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Thin liquid film resulting from a distributed source on a vertical wall
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We examine the dynamics of a thin film formed by a distributed liquid source on a
vertical solid wall. The model is derived using the lubrication approximation and includes
the effects of gravity, upward airflow, and surface tension. When surface tension is
neglected, a critical source strength is found below which the film flows entirely upward
due to the airflow, and above which some of the flow is carried downward by gravity. In
both cases, a steady state is established over the region where the finite source is located.
Shock waves that propagate in both directions away from the source region are analyzed.
Numerical simulations are included to validate the analytical results. For models including
surface tension, further numerical simulations are carried out. The presence of surface
tension, even when small, causes a dramatic change in the film profiles and the speed and
structure of the shock waves.
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I. INTRODUCTION

The motivation for this work was an industrial problem presented by Gore and Associates at the
Mathematical Problems in Industry (MPI) workshop that took place in Claremont, CA in June of
2018. The problem concerned modeling dense porous catalysts in which a gaseous reaction produces
liquid in the interior of the catalyst, which gradually pushes its way out to the exterior surface,
forming drops or films of liquid on that surface. These block the gaseous reactants from entering
the pores and slow down the reaction. To remove the liquid drops or films from the surface, one
option under consideration was to temporarily increase the flow of gas past the surface in the hope
of blowing off the liquid film.

In this work, to gain insight into some of the underlying physics of that problem, we undertake
to model a thin liquid film on a vertical wall, being generated by a finite distributed source of liquid
on the wall to represent the liquid that oozes out of the porous catalyst onto the surface. We include
the effects of gravity, which causes the film to flow downward along the wall, as well as an upward
airflow that, if strong enough, could drag the film up the wall. We also include the effects of surface
tension in our model.

The evolution of film thickness driven by various external driving forces is of much interest
given its applications in many different areas of physics and engineering involving coating flows.
In such flows, if the film is thin in one dimension compared to the others, the so-called lubrication
approximation provides a simpler model for analysis, as opposed to solving the full Navier-Stokes
equations that govern viscous fluid flow. This is the approach we adopt for our model. A review of
lubrication theory is provided in [1].
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Some notable uses of lubrication models for thin liquid films include three-dimensional (3-D)
gravity-driven flow on an inclined plane [2], analysis of the minimum wetting rate in drop spreading
[3], stability of wavy films flowing on an inclined plate [4,5], effects of wall deformation and
time-dependent perturbations on such flows [6,7], and the effect of heating on the instability
[8]. Viscoelasticity [9,10], porosity of the wall [11], waviness of the surface [12,13], and non-
Newtonian constitutive equations [14–16] were also considered in conjunction with the lubrication
approximation. Other related examples include accelerating film flow along a vertical wall [17],
films on the outer surface of a circular tube [18], those on inclined surfaces [19], 3-D droplet models
[20,21], wave dynamics [22], particle-laden films [23], and flows under obstacles [24].

In our present work, we model thin films formed from a finite source region along a vertical
solid wall while considering the effects of gravity, upward airflow, and surface tension. This case is
important since some industrial gaseous chemical reactions that occur in porous catalysts give rise
to liquids on the exterior surfaces that fit within this model.

Only a few authors considered source terms in the thin film equation. A similarity solution for
viscous source flow was described in [25]. In [26], a numerical method for the Reynolds equation
for a steady liquid layer flowing down a slightly inclined plate from a point source was presented.
In [27], the flow of a viscous fluid from a point or line source on an inclined plane was analyzed
while the effect of surface tension was neglected. In [28], liquid flow down a inclined surface was
modeled, with fluid injection occurring through a circle with a parabolic velocity profile; various
injection rates were considered and multiple sources were used to analyze merging droplets.

In our work, we also consider upward airflow and the shear stress that it exerts on the film to
see if liquid can also flow upward against gravity. A few authors considered the role of external
shear stress on drops attached to and falling on surfaces. In [29], the effects of external shear
and substrate permeability on the speed, shape, and wetting transitions of thin attached drops on
a surface were added to the problems originally studied by [20,21]. Experimental work on sliding
drops on a hydrophobic surface were carried out in a wind tunnel by [30] who observed climbing
drops with large shape deformations at high wind speeds. The inclusion of an external shear stress at
the interface lead to thin film equations that were similar to those obtained when Marangoni effects
[31,32] were considered. That model was recently used [33] to provide a more complete explanation
of the “tear drops” on a glass of wine based on the instability of the under-compressive shocks in
the liquid ridge, depending upon the thickness of the film on the glass surface.

In this paper, we derive a mathematical model for film motion along a solid vertical wall in the
form of a partial differential equation for film thickness h(x, t ) as a function of distance x increasing
downward and time t . The final model after scaling will turn out to be ht + (h3 − h2 + αh3hxxx )x =
S(x), where α > 0 is a dimensionless parameter that characterizes the effect of surface tension.
Terms h3 and −h2 represent the downward flux due to gravity and the upward flux due to airflow,
respectively. The right-hand side in this equation is the distributed source, which we take to be
constant S0 over the part of the surface where liquid is oozing out and zero elsewhere.

The main results of this paper are in two parts. In the first part we consider the case α = 0, where
surface tension can be ignored. In many practical conditions, the dimensionless surface tension
parameter is indeed very small. The resulting first-order nonlinear partial differential equation
is analyzed by the method of characteristics. With a uniform source over a finite region, shock
waves will form, with their number and structure depending on S0. For all values of S0, an upward
propagating shock wave will form as the film is carried up by the airflow. However, we obtain
a critical source value Sc, so that if S0 > Sc, a second downward propagating shock wave will
also form, as the excess fluid falls downward due to gravity. A steady-state solution over the
source region (0, 1) is also derived, with dramatically different form depending on whether the
source strength is below or above the threshold value. A numerical solution of the nonlinear partial
differential equation (PDE) is also obtained to validate the results from the method of characteristics.

