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Microroughness-induced disturbances in supersonic blunt body flow
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To identify the mechanism triggering boundary layer transition on a spherical forebody
of an Apollo type re-entry capsule direct numerical simulations of perturbed flow are
analyzed. The perturbations are generated by deterministic distributed surface roughnesses
that resemble model surface imperfections that are mounted on a capsule model and
are experimentally investigated in Radespiel et al. [J. Spacecr. Rockets 56, 405 (2019)].
Therein, the role of distributed roughness in the transition scenario was highlighted but the
mechanism remained unclear. In this manuscript, the sensitivity of the flow perturbations
with respect to the roughness layout is investigated. The great span of spatial scales,
i.e., capsule diameter, boundary layer thickness, and micro-size roughness, define the
requirements of the numerical method. Modifications to a finite-volume unstructured
Cartesian cut-cell method to meet these requirements are presented. The receptivity of
the capsule boundary layer to the roughness and the subsequent disturbance growth are
analyzed. The roughness properties at the most downstream position govern the flow
perturbation. The impact of the streamwise character of the roughness layout is intensified
by increasing the Reynolds number of the flow. The growth mechanism is identified as
transient growth and the most amplified disturbances are compared to the results of optimal
transient growth theory. Streamwise vortices cause growth via the lift-up effect. However,
the wall normal scales of optimal and roughness induced disturbance differ significantly
leading to suboptimal growth.

DOI: 10.1103/PhysRevFluids.5.063903

I. INTRODUCTION

The state of a boundary layer covering a solid body, which can be laminar, transitional, or
turbulent, highly influences the balance of momentum and energy between body and fluid. As a
direct consequence, propulsion, gravity, or loss of momentum balance the body forces and thermal
loads need to be sustained. The latter problem is a major aero- and aerothermodynamic design
parameter for vehicles in supersonic flows [1–4].

Re-entry vehicles pose a prominent case for the aforementioned problem. On the one hand,
re-entry capsules are designed to ensure safe operation, i.e., undamaged atmospheric re-entry of
equipment and/or crew. On the other hand, the thermal loads require a thermal protection system
(TPS) reducing the payload of rockets [5]. Therefore, the TPS is a delicate subject in the design
process of re-entry capsules.

In the first half of the Apollo program during the early 1960s, the smooth part of the TPS was
successfully designed using laminar stagnation point flow heating prediction methods based on,
e.g., Lees [6] or Fay and Riddle [7], wind tunnel tests, and a supporting flight program [8–10]. The
final design was considered conservative due to technological uncertainties [11]. Nowadays, the
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philosophy for the development of the Orion Crew Exploration Vehicle (CEV) is to rely primarily
on computational methods [12]. The uncertainties of the computational methods covering various
subjects were assessed by corresponding experiments [12–15]. To evaluate the prediction of the
convective heating rate of the TPS wind tunnel experiments were compared to Navier-Stokes
simulations of laminar and turbulent flow based on the Reynolds-averaged Navier-Stokes (RANS)
equations [14,15]. Even for nominally smooth capsules, transitional or fully turbulent flow on
the leeward capsule forebody was found in the experiments. The unknown transition mechanism
constitutes a severe uncertainty in the heating rate prediction and thus, contributes to the policy of
assuming fully turbulent flow throughout the re-entry trajectory [12,15]. This precondition leads to a
TPS which is locally overengineered for peak heating rates and entirely oversized for the integrated
heat load. Therefore, to develop an advanced TPS design with reduced weight satisfying aerospace
safety regulations, laminar-turbulent transition has to be predicted [5,10,12].

Reliable predictions are preferably based on the understanding of the physical mechanisms
rather than just data and therefore, boundary layer stability theory was considered [16,17]. Whereas
sphere-cone shaped forebodies permit modal growth of boundary layer instabilities, capsules with
spherical forebodies still raise questions considering the dominant mechanism of transition [18,19].
The accelerated cooled boundary layer should stabilize the laminar flow and cross flow was known
to be weak for capsules at considerable angle of attack [20–22]. At any rate, transition occurs and
therefore, the mechanisms of transition on re-entry capsules are still under investigation [23,24]. In
the following, the state of the art in this research area is briefly discussed.

