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Formation of twisted liquid jets
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Liquid jets issued from a noncircular orifice exhibit oscillation owing to the surface
tension. When the orifice has an n-fold rotational symmetry, a material cross section of the
jet interchanges two symmetric shapes alternately. This oscillation, called axis switching,
is a superposition of two ripples oppositely propagating in the azimuthal direction around
the axis. In this study, we used computer simulations to demonstrate that we can pick up
one of the two ripples by adjusting the initial velocity profile of the orifice. As a result of
the single-wave propagation in the azimuth, the jet surface shows a twisted appearance.
In contrast to the swirling jets, the twisted jet has no angular momentum around the axis.
We numerically demonstrated the formation of twisted jets with various cross sections,
including a regular square.
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I. INTRODUCTION

A liquid jet issued from an elliptical orifice exhibits oscillation, which is known as axis switching.
The major and minor axes of the jet’s cross section interchange alternately [1–3]. The axis switching
of elliptical jets have been studied extensively using theory [4–7], experiments [8–10], and a
combination of both [10,11]. For a comoving observer with the fluid, the axis switching appears
as a standing wave of the boundary curve of the cross section [12]. The surface tension with the
curvature of the boundary is the driving force of the wave.

The axis switching of elliptical jets is a special case of the standing wave in the noncircular
cross section with an n-fold rotational symmetry [1,9,13–15]. The jets with other cross sections
with n > 2 show similar successive alternations between two symmetric states.

We can regard the axis switching as a superposition of two symmetric waves that are oppositely
propagating in the azimuth, as in the general standing waves. In this paper, we show that we can
extract one of the two waves, when the initial velocity at the orifice is appropriately adjusted.
A single wave that propagates in an azimuthal direction causes a twisted appearance of the jet’s
surface, or formation of the twisted prism jet.

It is established that a liquid jet has a helical shape when the fluid is rotating around the central
axis [16–21]. In contrast to the swirling jets, the twisted jets studied in this paper have no angular
momentum around the axes. We focus on the early stages of the oscillation for just a couple of
cycles after exiting from the orifice, while lots of recent studies on the liquid jet oscillations in the
literature focus on the instabilities and breakups [3,8,11,22–29].
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II. METHOD

We considered an inviscid fluid issued from a noncircular aperture with an n-fold rotational
symmetry. We ignored the spatial derivatives of physical variables along the jet. Assuming a uniform
velocity along the jet, the fluid elements left from the orifice at the same time remain in a common
plane. The boundary shape changes due to the surface tension and the curvature in the plane. We
ignored the gravity and pressure gradient in the cross section, when compared to surface tension.

A. Deep water approximation

We first rederive the dispersion relation of the surface oscillation for a jet issued from a
noncircular orifice with an n-fold rotational symmetry. The area of the orifice is πr2

0 , where r0 is the
radius of the reference circle. We consider a two-dimensional dynamics in a material cross section
� of the jet and its circumference �. The radius rs of � at a time t in the cylindrical coordinate
system is given by

rs(ϑ, t ) = r0{1 + δ(t ) cos nϑ − δ(t )2/4}, (1)

where δ is a small (nondimensional) amplitude compared with the reference circle. The last
correction term δ2/4 is necessary to keep the �’s area constant (= πr2

0 ) to O(δ2). We assume that
the velocity v in � is a potential flow, v = ∇ψ , with

ψ = c rn cos nϑ, (2)

where c is a constant. The kinetic energy K is

K = ρ

2

∫
�

v2 dS = ρ

2

∮
�

ψ (rs)vs d	, (3)

where ρ is the fluid mass density and vs is the radial velocity on �. The line element d	 is, from
Eq. (1),

d	 =
√

dr2
s + r2

s dϑ2 (4)

= r0

{
1 + δ cos nϑ + δ2

2

(
n2 sin2 nϑ − 1

2

)}
dϑ, (5)

to O(δ2). As both vs and ψ are of O(δ), only the zeroth order term in Eq. (5) is enough to calculate
K to O(δ2). In other words, we can take the reference circle r = r0 for finding the integral in
Eq. (3). The coefficient c in Eq. (2) is determined by the boundary condition of ψ on r = r0. Using
the time derivative of Eq. (1) to O(δ), we get

v0 = ∂rψ (r0) = r0 δ̇ cos(nϑ ), (6)

or

c = δ̇

n rn−2
0

. (7)