In the second part of this work, we consider the full model with surface tension effects. Numerical
simulations are carried out for various S0 and α values. The numerical results indicate potential
connections between the solutions of the full model with traveling wave solutions of the thin film
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equation without source. Importantly, we find that even for quite small values of the surface tension
parameter α, there is a significant change in the profile of the thin film and the speed of the shock
waves, as compared to the case with zero surface tension.

II. MODEL DERIVATION

In this section, we provide a brief and intuitive derivation of the main PDE model without
carrying out the detailed scaling analysis that usually accompanies derivations of lubrication models
for thin films in fluid dynamics. The detailed derivation is included in the Appendix to this paper
for those readers who may not be well versed in lubrication theory.

Consider an infinite vertical wall with a uniform viscous liquid film of thickness h coating it and
draining under gravity. The parabolic flow profile in such a fully developed flow (satisfying no-slip
at the wall and zero shear stress at the interface) can readily be obtained and its integration across
the film produces a downward volumetric flow rate (per unit depth) of ρgh3/3μ with ρ the liquid
density, g gravity, and μ the liquid viscosity. Likewise, if, in the absence of gravity, an upward shear
stress τ is applied to the free surface of the film, the resulting fully developed flow profile will
be a linear Couette flow and the upward volumetric flow rate (per unit depth) would be given by
τh2/2μ. Because the equations for fully developed flow are linear, when both effects are present,
the combined volumetric flow rate can be written as

q = ρgh3

3μ
− τh2

2μ
,

with the downward direction considered positive. If we allow the film thickness to be a function
of downward distance x along the plate and time t , but imagine that it varies slowly with x, we
can consider the resulting flux q(x, t ) to have the same form but with h = h(x, t ). The equation of
conservation of mass in one dimension then requires the film thickness h(x, t ) to satisfy

∂h

∂t
+ ∂q

∂x
= 0 .

However, if h is not uniform and varies (slowly) with x and if the interface has surface tension σ , the
pressure within the film will not be uniform and will instead be related to the ambient air pressure
pa by the Young-Laplace equation

p(x, t ) = pa − σ
∂2h

∂x2
,

in which −∂2h/∂x2 is the curvature of the surface. In such a circumstance, the driving force for
gravitational drainage changes from ρg to ρg − ∂ p/∂x in the axial momentum equation. Thus, in
the expression for the downward flow rate, we can replace ρg with ρg + σ∂3h/∂x3. At the same
time, if we allow for a distributed source S(x, t ) in the equation of conservation of mass, imagining
that volume is being injected into the film as a function of position and time, the overall conservation
equation takes the final form:

∂h

∂t
+ ∂

∂x

[
ρg

3μ
h3 − τ

2μ
h2 + σ

3μ

∂3h

∂x3
h3

]
= S(x, t ) .

Upon rescaling the equation as outlined in the Appendix, the dimensionless form of this equation
takes the form

ht + (h3 − h2 + αh3hxxx )x = S , (1)

in which the subscripts refer to partial derivatives and the dimensionless parameter α = σH/(ρgL3),
with H and L defined in the Appendix, quantifies the effect of surface tension.
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III. MODEL WITHOUT SURFACE TENSION

To ignore the effect of surface tension, parameter α is set to zero. Furthermore, the source strength
S(x) is assumed to be uniform over a finite domain of dimensionless length 1, and zero elsewhere,
namely,

S(x) =
{

S0 if x ∈ [0, 1],
0 otherwise .

In this case, we can derive certain results through analysis. We will find that if the source strength
S0 is less than a threshold, the liquid is carried upward by the airflow and none of it falls down due
to gravity. The upper front of the film propagates as a shock front, whose speed we can predict.
When the source strength exceeds the threshold, some of the liquid produced is still carried upward
by the airflow, while the rest falls down due to gravity. Over the region where the source is nonzero,
a steady film profile is achieved in both cases. A numerical solution of the nonlinear film equation
produces results that agree with the analytical predictions. The form of the steady profile over the
source region is dramatically different for source strengths below and above the critical threshold.

A. Simplified model

In the absence of surface tension, the expression for the flux becomes q(h) = h3 − h2 and the
film thickness h(x, t ) satisfies the simplified equation

∂h

∂t
+ (3h2 − 2h)

∂h

∂x
= S(x) ,

with initial condition

h(x, 0) = 0 ,

corresponding to not having any liquid on the wall initially. It will be helpful to notice that as h
increases away from zero, the flux q(h) is initially negative (corresponding to upward flow due to
airflow), reaches a minimum of −4/27 when the height reaches h = 2/3, and then increases back to
zero at h = 1 and into positive values beyond that (corresponding to downward flow due to gravity).
At the same time, the wave speed q′(h) = 3h2 − 2h also initially decreases from zero at h = 0 to a
minimum of −1/3 at h = 1/3, increasing beyond that point and changing sign, becoming positive,
as h passes the value h = 2/3.

B. Characteristic equations

Define z(s) ≡ h[x(s)] and write the above equation along characteristics parameterized by
variable s as

dt

ds
= 1 ,

dx

ds
= 3z2 − 2z ,

dz

ds
= S[x(s)] .

If x remains in the range [0,1] for which S(x) = S0, where S0 > 0 is constant, and replacing s with
t by assuming s = 0 when t = 0, we have

z(t ) = S0t,

x(t ) = S2
0t3 − S0t2 + x0,
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where x0 is the initial point along the x-axis where the characteristic starts, for now taken to be in
the range [0,1]. This solution remains valid until x(t ) reaches one of the boundaries x = 0 or x = 1.