Extensive numerical investigations based on simulations of the steady Navier-Stokes equations
and various stability analyses featuring corresponding experimental results clarified the process of
how transition on the spherical forebody of an Apollo type capsule is initiated [25–27]. First, modal
instabilities and transition at 24◦ angle of attack were investigated in Ref. [26]. The pressure gradient
on the forebody is entirely favorable and whether normal or oblique instability due to first modes
were numerically determined in the operating range of the experimental facility. Furthermore, very
low cross flow velocities occurred and a stability analysis did not reveal any amplified steady or
traveling cross-flow modes for wind tunnel conditions. The experimental results showed transitional
flow near the leeward shoulder of the capsule using a temperature sensitive paint coating causing a
mean arithmetic roughness height Ra = 10 μm. The findings of a highly polished capsule were
in very good agreement with the numerically determined laminar flow. In a second step, the
apparent importance of surface roughness was investigated by modal stability analyses of single
roughness elements on the capsule forebody using two- and three-dimensional stability theory
complemented by experimental data [25,27]. The height of the roughness elements was in the
range between 75 to 150 μm resulting in a roughness Reynolds number Rekk , i.e., the Reynolds
number based on the roughness height and the unperturbed flow at that height, of 124 to 336. Modal
growth occurs in the wake closely downstream of the elements but the streamwise extent of the
amplified region is small due to the overall favorable pressure gradient. Traces of the instability
modes were also found in the experiments. However, although modal instability downstream of
single roughness elements can trigger transition on the Apollo type capsule, this is not the type of
transition documented in Ref. [26]. That is, the Ra = 10 μm roughness was distributed and Rekk

was an order of magnitude lower than for the single roughness. Therefore, it is conjectured that
micro-size distributed roughness initiates transition and the subsequent mechanism of amplification
is nonmodal transient growth. This growth mechanism is associated with the nonorthogonal operator
of the linearized disturbance equations [28].

This conclusion agrees with the findings of the blunt body paradox, i.e., early transition on
spherical forebodies in supersonic flows [18,29–33]. A review on transient growth in the context
of blunt body flow and a numerical investigation of possible transient growth on the windward
side of a sphere is given in Ref. [34]. Corresponding capsules are investigated numerically in
Ref. [23]. Optimal boundary layer disturbance growth was found for steady streamwise vortices that
subsequently turn into streamwise velocity streaks. This mechanism is denoted lift-up effect [35].
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However, roughness induced transient growth, whose flow field is defined by streamwise vortices in
a streamwise velocity wake, is possible but always suboptimal [34].

The link between roughness, transient growth, and transition was earlier proposed by Reshotko
and Tumin [30,32]. In Ref. [30], disturbance amplification in stagnation point flows by transient
growth was shown to be a candidate to lead to transition. Roughness was suspected to generate
the initial disturbance. The investigation in Ref. [32] led to a correlation based on theory and
observation. The correlation incorporates receptivity of the boundary layer to roughness as the initial
disturbance, the successive transient growth is based on numerical data, and a threshold for transition
that has been retrieved from experimental results. The validity of this new correlation to transition
data by Reda [36,37] and the passive nosetip technology (PANT) program [38] is remarkable. The
height of the roughness divided by the momentum thickness of the laminar boundary layer k/�

enters the correlation. The k/� data from Refs. [36–38] agree with the correlation in Ref. [32]
approximately in the range of 0.5 to 7. Smaller roughness was also investigated experimentally in
the PANT program but the data showed different behavior and were excluded [38]. The dominant
mechanism for transition in that case was suspected to be triggered by freestream disturbances.
Also the recent experiments in Refs. [24,39] corroborate the finding of Reshotko and Tumin, i.e.,
the correlation predicts the measurements. For the transitional data in Ref. [26], k/� is <0.5 and
below the range of data to agree with the transient growth based correlation by Reshotko and Tumin.
Similarly to the aforementioned excluded PANT data, freestream disturbances can be suspected to
become an additional factor.

An inventive experimental study supporting the influence of freestream disturbances was con-
ducted in Ref. [40]. The PANT transition data could be extended to lower ratios of roughness height
and momentum thickness k/� using nozzle throat boundary layer transition data. With decreasing
roughness height, transition to turbulence becomes independent of the roughness and is attributed to
the facility, e.g., freestream disturbances. To clarify the transition scenario for the distributed surface
imperfection of Ra = 10 μm observed in Ref. [26], distributed deterministic micro-size roughness
on a blunt body under varying freestream disturbance conditions was experimentally investigated in
Ref. [24].

