time-averaged LES results and the results of the aforementioned
RANS calculations. As can be seen, a significant improvement for the prediction of the adiabatic
wall effectiveness is achieved using the present data-driven heat flux model [αmod,1

t Eq. (18)] in
a RANS context, in particular for the medium- and the thin-lip thickness cases. It is therefore
understood that for a case with strong vortex shedding such as case A1 [see Fig. 19(a)], only
modifying the heat flux model without improving the RANS velocity field may not give the
best result and other methodologies like deriving a model for Reynolds stress are necessary. For
example, a framework for data-driven turbulence modeling of flows with organized unsteadiness
[49] was recently developed. The resulting closures used in URANS and PANS (partially averaged
Navier-Stokes) showed significant improvement of results for a wake with strong vortex shedding.
This framework may therefore give promising results when applied to the wall jets with a thick lip
wall, featuring strong coherent structure in the flow field. However, combining this with developing
improved heat flux models is the topic of our future research.
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IV. CONCLUSIONS

In this work, data-driven models for the turbulent heat flux prediction in wall jets with coflow
were developed using a gene-expression-programming-based machine-learning technique. The
models were trained using invariants constructed from the strain rate and vorticity tensors and the
temperature gradient vector of highly resolved large eddy simulations (LES). In total, nine LES
with various lip wall thickness and blowing ratios were performed, featuring significant differences
in their physical behavior. Three of these cases were selected for model development.

The GEP heat flux closures were developed by adopting gradient-diffusion hypothesis with
the optimization target being a nondimensional parameter αgep, which can be considered as the
inverse of a nonconstant turbulent Prandtl number with a functional dependence on the velocity
and temperature gradients. The developed closures were then tested on all cases to assess their
robustness.

The RANS-based scalar-transport equation was solved using as input the LES mean velocity
field with the standard eddy diffusivity model (EDM) using a commonly assumed value of Prt =
0.9. The well-known overprediction of adiabatic wall effectiveness was observed compared with
the time-averaged LES results. Examination of the turbulent Prandtl number calculated from time-
averaged LES data showed a significant deviation from the commonly assumed value of 0.9, with
a more significant dependence on the lip wall thickness than the blowing ratio. Considering the
developed heat flux models in the present study, some important points can be noted. First, the
examination of the machine-learning models revealed an excellent agreement with the LES turbulent
thermal diffusivity, while the EDM with Prt = 0.9 significantly underpredicted the results. Second,
the developed closures were tested a posteriori in a RANS framework through solving the scalar
transport equation using as input the LES time-averaged velocity and frozen turbulent viscosity
to assess their robustness. The trained heat flux models significantly improved the prediction of
adiabatic wall effectiveness not only for the cases they were trained on, but also for the entire LES
cases’ matrix. In particular, in terms of accuracy and robustness, the model developed on the thickest
lip wall case was the best and led to an error reduction of 63–96% in the adiabatic wall effectiveness
prediction across all the LES cases compared to that of the EDM with Prt = 0.9. However, the model
trained on the thinnest lip wall case showed a more significant improvement in the ηwall profiles of
this particular geometry (80–88% error reduction) compared with applying this model to the other
geometries with thicker lip walls (36–56% error reduction). Third, a significant improvement in the
temperature field prediction away from the wall was also achieved following the application of the
data-driven models across all the cases, consistent with the improvements observed for the adiabatic
wall effectiveness.

Finally, evaluation of the GEP models in a full RANS context was also conducted. The baseline
RANS calculations were conducted via the k − ω SST turbulence model using the standard EDM
with Prt = 0.9. The scalar-transport equation was also solved using as input the baseline RANS
velocity and eddy viscosity (νt ) fields with our best-performing GEP model (trained on the thickest
lip wall case). We observed a significant improvement for the prediction of the adiabatic wall
effectiveness for the medium- and the thin-lip cases, but not for the thickest lip wall case. The latter
observation can be attributed to the poor steady RANS performance for a case that features strong
vortex shedding and coherent structures in its flow field. This therefore implies that for a case where
the effect of organized unsteadiness on the turbulence is important, only modifying the heat flux
model without improving the RANS velocity field may not be sufficient and other methodologies
like deriving a model for the Reynolds stress are necessary.

It is worth mentioning that the generated data-driven models capture the physical properties of the
cases studied (as evidenced by their ability to significantly improve the prediction of adiabatic wall
effectiveness on the training case and previously unseen, and quite different, cases) and therefore
can be utilized for the prediction of the temperature field in turbulent wall jets with coflow for cases
that share similar flow physics to those tested here.
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