Therefore, the total kinetic energy is given by

K = ρ

2

∮
ψ (r0) v0 r0 dϑ = ρπr4

0

2n
δ̇2. (8)
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However, we have to take the O(δ2) term in Eq. (5) into account in the line integral for finding the
potential energy by the surface tension σ :

U = σ

∮
�

d	 (9)

= 2πσ r0 + σ r0
π (n2 − 1)

2
δ2. (10)

Combining Eqs. (8) and (10), we get the Lagrangian of the system:

L (δ, δ̇) = ρπr4
0

2n
δ̇2 − σ r0π (n2 − 1)

2
δ2. (11)

The solution of the equation of motion shows a harmonic oscillation with the angular frequency

ω = τ−1
σ

√
n(n2 − 1), (12)

with

τσ =
√

ρr3
0/σ . (13)

The dispersion relation Eq. (12) was theoretically derived by Rayleigh [1] and was experimen-
tally confirmed for n = 2, 3, and 4 by him, as well as in other recent experiments [14,15,27].

For experiments, spatial wavelength λ of the oscillation along the jet as a function of Weber
number We is more convenient than the temporal relation (12),

We ≡ ρU 2r0/σ = (U/u0)2, (14)

where U and u0 are jet velocity and characteristic velocity u0 ≡ r0/τσ , respectively. Since λ =
2πU/ω, Eq. (12) means

λ

r0
= 2π

√
We√

n(n2 − 1)
. (15)

This relation is confirmed by experiments [26] and recent three-dimensional numerical simulations
[28,29].

The rn dependency of ψ in Eq. (2), or rn−1 dependency of v means that the flow is almost
absent near the center r = 0 for n � 3, as given in the deep-water theory. We assume that the flow
is localized below the surface in a layer with a constant width ws for n � 3. The kinetic energy to
O(δ2) owing to the localized flow in the layer is approximated by

K = ρ

2
ws

∮
�

v2
0 d	 = ρπr3

0ws

2
δ̇2. (16)

Comparing Eqs. (8) and (16), we obtain the width

ws = r0

n
, (17)

is inversely proportional to the azimuthal mode number n. The mass in the layer is estimated as

M ′ = 2πr0ρws = 2M/n, (18)

where M is total mass in the cross section; M = ρπr2
0 . We assume that Eq. (18) is also valid for

n = 2. This is consistent with the fact that the flow for n = 2 spans the full radius (v ∝ r). Therefore,
the mass in the “layer” should be M ′ = M.

By ignoring the pressure gradient in the cross section �, we numerically solve the motion of �

by discretizing it as an N-polygon and allocating point masses on the vertices. The surface tension
and the pressure forces act on the N particles which carry the fluid momentum in the layer ws.

064002-3



AKIRA KAGEYAMA AND YUNA GOTO

Although the potential flow is assumed in the above derivation of Eq. (12), we apply this simulation
method, surface point method, not only to the irrotational flows, but also to the general flows.

B. Discretization and forces

Let xi and ẋi be the position and velocity of the ith particle (1 � i � N ) on �. The momentum
of the particle is given by

pi = me ẋi, (19)

where me is the “effective” mass of the particles. According to Eq. (18), it is given by

me = 2m0/n (n � 2), (20)

where m0 = M/N
We define three kinds of tangential vectors t i+, t i−, and t i as

t i+ = xi+1 − xi, (21)

t i− = xi − xi−1, (22)

and

t i = t i+ + t i−
2

= xi+1 − xi−1

2
. (23)

We use the hat symbol to denote the unit vectors such as t̂ i+ = t i+/|t i+|. The unit normal vector in
the � plane is given by

n̂i = t̂ i × êz, (24)

where êz is unit vector perpendicular to �.
It is simple to calculate the surface tension force Fs

i on xi as

Fs
i = σ (t̂ i+ − t̂ i−). (25)

The pressure force F p
i acting on the line segment |t i| for the particle xi is given by

F p
i = (p − p0)n̂i, (26)

where p and p0 are the internal pressure in the � and the external atmospheric pressure. They satisfy
the Laplace relation,

p(	) − p0 = k(	)σ, (27)

where k is the curvature, and 	 is the length along �, measured from any reference point. We assume
a constant pressure given by the following average:

p = p0 + 1

L

∮
k(	)σ d	 = p0 + 2πσ

L
, (28)

where L is the total length of �. To maintain the incompressibility (area conservation) of the jet, we
assume the following polytropic relation

p(t ) = p0 + 2πσ

L(t )

{
A0

A(t )

}γ

, (29)

where L(t ) is the �’s length at time t , and A(t ) is the �’s area whose initial value (orifice’s area) is
A0. The γ is an arbitrary large number; we set γ = 1000 for this study.
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FIG. 1. Sample initial cross sections with the same area A0 = πr2
0 . In the simulations, we set r0 = 0.01

(m). The length is normalized by r0.The dashed green curve is the reference circle with radius r0. The dotted
line denotes a regular square that is used in the simulations in Sec. IV. The purple curve is an example (n = 4)
of trigonometric profiles with δ = 0.1 simulated in Sec. V.