Compared to the flow in Ref. [26], the deterministic surface imperfections in Ref. [24] are well
defined and allow equivalent numerical simulations. The experiments of Ref. [24] are summarized in
Fig. 1. The Schlieren image shows the Apollo type re-entry capsule at 24◦ angle of attack. The flow
is from left to right and the dark region in the flow upstream of the capsule is created by the shock
wave. From the stagnation point “sp” over the leeward side of the capsule forebody, i.e., toward
the body fitted η∗ scale, the boundary layer is accelerated. The distributed roughness is placed at
η∗ = 0 and heat flux measurements in the range 0 < η∗ < 1 are utilized to investigate boundary
layer transition. Figure 1(b) shows the surface heat flux of four flow configurations that motivated
the present investigation. Placing a clean capsule model in the reference position off the wind
tunnel centerline—denoted by “clean & ref pos”—constitutes the laminar reference flow. Neither
adding surface imperfections labeled “rough & ref pos” nor increasing the freestream disturbances
visualized by the “clean & in wake” distribution leads to a substantial heat flux increase. Note that
in this wind tunnel the tunnel noise on the centerline is attributed to high vorticity in the wake of
the fast acting valve [41]. Transition, more precisely heating augmentation, was only obtained for
applied roughness and under forced freestream disturbance conditions illustrated by the “rough &
in wake” distribution. This finding agrees well with the conclusions in Ref. [42] where also vorticity
was found to be responsible for heating augmentation.

It can be concluded that the transition scenario reported in Ref. [26] and reproduced in Ref. [24]
cannot explicitly be attributed to distributed surface roughness or freestream vorticity. The prevail-
ing mechanism, if existent, and how it is amplified remain to be clarified. To investigate the local
interaction of roughness and vortical freestream disturbances, direct numerical simulations (DNS) of
the supersonic flow around the generic blunt Apollo type re-entry capsule in Ref. [24] are performed.
Then, the findings of a clean configuration, i.e., smooth capsule and unperturbed freestream, are
compared to the results of a configuration with distributed surface roughness, a clean configuration
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FIG. 1. Apollo type re-entry capsule experiments by Radespiel et al. [24]: (a) Schlieren image of the
wind tunnel experiment, “sp” denotes the stagnation point; (b) measured heat flux distributions q of four flow
configurations. The notation “clean” and “rough” refers to the surface of the capsule while “ref pos” and “in
wake” denote the position of the capsule in the wind tunnel. The η∗ coordinate is defined in (a) and the reference
heat flux qref is the first data point of configuration “clean & ref pos.”

undergoing freestream streamwise vorticity disturbances, and finally, a rough-surface configuration
plus vorticity perturbations. Furthermore, the effects of roughness type, Reynolds number, and
vorticity intensity are investigated. Considering the different types of distributed roughness in
Refs. [24,26], i.e., stochastic surface imperfections and deterministic roughness based on distributed
elements, the following hypothesis is posed and challenged throughout the investigation. If various
deterministic roughness distributions cause identical flow phenomena, stochastic roughnesses may
be represented by deterministic roughnesses in numerical simulations and controlled experiments.

Note that first, based on the requirements of the physical problem modifications to the numerical
method presented in Ref. [43] are discussed. Then, the numerical investigation on the receptivity
of the capsule boundary layer to distributed roughness and the subsequent disturbance growth
corresponding to the experiments in Ref. [24] is presented.

The paper is organized as follows. First, the numerical method is presented in Sec. II. Then, the
computational setup of the capsule simulations is given. The results of the numerical simulations
are presented in Sec. IV, before the essential findings are discussed in Sec. V.