Starting at any value of x0 in our range, the solution x(t ) reaches its minimal value at time
t = 2/(3S0), which is independent of x0. For the characteristic that starts at the bottom point x0 = 1,
this minimum would be at x = 0 if S0 = 4/27. Therefore, as long as

S0 � 4

27

all characteristic lines that start with x0 ∈ (0, 1) do cross the line x = 0 at some finite time. Under
this assumption, define t∗ to be the time at which a characteristic line that start within (0,1) first
reaches x = 0. Once the characteristic line crosses x = 0, it becomes a straight line and it will not
cross the x = 0 line again. We can calculate the straight line expression for t > t∗. Since we are now
in the range x ∈ (−∞, 0) where S(x) = 0, the characteristic equations for t > t∗ become

dH

dt
= 0,

dx

dt
= 3H2 − 2H,

where H is the height function in that region, with initial conditions

H (t∗) = St∗,

x(t∗) = 0 .

Solving these two ordinary differential equations, we have

x(t ) = [
3S2

0 (t∗)2 − 2S0t∗]t − 3S2
0 (t∗)3 + 2S0(t∗)2 .

At a given time t , we can treat the equation above as a third order polynomial with respect to
t∗, and solve for t∗ for the given t and x. Since these characteristics collide with the horizontal
characteristics which emanate from the region x ∈ (−∞, 0), a shock forms right away at location
(x, t ) = (0, 0). If the x-coordinate of the shock is denoted by c(t ), the Rankine-Hugoniot condition
for the shock curve can be used to obtain the speed of the shock, in this case yielding:

dc

dt
= S0t∗(S0t∗ − 1),

with c(0) = 0 and with t∗ a function of t and c, obtained by solving the cubic equation given above.
We applied a forward Euler method to calculate the position of the shock wave numerically. For
each iteration in t , we solve the cubic equation to find t∗ and update the position of the shock.

Figure 1 provides a complete picture of the characteristic curves when the source strength has
its threshold value of S0 = 4/27. The numerical results show that as t → ∞, the shock propagates
at a constant speed of 1/4; this is consistent with our numerical simulations of the nonlinear PDE
reported below for the given source value.

C. Steady-state solution

If a steady-state solution is reached in the region x ∈ (0, 1), the resulting height function must
satisfy d (h3 − h2)/dx = S0, which produces the cubic equation

h3 − h2 = S0x + C

for h(x). When the source strength S0 < 4/27, the steady-state film height remains zero at x = 1,
which makes the constant C equal to −S0. Solving the cubic equation for h(x) will then produce the
correct steady-state profile over x ∈ (0, 1).

064004-5



RUAN, NADIM, AND CHUGUNOVA

0 1 2 3 4 5 6
t

-1

-0.5

0

0.5

1

1.5

2

x

Characteristic line for S = 4/27

FIG. 1. A sketch of characteristic lines with S0 = 4/27; note that the vertical axis is the distance x
increasing downward, and the horizontal axis represents time t . The red line is the shock curve formed through
the intersection of the blue and green characteristics. The blue characteristics emanate outside the source region
and are horizontal. The green characteristic curves emanate from the source region and upon passing x = 0
become straight lines. The yellow characteristics represent an expansion fan emanating from x = 1.

From the method of characteristics, when the source strength exceeds the threshold, i.e., when

S0 � 4

27
,

the characteristic emanating from the initial point x0 = 4/(27S0) ∈ (0, 1) becomes tangent to the
horizontal line x = 0 at time t = 2/(3S0), at which point h[0, 2/(3S0)] = 2/3. Beyond that time,
the height at that location remains constant at value 2/3, which enables us to determine the constant
C for that case. Also in that case, the characteristics starting at x0 > 4/(27S0) (but less than 1), do
not reach x = 0 at any time and instead turn around and exist the domain at x = 1, colliding with the
horizontal characteristics that emanate from the region x0 > 1. This leads to a second shock front
that propagates downward, reflecting the fact that at high source values, some of the flow is carried
downward by gravity.

In order for the steady height to remain constant equal to 2/3 at x = 0, the constant C must be
given by

C =
(

2

3

)3

−
(

2

3

)2

= − 4

27
.

Then steady-state height profile for S0 � 4/27 would be the solution of the new cubic equation

h3 − h2 = S0x − 4

27
.

The two cases for S0 below and above the threshold can be combined to write a single cubic equation
whose solution provides the steady-state film profile h(x):

h3 − h2 = S0x − min

{
S0,

4

27

}
. (2)
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Family of steady state solutions with source range from 0 to 8/27

S= 0
S= 0.037037
S= 0.074074
S= 0.11111
S= 0.14815
S= 0.18519
S= 0.22222
S= 0.25926
S= 0.2963

FIG. 2. The family of steady-state solutions with S0 ranging from 0 to 8/27. The bottom curves are for
source strengths below the threshold and the top curves for those above the threshold.

For source strengths below the threshold 4/27, the steady height remains constant equal to zero at
x = 1, and for those above the threshold, the steady height remains constant equal to 2/3 at x = 0.
These can be verified from the numerical simulation of the nonlinear PDE which is described next.
Figure 2 provides a plot of the family of steady-state film profiles over x ∈ (0, 1) for source values
below and above the threshold 4

27 .

D. Numerical simulations

For our simplified model without surface tension, we now describe the Godunov method that
provides a numerical solution for the time evolution of the film thickness. Godunov’s method [34]
is geared toward conservation equations and treats the density as a piecewise constant over each cell,
with the constant interpreted as the average of the density over the cell. To find the density at the
next time step, fluxes at the cell boundaries are required. These are obtained by solving the so-called
Riemann problem, treating the evolution of the density and flux near the cell boundaries using the
method of characteristics, over a short-enough time step that the characteristics from neighboring
cell edges do not intersect. The time-averaged flux at each edge can then be obtained and the density
in each cell adjusted based on the fluxes entering or leaving the cell through its edges.