C. Basic equations of the surface point method

To summarize, we solve the following equations for a cross section � with an n-fold rotational
symmetry:

d pi

dt
= F p

i + Fs
i , (30)

dxi

dt
= pi/me, (31)

where Fs
i is the surface tension,

Fs
i = σ (t̂ i+ − t̂ i−), (32)
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FIG. 2. Time development of the surface on the polar axis (ϑ = 0) for a small amplitude oscillation δ =
0.02 with n = 2. The horizontal axis represents time normalized by τσ and the vertical axis represents the
oscillation amplitude normalized by r0.
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FIG. 3. Time development of potential energy, kinetic energy, and their sum in the simulation for δ = 0.02
with n = 2. Time is normalized by τσ and the energy is normalized by r0σ .

and F p
i is the pressure difference force,

F p
i = 2πσ

L(t )

{
A0

A(t )

}γ

n̂i. (33)

L(t ) and A(t ) are the length of � and the area of � that are respectively calculated by

L(t ) =
N∑

i=1

|t i| (34)

and

A(t ) = 1

2

N∑
i=1

xi · n̂i |t i|. (35)
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FIG. 4. Same as described in the caption of Fig. 2, except that n = 3.
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FIG. 5. Nondimensional angular frequency, ω normalized by τ−1
σ , as a function of the azimuthal mode

number n.Simulation data (solid green) are taken from the trigonometric profiles with δ = 0.02. The theoretical
data (dashed purple) are given by Eq. (12).

In the following simulations, we consider jets with A0 = πr2
0 with r0 = 0.01 (m). The particle

number N is 100 in all the simulations. The mass density and the surface tension are ρ = 998
(kg/m3) and σ = 73 × 10−3 (N/m), respectively.

FIG. 6. Graph in the upper middle section is the time development of oscillation amplitude normalized by
r0 for the trigonometric jet with δ = 0.1 and n = 2, for theory (dashed purple) and simulation (solid green).
The snapshots shown around the graph are the cross sections of the jet at the designated times, for theory
(dashed line) and simulation (solid line). The theoretical and simulated profiles almost overlap completely.
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FIG. 7. Same as described in the caption of Fig. 6, but with the mode number n = 3.

Time and length will be presented in nondimensional values normalized by τσ = 1.17 × 10−1 (s)
and r0. The dashed green circle in Fig. 1 depicts the reference circle of radius r0. The purple curve
is an example of the trigonometric profile of Eq. (1) with n = 4 and δ = 0.1.

During the simulation, the spacing between the neighboring particles on � may become
nonuniform due to the imbalance of the tangential inertia of the particles. To fix the nonuniformity,
we apply the following re-distribution procedure: We select three consecutive particles, Pi−1, Pi, and
Pi+1, in the N particles. Then, we calculate a circle that passes through the three particles. We shift
the middle particle Pi along the arc Pi−1Pi+1 so that it is located just on the middle point of the arc.
Note that the amplitude of the surface tension force Fs acting on Pi, which is inversely proportional
to the radius of the local arc, does not change in this shift.

We apply the above procedure consecutively for every three triplet {i + 1, i, i − 1} for all 1 � i �
N in one turn of the redistribution procedure. (In the simulation, the particle P0 is identical to PN ,
and so PN+1 = P1). We repeat the turns until the spacing �i between the particle pairs Pi and Pi−1

is sufficiently uniform. The criterion for the uniformity is that max(�i ) − min(�i) < 0.01 × �L,
where �L is the average spacing; �L = L/N . We have found just one turn for each time step in the
following simulations.

III. VALIDATION

To validate the surface point method, we compare the simulations with the Rayleigh’s theory. A
trigonometric orifice with the azimuthal mode number n is taken. The initial profile of the particles
is given by Eq. (1). The initial velocity of each particle is zero.