II. NUMERICAL METHOD

The analysis of the micro roughness induced boundary layer disturbances defines a typical
multiscale problem in mechanical engineering. The largest scale O(1) is given by the capsule
diameter and determines the inviscid flow. The boundary layer thickness introduces a length scale of
O(10−2) depending on the Reynolds number. Structured multiblock grids can be used to efficiently
compute such flows [26]. The roughness height O(10−4) defines the smallest geometric scale. To
resolve all scales, a finite-volume method using an unstructured Cartesian grid and cut cells, i.e.,
cells are cut by the surface and new interfaces for the flux balance are created [43], featuring intense
local refinement is employed. To preserve conservation while refining the grid, special care must be
taken to guarantee consistent surfaces for the flux balance of neighboring cut cells. This conservation
is guaranteed by the wall-mesh variation (WMV) approach for Cartesian cut-cell methods which
will be discussed in detail in Sec. II B 1.
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A. Governing equations

The numerical simulations are based on the nondimensionalized Navier-Stokes equations∫
V

∂Q
∂t

dV +
∮

A
H · ndA = 0. (1)

The quantity Q = [ρ, ρuT , ρE ]T is the vector of the conservative variables with the density ρ,
velocity vector u, and the total specific energy E = e + u2/2 containing the specific energy e. The

flux vector H can be decomposed into an inviscid H
i

and a viscous part H
v

H = H
i + H

v =
⎛⎝ ρuT

ρuu + Ip
uT (ρE + p)

⎞⎠ + 1

Re0

⎛⎝ 0T

τ

(τu + q)T

⎞⎠. (2)

The Reynolds number is computed using the fluid properties at rest Re0 = ρ0a0lref/η0 indicated by
the subscript “0.” The quantity a denotes the speed of sound and lref is the characteristic length.
The dynamic viscosity η is calculated using Sutherland’s law. Furthermore, the volume viscosity is
assumed to be zero such that the stress tensor for a Newtonian fluid τ can be written

τ = 2
3η(∇ · u)I − 2η[∇u + (∇u)T ]. (3)

The vector of heat conduction q is formulated according to Fourier’s law

q = − λ

Pr(γ − 1)
∇T (4)

using the gradient of the static temperature ∇T , the thermal conductivity λ, the ratio of specific
heats γ , and the Prandtl number Pr = η∞cp/λ∞, where cp is the specific heat at constant pressure.
The values for γ and Pr at air flow are γ = 1.4 and Pr = 0.72. The system of equations is closed
by the equation of state for an ideal gas

e = p

ρ(γ − 1)
. (5)

B. Discrete formulation

The domain is discretized by an unstructured hierarchical Cartesian grid [44]. During the grid
generation, an initial Cartesian cell containing the entire computational domain is successively
refined to yield the final grid. The refinement is quantified in levels, i.e., whenever a cell is refined,
the level of refinement is increased by one.

The boundaries of the computational domain are prescribed by triangulated surfaces [stere-
olithography format (STL)]. Local grid refinement can be created by two methods. First, boundary
refinement can be applied by specifying a boundary STL to be refined. Second, several refinement
patches defined by generic shapes, e.g., two points for a rectangle, can be prescribed.

On the resulting grid, the governing equations are integrated using a finite-volume method
employing cut cells to represent the immersed boundary [45,46]. For the spatial discretization
an advection upstream splitting method (AUSM) is used. In this method, the advection Mach
number on the cell surface is the mean of the extrapolated Mach numbers from the adjacent cells
Ma1/2 = 0.5(MaL + MaR). The same formulation holds for the pressure on the cell surface. The cell
center gradients are computed using a second-order accurate least-squares reconstruction scheme
[45]. Shock capturing is achieved by adding additional numerical dissipation at the shock position.
Furthermore, small cut cells are treated using an interpolation and flux-redistribution scheme [43].
The temporal integration is based on a five-stage second-order accurate Runge-Kutta scheme.

Special care must be taken when the grid is refined in the direct vicinity of a curved boundary,
i.e., the discretized representation of the boundary by the cut cells differs between neighboring
cells of varying level of refinement. To align the representation, the cut cells have to be adapted
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FIG. 2. Cartesian hierarchical meshes without WMV (a) and with WMV (b).

in a preprocessing step prior to the creation of any surface of the finite-volume method. Next, the
concept of the WMV approach is thoroughly discussed.

1. Wall-mesh variation approach for Cartesian cut cell methods

First, the problem of maintaining conservativeness is discussed which occurs when WMV is
used in Cartesian cut cell based flow solvers. Then, a method, which remedies this problem, and its
implementation into the flow solver are presented.