1. Godunov method

We discretize the x-domain into N equally spaced subintervals or cells of size �x with point x j

referring to the midpoint of the cell j, whose edges are at x j− 1
2

= x j − �x/2 and x j+ 1
2

= x j + �x/2.
Time domain t is also discretized with time-step �t so that tn = n�t . We denote the average film
thickness over cell j at time level n by

Hn
j = 1

�x

∫ x
j+ 1

2

x
j− 1

2

h(x, tn)dx .
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We integrate the conservation equation ht + qx = S(x) [with q = q(h) = h3 − h2] over the
domain [x j− 1

2
, x j+ 1

2
] × [tn, tn+1] and simplify to obtain

Hn+1
j = Hn

j − 1

�x

∫ tn+1

tn

q
[
h
(
x j+ 1

2
, t

)] − q
[
h
(
x j+ 1

2
, t

)]
dt + �t

�x

∫ x
j+ 1

2

x
j− 1

2

S(x)dx .

Denote the time-average of the flux crossing the edge x j+ 1
2

over the time interval t ∈ [tn, tn+1] as

Q
n
j+ 1

2
= 1

�t

∫ tn+1

tn

q
[
u
(
x j+ 1

2
, t

)]
dt ,

which produces the discrete conservation equation

Hn+1
j = Hn

j − �t

�x

⎛
⎝Q

n
j+ 1

2
− Q

n
j− 1

2
+

∫ x
j− 1

2

x
j− 1

2

S(x)dx

⎞
⎠ .

In Godunov’s method, the time-averaged flux Q
n
j+ 1

2
is approximated as follows [34]

Q
n
j+ 1

2
= Q

(
Hn

j , Hn
j+1

) =
{

minHn
j �θ�Hn

j+1
q(θ ) if Hn

j � Hn
j+1,

maxHn
j+1�θ�Hn

j
q(θ ) if Hn

j > Hn
j+1,

relating the flux to the average heights on either side of the edge at time level n. In our case,
since q(h) = h3 − h2 and h � 0, the only minimum in q(h) occurs at h = 2/3 and the formula
simplifies to

Q
n
j+ 1

2
= max

{
q

[
max

(
Hn

j ,
2

3

)]
, q

[
min

(
Hn

j+1,
2

3

)]}
.

For numerical stability, one must require the time step to be small enough, according to the stability
condition

�t

�x
� 1

2 max j

∣∣q′(Hn
j

)∣∣ .

In the simulations presented below, we take �t/�x = 1/8.

2. Results

In the following, we present results for the case S0 = 5/27, which is above the threshold value
of 4/27. We thus expect some of the flow to be carried downward by gravity, while some portion
is still carried upward by the airflow. We simulate the equation over the region x ∈ [−5, 5] with
�x = 0.025.

Figure 3 presents the film profile at time t = 20 starting with no liquid film for a source strength
of S0 = 5/27 acting over x ∈ [0, 1]. The horizontal lines at heights 1 and 2/3 are drawn for visual
references. Once the film height reaches a value of 2/3 at x = 0, it stays at that value, while the
excess liquid is carried upward (toward negative x values) by the airflow. Some of the liquid also
flows downward (toward positive x values) due to gravity although at time t = 20, only a small
amount has gone past the edge x = 1.

Figure 4 presents the evolution of the film profile from time t = 0 to t = 20 starting with zero
initial film thickness and with a source strength of S0 = 5/27 confined to the region x ∈ [0, 1]. It is
seen that the shock traveling upward (toward negative x values) achieves a fairly constant speed of
propagation.

In Fig. 5 we compare the numerical solution at large times over the range x ∈ [0, 1] to the steady-
state solution over that range which solves Eq. (2). The two results are in excellent agreement.
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Solution plot at t = 20 (S=0.18519, h

0
=0)

FIG. 3. Plot of the numerical solution at time t = 20, with S0 = 5
27 and h0 = 0. The horizontal axis

represents the x-coordinate along the vertical wall, with the positive direction being downward. The vertical
axis is the height of fluid film. Since this source value is larger than critical value 4

27 , we can see two shock
waves, one going upward and one downward.

IV. MODEL WITH SURFACE TENSION

In Sec. II we derived the model with surface tension in the form of Eq. (1) in which dimensionless
parameter α = σH/(ρgL3) measured the relative importance of surface tension. While the previous
section analyzed the system when α = 0, here we will examine the solution when that parameter is
nonzero.

FIG. 4. Evolution of the film profiles from t = 0 to 20 for S0 = 5
27 and h0 = 0. The film height is plotted

as a function of x and t .
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FIG. 5. Comparison of numerical simulation results at large times with the steady-state solution calculated
from Eq. (2) over the range x ∈ [0, 1].

Numerical simulations using COMSOL

For the full model with surface tension, we conduct numerical simulations using the software
COMSOL MULTIPHYSICS for various source strengths S0. We observe some similarities with the
simplified model; however, there are significant differences also. Typically, the simulations were
done on longer spatial intervals (up to 100), though only parts of the intervals are presented to make
the wave structure clearer. Tests with refined discretization gave indistinguishable results. Positivity-
preserving regularization (cf. formula (18) in [35]) for the highest-order derivative term was applied
with two small parameters: ε = 10−4 and δ = 10−5; namely factor h3 that multiplies hxxx in the PDE
was replaced by h3 ≈ [h4/(ε + h)] + δ; this prevents that coefficient from becoming zero when the
film thickness goes to zero. At the far boundaries, the film thickness (and its derivatives) are zero;
since the film does not reach the boundaries during the finite time simulation, one does not need to
deal with the issue of reflection of disturbances from the boundaries. No additional condition (e.g.,
at the contact lines) is needed to solve this fourth-order parabolic initial-boundary-value problem.
We start with an initial film thickness of zero and the film is generated due to the constant source.
COMSOL uses the finite-element method to obtain the solution.