Figure 2 shows the oscillation for the mode n = 2 with the initial (nondimensional) amplitude
δ = 0.02. The horizontal axis is normalized time and the vertical axis is normalized position of the
surface that crosses the polar axis (ϑ = 0). The two curves obtained by theory (dashed purple) and
simulation (solid green) are in good agreement. This figure shows the time span for two cycles.
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FIG. 8. Cross sections of the regular square jet. The panels (a) to (i) are a time sequence of snapshots with
constant intervals. The velocity of each particle in the initial condition is absent.

The oscillation frequency estimated by the simulation for the first cycle is ω s = 2.44 τ−1
σ , which

coincides with the theoretical value ω t = 2.44 τ−1
σ given by Eq. (12).

To visualize the energy conversion between the potential energy U ≡ σ (
∑

i |t i| − 2π r0) and
the kinetic energy K ≡ ∑

i p2
i /(2me), we plot in Fig. 3 time developments of the energies and their

sum. During the first cycle of the oscillation (0 � t � τ ∼ 2.57 in normalized time), the energy
conversion is observed for two times. This reflects two symmetric states in the axis-switching of the
jet. The first conversion from U to K (0 � t � τ/4) is driven by the cross section of horizontally
long oval. The second conversion from U to K (τ/2 � t � 3τ/4) is driven by vertically long oval.
In the recent three-dimensional direct numerical simulation of the elliptic [28] and rectangular [29]
cross sections, the symmetric energy conversions as well as the pressure distribution in the cross
section are analyzed in detail. The gradual decay of the total energy (dashed line in Fig. 3) is due to
the numerical error of surface point method.

Figure 4 shows the oscillation for the mode n = 3. Other parameters such as δ are the same as
those in Fig. 2. Again, the simulation result is in good agreement with the theory. The estimated
frequency from the simulation is ω s = 4.88 τ−1

σ , while the theoretical value is ω t = 4.90 τ−1
σ .

To confirm the mode number dependency, n(n2 − 1), in the frequency ω [Eq. (12)], we performed
other linear simulations with different n values. The results are summarized in Fig. 5. The surface
point method successfully reproduces the dispersion relation.

Now, we apply the simulation for the larger amplitudes; δ = 0.1. The graph in the upper middle
in Fig. 6 is the same as Fig. 2; the time development of the oscillation amplitude for n = 2 is given by
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FIG. 9. Profile of the square jet (solid purple) and the initial velocity profile on the surface (dashed green)
used in the simulation. The initial profile (normalized by r0) is a regular square with the same area as that of
the reference circle πr2

0 . The velocity has only the radial component as depicted by the arrows.

the dashed curve (theory) and solid curve (simulation). The oscillation frequency estimated from the
simulation is ω s = 2.40 τ−1

σ . Compared with the theoretical value [ω t = 2.44 τ−1
σ ], the relative error

is 1.9 %. We placed five snapshots of the simulated cross section � at designated times by arrows
around the graph. In these cross sections, the jet surfaces obtained by the simulation and theory are
denoted by the solid and dashed curves, respectively. They overlap almost completely in this case.

Figure 7 is the same as Fig. 6 except the mode number n = 3. The oscillation frequency estimated
from the simulation is ω s = 4.79 τ−1

σ . The relative error compared with the theory [ω t = 4.90 τ−1
σ ]

is 2.1 %. The above simulations suggest that the surface point method can predict the frequency
with an accuracy of about 2 % as long as the oscillation amplitude δ � 0.1, at least during the first
cycle.

IV. TWISTED SQUARE JET

Here, we consider an orifice of regular square with area πr2
0 , which is shown by dotted lines in

Fig. 1. The “amplitude” of the regular square is comparable to the trigonometric profile with n = 4
and δ = 0.1 on the polar axis, as indicated by black, green, and purple dots in Fig. 1.

In simulations described in the previous section, the surface particles are all stationary (no
velocity) at t = 0 before moving by the imbalance between the surface tension and the pressure
forces. As we solve the time development of each particle by Eqs. (30) and (31) in surface point
method, it is possible to specify a nonzero velocity profile in the initial condition. We show in this
section that shape of the surface � exhibits rotation for some initial velocities.