To significantly reduce the total number of grid cells and the computational cost of a numerical
simulation, the variation of the wall-mesh resolution along complex geometries is an extremely
promising concept. A simple example to illustrate the meaning of wall-mesh variation is shown in
Fig. 2 where the geometry over a backward-facing step is depicted. While in Fig. 2(a) the cell size
in the streamwise direction near the wall does not change, the near-wall mesh in Fig. 2(b) is refined
in the step region. Note that in two-dimensional problems and for geometries without any curvature
such a mesh variation does not cause any problem whatever cut-cell concept is used. As discussed
in the following, this is completely different when three-dimensional flows over curved bodies are
considered in a cut-cell approach with a linearized geometry.

The spatial discretization of a curved geometry is conducted by linearly approximating its surface
using the intersection points of the geometry with the edges of the Cartesian grid cells located on the
boundary. When the grid is refined along the geometry, depending on its curvature cells of different
size may have a different number of intersection points. The finer cells may have more intersection
points posing a problem on the interface between two refinement levels. The shapes of the resulting
faces on the interface and as such the connected areas are not identical especially in regions with
high curvature of the geometry.

Figure 3 shows an interface between two different refinement levels, where the real geometry
(top left) and the linearized geometry (top right) are illustrated. Furthermore, referring to the bottom
illustrations in Fig. 3, cut points created by the intersection with the STL geometry are indicated by
capital letters Ai, Bi, etc., for the finer cells and Ãi, B̃i, etc., for the coarser cell. The subscript i
denotes the faces 1, 2, and 3. At the interface 2, two cut faces are created, the cut face of the coarse
mesh with only two cut points, Ã2 and B̃2, and the cut face generated by the finer cells with three
cut points, A2, B2, and C2. This leads to a gap on the interface indicated in Fig. 3 (top right).

Due to the gap the conservation of mass, momentum, and energy is no longer ensured.
Furthermore, the gap on the interface causes numerical errors during the simulation which can
result in divergence of the solution procedure. To obtain fully conservative fluxes and to reduce the
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FIG. 3. Boundary refinement with WMV along a curved geometry (top left) and the linearized geometry
before the cut-point correction (top right); cut points of faces 1, 2, and 3 created by the intersection with the
STL geometry on the interface between two refinement levels without treatment (bottom).

numerical errors on the interface between two refinement levels a special treatment of the cut points
is necessary.

The objective of the cut-point correction is to close the gap on the interface of two refinement
levels by changing the fine-cell cutting such that the fluxes are conserved. Instead of using the
intersection points of the STL geometry, the cut points of the finer cells on the interface are
approximated by the cut points of its coarser neighbor cell. In Fig. 4 (bottom), the line that connects
the cut points A2 and B2 is used to compute the new cut point C′

2 which replaces the old cut point
C2. Depending on the curvature of the geometry more than one cut point, e.g., C2, D2, and E2 in
Fig. 5, has to be corrected on the interface. The linearized geometry after the cut point correction

FIG. 4. Boundary refinement with WMV along a curved geometry (top left) and the linearized geometry
after the cut-point correction (top right); corrected cut points of faces 1, 2, and 3 created on the interface
between two refinement levels (bottom).
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FIG. 5. Boundary refinement with WMV along a curved geometry (top left) and the linearized geometry
after the cut-point correction (top right); corrected cut points of faces 1, 2, and 3 created on the interface
between two refinement levels (bottom); example of a cutting case where an additional cut point F23 is inserted.

is depicted in Fig. 4 (top right). In certain cases, the correction of the cut points according to the
coarser neighbor cell requires the generation of new boundary cells which are not intersected by
the STL geometry but are cut by the corrected geometry. On the other hand, it can be necessary
to remove boundary cells which intersect the STL geometry but are no longer cut by the corrected
geometry, as explained in the following seven-step algorithm.

2. Wall-mesh variation algorithm

(i) Label WMV boundary cells. Cells intersecting the geometry described by the STL are labeled
as boundary cells. In a first step, all boundary cells which are located on the interface between
two refinement levels are identified. This is done by taking advantage of the hierarchical structure
of the Cartesian mesh and the way neighbor cells are linked, since only equal level neighbors are
stored. A boundary cell located on the interface can easily be identified by checking the neighbor
information in all directions. A boundary cell that does not have any neighbor in a certain direction
which, however, has a parent cell with a neighbor in this direction is marked.

(ii) Identify cut points. Cut points from the intersection with the STL geometry from the coarser
cell Ãi, B̃i, etc., and from the finer cells Ai, Bi, etc., are computed and stored.