Figure 6 provides a series of simulations over the domain (−15, 15) corresponding to weak
source strengths (below the threshold of 4/27 predicted for zero surface tension). In the top picture,
the dashed lines present the early time evolution snapshots for parameter values: S0 = 4/35 and
α = 0.001, at times: t = 0.8; 2.8; 5.6. The solid lines present the later time evolution snapshots at
times t = 17.2; 37.2; 54.0. A steady state is established over the source region (0,1). For these weak
source values, none of the fluid falls due to gravity (i.e., none moves to the right beyond the edge
x = 1). The fluid that gets transported to the left (upward due to airflow) has a leftmost front that
looks like a typical shock, but the relatively flat region next to that front jumps down to a lower
value (more evident in the middle and bottom panels) across an oscillatory front that propagates at
a different speed from the leftmost front. The left front wave has height 0.783, moving to the left
at speed 0.166; the second left wave is very slow with a speed of about 0.012 and a peak height of
about 0.845. The height of the left front wave does not depend on the source strength, as will be
seen in the middle panel.
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FIG. 6. Weak source simulations indicate the propagation of waves in one direction only: to the left due to
airflow. Top picture: S0 = 4/35, α = 0.001; middle picture: S0 = 4/50, α = 0.001; bottom picture: S0 = 4/50,
α = 0.0001. Refer to the text for more detailed descriptions.

In the middle picture, the dashed lines provide the early time evolution snapshots for S0 = 4/50
and α = 0.001 at times: t = 0.8; 2.4; 6. The solid lines show the later time evolution snapshots at
times: t = 25.2; 36.8; 50.0. The left front wave has height 0.783 and moves to the left with speed
0.173. The second left-going wave is slower with a speed of about 0.107 and a peak height of about
0.845, connecting to a flat part of height 0.384. Changing the source strength does not influence
the height of the left front wave but it moves a bit faster, the height of the second left wave is also
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unchanged but it is moving much faster to the left as we decrease the source strength away from its
threshold value.

In the bottom panel, the dashed lines give the early time evolution snapshots for an even
smaller surface tension case, with parameter values: S0 = 4/50 and α = 0.0001 at times:
t = 0.4; 1.2; 2.4; 7.2. The solid lines provide the later time evolution snapshots at times t =
24.8; 36.4; 55.2. The left front wave has height 0.749 and moves with speed 0.188. The second
left wave is slower with a speed of about 0.138 and a peak height of about 0.806, connecting to
a flat part of height 0.384. Reducing surface tension speeds up the front left wave and lowers its
height, but contrary to the strong source case (presented next) the second wave also speeds up.

It follows from the simulations that the height of the left front wave is not controlled by the
source term and only depends on the surface tension coefficient, as does its speed. The second wave
speed and direction, however, are controlled by the source strength.

Figure 7 presents a set of simulations with stronger source strengths (above the threshold) that
result in two fronts moving in opposite directions. In the top panel, the dashed lines provides the
early time snapshots for parameter values: S0 = 4/15, α = 0.001, at times t = 1.2; 2.0; 2.8; 4.8.
The solid lines are the later time snapshots at t = 16.4; 36.8; 55.6. The left-going front has a height
of approximately 0.783, moving with an approximate speed of 0.168. The right-going front has a
flat part of height 1.132 (peak at 1.573) and it is moving a little slower with a speed of about 0.163.

In the middle panel, the dashed lines are the early time snapshots for parameter values: S0 =
4/15 and α = 0.0001 (a factor of 10 smaller than the top panel) at t = 1.2; 2.8; 5.2; 7.2. The solid
lines are the later snapshots for parameter at times t = 15.6; 35.2; 54.8. The left-going front has
an approximate height of 0.749 and moves with an approximate speed of 0.188. The right-going
front has a flat region of height 1.127 (peak at 1.510) and it is moving a little slower at a speed
of about 0.143. The ten-fold reduction in surface tension from 0.001 to 0.0001 resulted in a faster
propagation of the left front while lowering its height. The right-moving front also has a lower
height but, contrary to the left wave, it slows down.

In the bottom panel, the dashed lines are the early time snapshots for parameter values: S0 = 4/25
and α = 0.001, at t = 1.2; 2.8; 5.2; 7.2. The solid lines are the later time snapshots at times t =
16.4; 36.8; 55.6. The left-going front has height 0.783 and moves with speed 0.173. The right-going
front has a flat part of height 1.132 (peak at 1.573) and it moves slower at a speed of about 0.047.
Reducing the source from 4/15 to 4/25 does not affect the height of the left-going front but increases
its speed, while the right-moving front does not change its height either, but slows down appreciably.

By examining both Figs. 6 and 7 combined, it becomes apparent that for weak source strengths
below the threshold, we have the left-going front and the second left-moving wave. The latter moves
to the left more and more slowly as the source strength approaches the threshold and eventually
changes directions and becomes a right-moving wave as the source-strength increases above the
threshold value. While both of these waves exhibit oscillations before connecting two flat regions,
when the wave moves to the right (due to gravity), it connects a flat region of zero, whereas when it
was moving to the left, it connected two flat regions of finite heights.

Another important observation one can make by comparing the results with surface tension to
those in the complete absence of surface tension (i.e., Fig. 3 from the previous section), is that even a
small amount surface tension (α = 0.001) appreciably slows down the left-moving front and makes
the region behind the left front flat, as opposed to having a clear slope apparent in Fig. 3.