Before showing the rotation, we first present a standard oscillation or axis switching of the regular
square in Fig. 8. The four edges in the initial condition, shown in Fig. 8(a), are parallel to the lines
x = ±1 and y = ±1. (Here, x and y axes are temporarily defined for convenience of explanation.)
We slightly rounded the four corners of the square to avoid singular tension on the vertices. The
velocity of each particle on the surface is zero in the initial condition. Figures 8(a) to 8(i) are the
snapshots taken with a constant interval. The interval is one-fourth of the period τ = 0.844 τσ ,
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FIG. 10. Cross sections of the regular square jet. The panels (a) to (i) are a time sequence of the snapshots
with constant intervals. Each particle on the surface of the cross section moves mainly in the radial direction.
The rotating appearance comes from the ripple propagating on the surface in a clockwise direction.

which is measured by the surface position on the polar axis (+x axis). To elaborate, we monitor the
x coordinate, xcross, of the surface � that crosses the polar axis and measure the time for one period
of the oscillation; the initial minimum of xcross is in Fig. 8(a), and xcross increases to its maximum
value in Fig. 8(c); then it gets back to the minimum in Fig. 8(e). The period τ is defined by the time
from Fig. 8(a) to Fig. 8(e). Incidentally, from the Rayleigh’s theory [Eq. (12)], the period is found
to be 0.811 τσ for n = 4.

As shown in the previous studies [13,15,27], the profile of the cross section demonstrates a
periodic deformation and interchanging of the two configurations with the same shape but different
angles. The surface tension pulls the particles near the four vertices in the initial configuration
[Fig. 8(a)]. The pulled particles form four new edges that are parallel to x + y = ±1 and x − y =
±1. The profile of the cross section at t = τ/4 is close to a regular octagon [Fig. 8(b)]. The length of
the newly born edges grow until it thoroughly erodes the original edges (x = ±1 and y = ±1). The
profile then becomes a regular square with edges parallel to x + y = ±1 and x − y = ±1 [Fig. 8(c)].
The transition from the initial square [Fig. 8(a)] to the rotated square [Fig. 8(c)] extends similarly
from Fig. 8(d) to Fig. 8(g), and thereafter. This alternate transition of the two configurations is the
axis switching in the fourfold rotational symmetry.

We now set nonzero velocity to the surface particles on the regular square in the initial condition.
Velocity of the ith particle in the cylindrical coordinate system is given by

vi = (
vi

r, v
i
ϑ

) = (u sin(4ϑi ), 0), (36)
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FIG. 11. Twisted square jet obtained by the simulation. The normalized flow speed along the jet is assumed
be U = 44.7 u0, or We = 2000. The length of the jet is 77 r0. The amplitude of the initial perpendicular velocity
u = 0.894 u0. Panels (a) to (e) correspond to the cross sections shown in Fig. 10 with the same labels.

with u = 0.894 u0. The profile is shown in Fig. 9. The velocity u pushes the vertical edge (x =
const.) in the first quadrant to the outward direction, while it pulls the horizontal edge (y = const.)
to the inward direction in the same quadrant.

Figure 10 shows a sequence of cross sections taken by the same procedure as in Fig. 8: We first
defined the period τ of the oscillation by monitoring the coordinate xcross of the surface that crosses
the +x axis, from the initial minimum [Fig. 10(a)] to the next minimum [Fig. 10(e)] and have found
that τ = 0.860 τσ . We took snapshots of the cross sections with constant interval of a fourth of τ

from Fig. 10(a) to Fig. 10(i), for 2τ .
During the time span, the square profile rotates for 180◦. However, the apparent rotation of

the surface curve does not mean the actual rotation of the surface particles around the center, in
contrast to the swirling jets [16–21]. In fact, each of the surface particle moves almost only in the
radial direction. The absence of swirling is natural, as the total angular momentum of the surface
particles is zero in the initial condition; the azimuthal velocity vi

ϑ = 0 [see Eq. (36)]. (Although,
the conservation of the angular momentum is slightly violated in the redistribution procedure of the
particles).

The rotation of the square profile is not sensitive to the value of the perpendicular velocity u: The
turning also appears when u = 0.179 u0, which is 20% of the value adopted in the simulation that is
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FIG. 12. Profiles of the initial surface (dashed green curve) and the radial velocity (solid purple curve)
for the trigonometric profile (normalized by r0) with the azimuthal mode number n = 3, with nondimensional
amplitude δ = 0.1.

shown in Fig. 10, although the square profiles are not as sharp as in Fig. 10. The rotation disappears
when u is 10%, i.e., u = 0.0894 u0.