(iii) Remove nonidentical cut points. Cut points at the interface are compared. Cut points on the
edges of the finer cells which do not exist at coarser cells, i.e., there is no corresponding edge of the
coarser cell as for C2 in Fig. 4 (bottom), are removed.

(iv) Interpolate new cut points. The remaining cut points, i.e., A2 and B2 in Fig. 4 (bottom) are
linearly connected and a new cut point, i.e., C′

2, is computed from its intersection with the cell edges
of the finer cells on the interface. Depending on the location of A2 and B2 up to two new cut points
have to be created on the interface.

(v) Add intermediate cut points. When the new cut points on the interface are computed, it can
be necessary to create an additional cut point off the interface 2 as illustrated in Fig. 5. In this case
five cut points are generated on the interface for the cut face of the finer cells, i.e., A2, B2, C2, D2,
and E2. The cut points C2, D2, and E2 differ from the cut points on the cut face of the coarser cell
and are therefore removed. The new cut point C′

2 is generated by a linear connection of A2 and B2.
Since the cut point C′

2 cuts the two lower cells and the cut point D3 exists on face 3, which cuts the
two upper cells, an additional cut point F23, which cuts all four cells and is located between face
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FIG. 6. Boundary refinement with WMV along a curved geometry (top left) and the linearized geometry
after the cut-point correction (top right); corrected cut points of faces 1, 2, and 3 created on the interface
between two refinement levels (bottom); example of a cutting case where former boundary cells are no longer
cut after the cut-point correction; these cells are removed from the list of boundary cells.

2 and 3, is necessary. This cut point is placed in the center of the corresponding edge as shown in
Fig. 5 (top right).

(vi) Add or remove boundary cells. If a cell is no longer cut after the cut-point correction, it has to
be removed from the list of boundary cells. An example is shown in Fig. 6, where the old cut points
on the interface C2, D2, and E2 cut the upper cells and the cut point C3 on face 3 cuts the lower cells.
Therefore, a cut point F23 exists between face 2 and face 3 in Fig. 6 (top left) before the cut-point
correction. After the cut-point correction, the new cut point C′

2 in Fig. 6 (bottom) is positioned at the
lower cells, the cut point F23 has to be removed, and the upper cells are no longer cut. These cells
are removed from the boundary cell list. The opposite case, i.e., a cell which is not cut before but
after the cut point correction and then a new cell has to be added to the list of boundary cells is also
possible and has to be considered.

(vii) Define final cut-cell distribution. In a final step, the cells are cut by the new cut points and
the part of the cells which are located inside the fluid region are kept whereas the other part of the
cells is deleted.

Since the cut cells also depend on the neighboring cells, the WMV setup is not a local operation
in massively parallel simulations. Therefore, after the seven steps are completed on internal cells of
the various computational subdomains, the determined cut points need to be communicated to the
corresponding halo cells required for the flux computation across subdomain boundaries [44]. The
overhead which is introduced by the cut-point correction in terms of memory and computing time
is negligible.

III. COMPUTATIONAL SETUP

First, the dimensions of the Apollo type re-entry capsule and the distributed roughness are
described. Then the computational domain and the grid are presented.

A. Apollo type re-entry capsule and distributed roughness

The dimensions of the capsule forebody used in Refs. [24,26] are shown in Fig. 7(a). The main
part of the forebody is spherical with a radius of R = 204.1 mm and an opening angle of � = 46◦.

063903-9



THOMAS SCHILDEN et al.

R

Θ

r

rotation axis
x

y

z

D

(a)

ξ Δξ

ζ

η

L

L

(b)

ξ

ζ

η

L

L

L/2

(c)

FIG. 7. Computational setup: (a) schematic of the smooth axisymmetric capsule, the opening angle of the
spherical forebody of radius R = 204.1 mm is � = 46◦, its diameter is D = 170 mm, the smooth contour
exhibits a capsule shoulder radius of r = 8.5 mm; (b) schematic of the aligned distributed roughness, the
spacing between the elements is L = 200 μm; (c) schematic of the staggered distributed roughness, the second
and fourth row of elements are reduced by one element and misaligned in the ζ direction by L/2.

Toward the outer diameter of D = 170 mm, the cap smoothly transitions into a rounded shoulder
with radius r = 8.5 mm. The origin of the x = (x, y, z)T coordinate system is located in the center
of the spherical part of the forebody. The freestream flow u∞ lies in the x-y plane and is u∞ =
u∞(cos α, sin α, 0)T , α defines the angle of attack.