To explore the effect of surface tension on the front propagation, we examine the height and speed
of the left-going wave for a larger set of surface tension parameter values α. Figure 8 (S0 = 4/15)
shows that left-going front speed decreases with height and that as surface tension parameter α

becomes larger, the front height approaches an approximate value of 0.8 (for an even higher value of
α = 0.1 the height is about 0.806, and for α = 0.5 the height is about 0.805). The relation between
the front speed and height seen on the left plot in Fig. 8 can be explained by seeking a traveling
wave solution of Eq. (1) away from the source region. For a left-going wave, if we take h(x, t ) to
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FIG. 7. Strong source simulations indicate propagation of waves in both directions: left-going due to
airflow and right-going due to gravity. Top picture: S0 = 4/15, α = 0.001; middle picture: S0 = 4/15, α =
0.0001; bottom picture: S0 = 4/25, α = 0.001. Refer to the text for more detailed descriptions.

have the traveling wave form h(x + ct ) with c > 0, the PDE away from the source reduces to

ch + (h3 − h2 + αh3h′′′) = constant .

In the flat regions on either side of the front, h′′′ is zero, and to the left of the front, h = 0. This
makes the constant on the right-hand side (RHS) equal to zero and for the flat region of height h,
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FIG. 8. The plot of the left front wave speed versus its height is on the left and the plot of the left front
wave height versus values of α (surface tension coefficient) is on the right.

the traveling wave speed is evaluated to be c = h − h2 (see the red curve on the figure). This is in
approximate agreement with the data points plotted in the figure.

V. DISCUSSION AND CONCLUSION

Let us first compare the cases with and without surface tension to highlight their key differences.
Figure 9 shows two sets of simulations for a source strength of S0 = 4/20 that produces traveling
waves in both direction, with liquid climbing the wall due to airflow (going left in the plots) and
excess liquid falling down due to gravity (going right in the plots). In the top panel, surface tension is
zero (α = 0), while in the bottom panel surface tension is nonzero but rather small (α = 0.001). The
profiles are plotted at the same times indicated in the legend. It is obvious that even for quite small
values of the surface tension parameter, the profiles are strongly affected. In the absence of surface
tension, the left-going waves in the top figure advance at a higher speed and the profiles behind
them have positive slopes that decrease as the front advances. In contrast, in the presence of surface
tension, that front moves left more slowly and behind the front, the profile is flat and maintains
a constant somewhat higher height. On the other hand, the right going waves move a little faster
when surface tension is present, and the constant part of the profile behind those waves connects to
the zero region in front through an oscillatory section with a large peak, to be compared to the flat
profile of the right-going waves without surface tension in the top figure. Since the surface tension
parameter α multiplies the highest (fourth order) spatial derivative term in the governing equation,
it is not too surprising that from a perturbation standpoint, the problem is singular and even quite
small values of the surface tension parameter α significantly modify the behavior of the solution.
Analysis of the nonlinear equation via matched asymptotic expansions is not trivial but is being
pursued.

When the source strength is large enough, this model generates two traveling waves moving left
and right away from the source region, connected through a steady-state film profile directly over the
source area. For subthreshold source strengths, only left-going waves are observed, but there are two
such waves that travel at different speeds. For any of the traveling waves that connect two flat regions
(one possibly of zero height far to the left or right), a Rankine-Hugoniot equation can be obtained
that relates the speed of the moving front to the constant heights on either side of the traveling
“shock.” This is easy to see by substituting a traveling wave ansatz h(x, t ) = h(z), z = x − ct into
the PDE

ht + (h3 − h2 + αh3hxxx )x = 0

away from the source region. This yields

−ch′ + (h3 − h2 + αh3h′′′)′ = 0
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FIG. 9. Comparison of models without (top panel, α = 0) and with (bottom panel, α = 0.001) surface
tension.

with the prime denoting a z-derivative. Integrating the equation once, we have

h3 − h2 + αh3h′′′ = ch + C ,

where C is an integration constant. When a traveling wave connects uniform left and right regions
with heights h− and h+ since h(z)′′′ = 0 as z → ±∞, we find that

h3
− − h2

− − ch− = h3
+ − h2

+ − ch+ = C .

The wave speed c can thus be obtained:

c = (h3
− − h2

−) − (h3
+ − h2

+)

h− − h+
= h2

− + h−h+ + h2
+ − h− − h+ .
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This is consistent with the Rankine-Hugoniot condition that c = [[q(h)]]/[[h]], where q(h) is the flux
and double square brackets indicate the jump in the value of their argument from one side to the
other.

From our numerical simulation results, we can verify that the traveling wave speed is indeed
given by this equation. For instance, consider the small source condition depicted in the middle
panel of Fig. 6. We see two traveling waves both traveling to the left. Denote the flat part of the
height profile from left to right as h1, h2, h3; in that case,

h1 = 0, h2 = 0.783, h3 = 0.384 .

Denote the two wave speed from left to right as c1 and c2. The predicted wave speeds would thus be

c1 = h2
1 + h1h2 + h2

2 − h1 − h2 = −0.170,

c2 = h2
2 + h2h3 + h2

3 − h2 − h3 = −0.106 .