As the sequence from Fig. 10(a) to Fig. 10(i) indicates, the initial velocity given by Eq. (36)
leads to the clockwise rotation of the square. Observing the velocity profile in Fig. 9, we can infer
the reversed velocity, as follows,

vi = (
vi

r, v
i
ϑ

) = (−u sin(4ϑi ), 0), (37)

would lead to the counterclockwise rotation. We have confirmed that it is the case.
As the z component of the velocity U of the jet is supposed to be uniform in the surface point

method, we can construct the three-dimensional surface of the jet from the two-dimensional curves
� in each time. We put together surface polygons by consecutively connecting the surface points at
time t on z = U × t and points at t + �t on z = U × (t + �t ). We used the ray tracing software
POV-Ray to render the surface of the twisted jet, which was constructed in a perspective view; see
the left part of Fig. 11. In this rendering, we assume U = 44.7 u0, or We = (U/u0)2 = 2000. The
length of the jet Lz = 77 r0. The cross section rotates for about 180◦ during this distance. In the right
part of this figure, Figs. 11(a) to 11(e) are the cross sections at the designated location (or time),
which are the same as the ones in Fig. 10.

V. TWISTED JETS OF OTHER CROSS SECTIONS

The twisted square jet described in the previous section was formed by adjusting the azimuthal
phase of the vr (ϑ ) profile in the initial condition. Similarly, we can construct the twisted jets issued
from the n-trigonometric orifices given by Eq. (1). For the formation of twisted jets, we set the initial
velocity profile as

vi = (
vi

r, v
i
ϑ

) = (−u sin(nϑi), 0), (38)

064002-13



AKIRA KAGEYAMA AND YUNA GOTO

FIG. 13. Twisted prism jet with quasitriangular cross section. The initial profile (the orifice denoted by
blue) is given by the trigonometric profile with n = 3 and δ = 0.1.

where u is the same value as given in Fig. 10; u = 0.894 u0. Figure 12 shows the case with n = 3
and δ = 0.1. The solid purple curve depicts the quasitriangular profile. The dashed green curve
denotes the profile of vr . The two arrows in the figure exemplify the velocity on the surface; the
velocities have only the radial component. Figure 13 shows the simulation results. As in the case
of Fig. 11, we set U = 44.7 u0 for the rendering of the jet with the same length Lz = 77 r0. The
twisted quasitriangular jet is formed.

Figure 14 compiles the twisted prism jets by n-trigonometric orifices with n = 2, 3 (same as
Fig. 13), 4, 5, and 6, from left to right. The initial perpendicular velocity u, parallel velocity U , and
the jet’s length Lz are the same as those given in Fig. 13.

VI. SUMMARY

A liquid jet issued from a noncircular aperture with an n-fold rotational symmetry exhibits
characteristic surface oscillation called axis-switching. For an observer moving with the fluid, the
axis-switching is a standing wave of the liquid boundary in a material cross section.

The standing wave is a superposition of two, oppositely propagating, symmetric ripples. We
have shown that we can launch one of the two ripples that propagates in a single azimuthal
direction by adjusting the perpendicular velocity profile at the orifice. The single ripple propagating
in an azimuthal direction means the formation of a twisted surface of the jet. The twisted jet
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FORMATION OF TWISTED LIQUID JETS

FIG. 14. Twisted jets with n-trigonometric cross sections. n = 2, 3, 4, 5, and 6, from left to right. The jet
length Lz = 77 r0 and the nondimensional amplitude δ = 0.1 are all the same.

is robust in the sense that it is not very sensitive to the value of the perpendicular velocity
amplitude.

The perpendicular velocity on the orifice has only r component in the cylindrical coordinates.
This means that the angular momentum about the jet axis is zero, in contrast to the swirling jets.
This also means that the flow is not a potential flow as the vorticity ωz = −(1/r)(∂ϑvr ) is not zero
on the surface. To realize the twisted jet in the laboratory experiments, we have to inject ωz to the
flow before exiting from the orifice.

We have developed a simple two-dimensional simulation model, the surface point method, for
the surface oscillation. Despite its simplicity, this method can successfully simulate the surface
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oscillation at least for a couple of first cycles. A limitation of this method is that it cannot simulate
complex cross sections with multiple azimuthal modes, as the “effective mass” [Eq. (20)] of each
particle implicitly assumes a single mode. However, this would not be a problem as long as the
axis-switching or twisted jet is of interest, as these are observed in cross sections with an n-fold
rotational symmetry.

The experimental verification of the twisted prism jet is an intriguing challenge. In this paper,
we have ignored the gravity and the surrounding air. When the jet velocity or Weber number is
large, the interaction with the surrounding air would not be negligible. However, when the jet
velocity is small, the gravity takes effect. When a slow jet is ejected in a vertically downward
direction, the gravity acceleration changes the cross-sectional area of the jet. Even in that case,
the twisted jet would be observed because gravity plays no role in the horizontal dynamics of a
cross-section observed in a frame of reference falling with the cross-section, except for the temporal
decrease of the cross-sectional area. One technical difficulty for experiments would be to impose an
appropriate perpendicular velocity profile at the orifice. One immediate suggestion is to place small
perpendicular vents just before the orifice.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant No. 17H02998 and the GSC-ROOT
Program.

[1] L. Rayleigh, On the capillary phenomena of jets, Proc. R. Soc. London 29, 71 (1879).
[2] G. Taylor, Formation of thin flat sheets of water, Proc. Roy. Soc. London. Ser. A, Math. Phys. Sci. 259, 1

(1960).
[3] J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71, 036601 (2008).
[4] S. E. Bechtel, The oscillation of slender elliptical inviscid and Newtonian jets: Effects of surface tension,

inertia, viscosity, and gravity, J. Appl. Mech. 56, 968 (1989).
[5] S. E. Bechtel, M. G. Forest, N. T. Youssef, and H. Zhou, The effect of dynamic surface tension on the

oscillation of slender elliptical Newtonian jets, J. Appl. Mech. 65, 694 (1998).
[6] G. Amini and A. Dolatabadi, Capillary instability of elliptic liquid jets, Phys. Fluids 23, 084109 (2011).
[7] C. Pitrou, One-dimensional reduction of viscous jets. II. Applications, Phys. Rev. E 97, 043116 (2018).
[8] T. V. Kasyap, D. Sivakumar, and B. N. Raghunandan, Flow and breakup characteristics of elliptical liquid

jets, Int. J. Multiphase Flow 35, 8 (2009).
[9] A. Jaberi and M. Tadjfar, Wavelength and frequency of axis-switching phenomenon formed over

rectangular and elliptical liquid jets, Int. J. Multiphase Flow 119, 144 (2019).
[10] S. Gu, L. Wang, and D. L. S. Hung, Instability evolution of the viscous elliptic liquid jet in the Rayleigh

regime, Phys. Rev. E 95, 063112 (2017).
[11] G. Amini, Y. Lv, A. Dolatabadi, and M. Ihme, Instability of elliptic liquid jets: Temporal linear stability

theory and experimental analysis, Phys. Fluids 26, 114105 (2014).
[12] M. Tadjfar and A. Jaberi, Effects of aspect ratio on the flow development of rectangular liquid jets issued

into stagnant air, Int. J. Multiphase Flow 115, 144 (2019).
[13] J. F. Geer and J. C. Strikwerda, Vertical slender jets with surface tension, J. Fluid Mech. 135, 155 (1983).
[14] E. J. Gutmark and F. F. Grinstein, Flow control with noncircular jets, Annu. Rev. Fluid Mech 31, 239

(1999).
[15] K. R. Rajesh, R. Sakthikumar, and D. Sivakumar, Interfacial oscillation of liquid jets discharging from

noncircular orifices, Int. J. Multiphase Flow 87, 1 (2016).
[16] J. Ponstein, Instability of rotating cylindrical jets, Appl. Sci. Res. 8, 425 (1959).
[17] D. A. Caulk and P. M. Naghdi, The influence of twist on the motion of straight elliptical jets, Arch. Ration.

Mech. Anal. 69, 1 (1979).