These values closely match the results obtained from studying the plot and extracting the velocities.
To get some sense of the orders of magnitude of the parameters and the applicability of

the lubrication approximation, let us consider a hypothetical case with the following physical
parameters. These are not meant to represent the actual experimental conditions; they are used
here just to shed light on the validity of the lubrication approximation and indicate the orders of
magnitude of the key dimensionless groups. Take the liquid and gas to be water and air at 25◦
C with respective properties: ρw = 997 kg/m3, μw = 8.9 × 10−4 kg/(m s), ρa = 1.18 kg/m3, and
μa = 1.85 × 10−5 kg/(m s). Take the upward airflow velocity to be Ua = 15 m/s and suppose that
a uniform flow of that speed encounters the vertical plate, developing a laminar (Blasius) boundary
layer, reaching the liquid film about � = 5 cm from the bottom of the plate. In that case, the wall
shear stress is given from the standard expression for a laminar boundary layer on a flat plate,
namely,

τ = 0.332ρaU
2
a /

√
Re�,

in which the Reynolds number for the airflow is defined by Re� = ρaUa�/μa. The resulting shear
stress turns out to be τ = 0.404 kg/(m s2). Note that the assumption of a laminar boundary layer in
the air is simply made in order to get an idea of the magnitude of the shear stress that might be acting
on the film by the upward airflow. One can also assume Poiseuille flow in the air layer but it was felt
that at the higher air flow rates, including a boundary layer was more realistic. The characteristic
thickness of the film which is determined by a balance of gravity and airflow is thus calculated to be

H = 3τ

2ρwg
≈ 62 microns,

and if the length of the source region is taken to be L = 1 cm, the lubrication parameter will be
ε = H/L ≈ 0.0062 
 1. The velocity scale for the downward draining of the water film under
gravity is given by U = ρwgH2/μw ≈ 0.042 m/s, making the Reynolds number for water flow
to be Re = ρwUL/μw ≈ 472. While this value is not small, the product ε2Re = 0.018 
 1, so
the neglect of inertial terms in the thin film equation can be justified. Based on these values, the
dimensional threshold value for the source strength is found to be

S0 =
(

4

27

)(
9τ 3

8μwρ2
wg2L

)
≈ 12.9 microns per second.

Finally, for the dimensionless parameter α = σH/(ρwgL3) to have value 10−4, the surface tension
would have to be σ = 0.0158 kg/s2, or ten times higher if α = 10−3. This is in the right range for
water which has a surface tension of about 0.072 kg/s2. So, although the dimensionless surface
tension parameter α is indeed small for water, our analysis shows that the thin films that advance
upward due to airflow, or fall due to gravity are still significantly affected by surface tension.
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APPENDIX: RIGOROUS DERIVATION OF THE LUBRICATION MODEL

Let us model a thin-film driven by gravity and external airflow under the lubrication approxima-
tion. We assume the flow to be two-dimensional with coordinate x along the wall and y normal to
the wall, with respective velocity components u and v, and take the wall to make angle α with
the horizontal direction, which for a vertical wall will become α = π/2. Let us start with the
Navier-Stokes equations with constant viscosity μ and density ρ:

ρ

(
∂ �u
∂t

+ �u · ∇�u
)

= ρ�g − ∇p + μ��u . (A1)

Denote the scale of fluid velocity components �u = (u, v)T by U and V , respectively, the scale of
film thickness by H , and that of the x domain by L. To apply lubrication approximation, we need

ε = H

L

 1 .

The continuity equation for an incompressible liquid reads

∇ · �u = 0 ⇒ ∂u

∂x
+ ∂v

∂y
= 0 .

Since the continuity equation needs to be satisfied exactly, upon balancing the respective scales of
the two terms we find

U

L
= V

H
⇒ V = H

L
U = εU . (A2)

Now from the x-component of Eq. (A1):

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= ρg sin α − ∂ p

∂x
+ μ

(
∂2

∂x2
+ ∂2

∂y2

)
u, (A3)

and using T as the scale for time t and P as that for pressure p, the scales of the seven terms in that
equation, in order, become

ρU

T
,

ρU 2

L
,

ρVU

H
, ρg ,

P

L
,

μU

L2
,

μU

H2
.

Since H/L 
 1, the last term on the RHS of Eq. (A3) is dominant with scale μU/H2, and the term
μU/L2 is smaller by a factor of ε2. To keep the pressure term in balance with the dominant term,
we need the scale P for pressure to be

P = μUL

H2
= μU

ε2L
.

Also for the gravity term to be of similar magnitude:

ρg ∼ μU

H2
⇒ U = ρgH2

μ
,

which determines the scale U of velocity in the x direction under the model that includes gravity.

064004-17



RUAN, NADIM, AND CHUGUNOVA

On the left-hand side (LHS) of Eq. (A3), the second and third terms have scales ρU 2/L by using
the result from Eq. (A2). We choose the timescales T as

T = L

U
,

which is the characteristic time for the flow to traverse a distance L at speed U . As such, all the LHS
terms have scale ρU 2/L and the ratio of the LHS to RHS scales turns out to be

ρU 2/L

μU/H2
=

(
H

L

)2
ρUL

μ
= ε2ReL ,

where ReL = ρUL/μ is the Reynolds number. Under the assumption that ε2ReL 
 1, the inertia
terms on the LHS of the momentum equation are negligible compared to the terms on the RHS.
Hence, to leading order, we can approximate the x-momentum equation by

ρg sin α − ∂ p

∂x
+ μ

∂2u

∂y2
= 0 .

Similarly, the y-component of Eq. (A1) with the same scaling applied to all the terms results in the
leading order equation:

0 = −ρgcos α − ∂ p

∂y
.

We now discuss the boundary conditions on the solid-liquid (y = 0) and liquid-air (y = h)
interfaces. No-slip and no-penetration conditions at the solid-liquid interface would normally
require

u(x, 0, t ) = 0, v(x, 0, t ) = 0 .

However, when a steady fluid source is considered at the interface, with liquid volume emanating
from the porous wall, the condition on the velocity component v changes to v(x, 0, t ) = S(x) where
S(x) is the source strength.

At the liquid-air interface y = h(x, t ), we have kinematic and dynamic boundary conditions. The
normal stress balance at the interface reads as follows:

n̂ · [πair − πliquid] · n̂ = σK, (A4)

where n̂ is the normal vector pointing from the liquid towards the air, and K is the local curvature
of interface, and we have

πair = −patmI, πliquid = −pI + μ

(
2ux vx + uy

vx + uy 2vy

)
.