064002-16

https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1115/1.3176198
https://doi.org/10.1115/1.3176198
https://doi.org/10.1115/1.3176198
https://doi.org/10.1115/1.3176198
https://doi.org/10.1115/1.2789113
https://doi.org/10.1115/1.2789113
https://doi.org/10.1115/1.2789113
https://doi.org/10.1115/1.2789113
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.3626550
https://doi.org/10.1103/PhysRevE.97.043116
https://doi.org/10.1103/PhysRevE.97.043116
https://doi.org/10.1103/PhysRevE.97.043116
https://doi.org/10.1103/PhysRevE.97.043116
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.006
https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.006
https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.006
https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.006
https://doi.org/10.1103/PhysRevE.95.063112
https://doi.org/10.1103/PhysRevE.95.063112
https://doi.org/10.1103/PhysRevE.95.063112
https://doi.org/10.1103/PhysRevE.95.063112
https://doi.org/10.1063/1.4901246
https://doi.org/10.1063/1.4901246
https://doi.org/10.1063/1.4901246
https://doi.org/10.1063/1.4901246
https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.011
https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.011
https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.011
https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.011
https://doi.org/10.1017/S0022112083003006
https://doi.org/10.1017/S0022112083003006
https://doi.org/10.1017/S0022112083003006
https://doi.org/10.1017/S0022112083003006
https://doi.org/10.1146/annurev.fluid.31.1.239
https://doi.org/10.1146/annurev.fluid.31.1.239
https://doi.org/10.1146/annurev.fluid.31.1.239
https://doi.org/10.1146/annurev.fluid.31.1.239
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.006
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.006
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.006
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.006
https://doi.org/10.1007/BF00411768
https://doi.org/10.1007/BF00411768
https://doi.org/10.1007/BF00411768
https://doi.org/10.1007/BF00411768
https://doi.org/10.1007/BF00248407
https://doi.org/10.1007/BF00248407
https://doi.org/10.1007/BF00248407
https://doi.org/10.1007/BF00248407


FORMATION OF TWISTED LIQUID JETS

[18] P. Billant, J. M. Chomaz, and P. Huerre, Experimental study of vortex breakdown in swirling jets, J. Fluid
Mech. 376, 183 (1998).

[19] P. J. Kubitschek and D. P. Weidman, Helical instability of a rotating viscous liquid jet, Phys. Fluids 19,
114108 (2007).

[20] G. A. Siamas, X. Jiang, and L. C. Wrobel, Dynamics of annular gas-liquid two-phase swirling jets, Int. J.
Multiphase Flow 35, 450 (2009).

[21] Y. Wang and V. Yang, Central recirculation zones and instability waves in internal swirling flows with an
annular entry, Phys. Fluids 30, 013602 (2018).

[22] W. T. Pimbley, Drop formation from a liquid jet: A linear one-dimensional analysis considered as a
boundary value problem, IBM J. Res. Dev. 20, 148 (1976).

[23] S. P. Lin, Breakup of Liquid Sheets and Jets (Cambridge University Press, Cambridge, UK, 2003), p. 286.
[24] H. Park, S. S. Yoon, and S. D. Heister, On the nonlinear stability of a swirling liquid jet, Int. J. Multiphase

Flow 32, 1100 (2006).
[25] Z. Liu and Z. Liu, Instability of a viscoelastic liquid jet with axisymmetric and asymmetric disturbances,

Int. J. Multiphase Flow 34, 42 (2008).
[26] G. Amini and A. Dolatabadi, Axis-switching and breakup of low-speed elliptic liquid jets, Int. J.

Multiphase Flow 42, 96 (2012).
[27] F. Wang and T. Fang, Liquid jet breakup for noncircular orifices under low pressures, Int. J. Multiphase

Flow 72, 248 (2015).
[28] M. R. Morad, M. Nasiri, and G. Amini, Numerical modeling of instability and breakup of elliptical liquid

jets, AIAA J. (2020).
[29] M. R. Morad, M. Nasiri, and G. Amini, Axis-switching and breakup of rectangular liquid jets, Int. J.

Multiphase Flow 126, 103242 (2020).

064002-17

https://doi.org/10.1017/S0022112098002870
https://doi.org/10.1017/S0022112098002870
https://doi.org/10.1017/S0022112098002870
https://doi.org/10.1017/S0022112098002870
https://doi.org/10.1063/1.2800371
https://doi.org/10.1063/1.2800371
https://doi.org/10.1063/1.2800371
https://doi.org/10.1063/1.2800371
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.001
https://doi.org/10.1063/1.5000967
https://doi.org/10.1063/1.5000967
https://doi.org/10.1063/1.5000967
https://doi.org/10.1063/1.5000967
https://doi.org/10.1147/rd.202.0148
https://doi.org/10.1147/rd.202.0148
https://doi.org/10.1147/rd.202.0148
https://doi.org/10.1147/rd.202.0148
https://doi.org/10.1016/j.ijmultiphaseflow.2006.05.002
https://doi.org/10.1016/j.ijmultiphaseflow.2006.05.002
https://doi.org/10.1016/j.ijmultiphaseflow.2006.05.002
https://doi.org/10.1016/j.ijmultiphaseflow.2006.05.002
https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.001
https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.001
https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.001
https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.001
https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015
https://doi.org/10.2514/1.j058930
https://doi.org/10.2514/1.j058930
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103242
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103242
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103242
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103242