The normal vector is well approximated by the unit vector in the y-direction since ∂h/∂x has scale
H/L = ε 
 1:

n̂ = ∇[y − h(x, t )]

|∇[y − h(x, t )]| = 1√
1 + (

∂h
∂x

)2

(− ∂h
∂x

1

)
≈

(
0
1

)
.

For curvature K we have

K = ∇ · n̂ ≈ −∂2h

∂x2
.

Substituting into Eq. (A4), we find

−patm + p − 2μ
∂v

∂y
= −σ

∂2h

∂x2
.
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In order for the surface tension term not to be negligible, we need the scale for last term to be
comparable to pressure terms; that is, we must have

σH

L2
∼ 1

ε2

μU

L
⇒ μU

σ
∼ ε3 . (A5)

This corresponds to having a very small capillary number, requiring surface tension to be relatively
large compared to viscous effects. Under this scaling and recognizing that the normal viscous stress
μ(∂v/∂y) is also small compared to the other terms, the normal stress balance simplifies to

p − patm = −σ
∂2h

∂x2
.

Now consider the tangential stress balance at the interface which reads

n̂ · πliquid · t̂ + τ = 0, (A6)

where τ is the upward wind stress exerted by the external airflow and t̂ ≈ (1, 0)T is the unit tangent
at the interface. This equation reduces to

μ

(
∂u

∂y
+ ∂v

∂x

)
= −τ ,

which, given that the scale of ∂u/∂y is much larger than that of ∂v/∂x, simplifies to

μ
∂u

∂y
= −τ .

The kinematic boundary condition at the interface requires

D

Dt
[y − h(x, t )] = 0 ⇒ [y − h(x, t )]t + �u · ∇[y − h(x, t )] = 0 .

This results in
∂h

∂t
= v − u

∂h

∂x
. (A7)

Based on the scales we determined earlier, including the one for time t , we see that all three terms
have comparable scales εU .

Summarizing all the equations and boundary conditions and specializing to the case when the
wall is vertical, i.e., α = π/2, we have

0 = ∂ p

∂y
, (A8)

0 = ρg − ∂ p

∂x
+ μ

∂2u

∂y2
, (A9)

0 = ∂u

∂x
+ ∂v

∂y
, (A10)

which represent, respectively, the y- and x-components of the momentum equation and the
continuity (incompressibility) equation, subject to boundary conditions at y = 0:

u = 0, (A11)

v = S(x), (A12)

and those at y = h(x, t ):

p = patm − σ
∂2h

∂x2
, (A13)
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μ
∂u

∂y
= −τ . (A14)

Differentiating Eq. (A13) with respect to x, we find

∂ p

∂x
= −σ

∂3h

∂x3
.

This term is also independent of y because of Eq. (A8). Integrating Eq. (A9) with respect to y twice,
we obtain

u(x, y, t ) = 1

μ

(
−σ

∂3h

∂x3
− ρg

)
y2

2
+ 1

μ
C1(x, t )y + C2(x, t ) .

Using Eq. (A11), we have C2(x, t ) = 0 and using Eq. (A14), we find

C1 = h

μ

(
ρg + σ

∂3h

∂x3

)
− τ

μ
.

Integrating Eq. (A10) at a fixed location x with respect to y from 0 to h(x, t ), and making use of
Eqs. (A12) and (A7) yields

∂h

∂t
+ ∂q

∂x
= S(x) ,

where the volume flux q has been defined as q = ∫ h
0 u(x, y, t )dy. This definition can be found from

the velocity profile given above to have the explicit form

q = ρg

3μ
h3 − τ

2μ
h2 + σ

3μ

∂3h

∂x3
h3 .

The first term on the RHS represents the downward flow due to gravity and the second term the
updard flow due to the airflow. If surface tension is not as large in magnitude as required by the
scaling (A5), we can ignore the effects of surface tension and drop the last term in the expression
for the flux.

While we derived the above conservation equation and flux expression in dimensional form,
albeit guided by the scaling analysis which indicated which terms could be neglected, at this point
we can go ahead and nondimensionalize the system. Define the starred dimensionless variables by

h = Hh∗, x = Lx∗, t = T t∗, S = SscaleS∗,

with

H = 3τ

2ρg
, T = 4μρgL

3τ 2
, Sscale = 9τ 3

8μρ2g2L
.

Here, lengthscale H corresponds to the film thickness at which the downward flux due to gravity
exactly balances the upward flux due to the wind stress associated with airflow; i.e., the film
thickness at which the first two terms in the expression for flux q balance each other exactly. The
lengthscale L is associated with the distance along the wall, for instance, the length of the region
over which the source is nonzero. By assumption, ε = H/L 
 1. The timescale T in the above
can be shown to be equivalent to T = 3L/U with velocity scale U given by U = ρgH2/μ (simply
replace H with 3τ/2ρg to verify this). The scale for the source emerges naturally from equating the
orders of magnitude of the terms in the conservation equation. Substituting these and and dropping
the superscript star from the dimensionless variables for clarity, we finally have

ht + (h3 − h2 + α h3hxxx )x = S(x), (A15)
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where α = σH/(ρgL3) = ε3/Ca, where Ca = μU/σ is the capillary number based on the velocity
scale U = ρgH2/μ; this is the same as Eq. (1) in the main description. As indicated earlier, in order
for surface tension not to be negligible, the Capillary number needs to be small, of order ε3, which
would make dimensionless parameter α of order unity. The model we derive here is similar to the
thin film model with gravity and Marangoni effects in [31,32]. Note that if airflow is absent and
τ = 0, the above scaling must change. In that case, one can balance the gravity draining term with
the source to obtain an alternative scale H . In such a scaling, adding the stress term will produce a
dimensionless parameter in front of the h2 term in the dimensionless equation that can be varied to
study the role of airflow.
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