The geometry of the distributed roughness is illustrated in Figs. 7(b) and 7(c). They are located
on the rotation axis of the capsule in Fig. 7(a). On the capsule surface, the ξ = (ξ, η, ζ )T coordinate
system is used. The streamwise direction at the boundary layer edge is ξ . The wall normal coordinate
is η and ζ denotes the azimuthal direction. In the center of the x coordinate system, y coincides with
ξ , η = −x, and ζ = z, i.e., the streamwise flow direction at the boundary layer edge in Figs. 7(b)
and 7(c) is from left to right. Furthermore, it is shown in Fig. 7(b) that streamwise distances with
respect to the end of the last row of elements are denoted �ξ .

Each of the distributed roughnesses consists of a certain number of identical single roughness
elements having a square base of 100 × 100 μm2. Two patterns are considered the location of which
on the surface of the capsule is defined in Sec. III B. In Fig. 7(b) the “aligned” configuration with
5 × 5 elements is depicted. This configuration possesses unblocked passages between the columns
of elements. The spacing between the elements is L = 200 μm. The “staggered” configuration
is shown in Fig. 7(c). The second and fourth row of elements are reduced by one element and
misaligned in the z direction by L/2. The projected area in the y direction is without any gaps.
The base area of both patches is 0.9 × 0.9 mm2. All roughness elements protrude 20 μm into the
boundary layer.

The roughness in Fig. 7(b) corresponds to the layout of the corresponding experiments in
Ref. [24]. For computational reasons, that will be elaborated on in the next section, the numerical
setup has less elements than the experimental counterpart. That is, in the experiments 100 × 100
elements are applied on the capsule forebody. To address the difference between the setups, i.e., the
finiteness of the roughness distribution, a single rectangular element is included in the analysis. It
covers the complete base area of 0.9 × 0.9 mm2 and is referred to as “single.”

B. Computational domain and boundary conditions

A schematic of the computational domain and the boundary conditions is depicted in Fig. 8. On
the upstream boundary “in” supersonic Dirichlet conditions are prescribed for all variables. This
boundary is located just upstream of the detached shock wave whose location is determined in a
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u∞
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0.5

Ma=1
1.5 2 out
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FIG. 8. Computational domain including lines of constant Mach number. “in” denotes the Ma = 5.9
supersonic inflow boundary at an angle of attack of α = 24◦, “out” defines supersonic outflow, and at the
“wall,” no-slip and a constant temperature of 295 K are prescribed. “sp” represents the stagnation point at
y/D = 0.356 of the rotation axis. “dr” denotes the location of the distributed roughness.

prior simulation. On the outflow boundary “out” supersonic outflow von Neumann conditions for
all variables are imposed. The capsule wall is modeled as a no-slip isothermal wall with a wall
temperature of 295 K. The isothermal condition is justified by the short runtime of the wind tunnel
of about 80 ms [41].

As aforementioned, the computational grid features various regions of local refinement using the
wall-mesh variation approach. These regions are indicated in Fig. 9. Figure 9(a) shows the forebody
of the capsule limited to about 25% of the azimuthal extent. The stagnation point is denoted by “sp”
and the roughness patch is located at x = 0. Obviously, most of the capsule boundary layer, e.g.,
the azimuthal extent |z|/D > 0.05, can be considered less relevant for the analysis of the receptivity
of the boundary layer to the roughness. Therefore, these regions are deliberately considered less
important for the grid design. The properties of the local boundary layer at the roughness location
have to be verified, i.e., a validation of the local boundary layer will be shown.

The ellipse in Fig. 9(a) “bl refinement” encloses the first region of the local boundary refinement
to resolve the boundary layer. It starts half-way between the stagnation point and the roughness area.
In Fig. 9(b), a cross section in the y-z plane (ξ − η) at z = 0 is shown, i.e., the local flow is from left
to right as indicated by the boundary layer velocity profile “bl.” The uppermost line represents the
wall normal border of the local boundary refinement and contains the entire boundary layer “bl.” The
grid in the vicinity of the roughness at x = 0 (not shown in Fig. 9(a)) is further refined using patch
refinement. In Fig. 9(a), only the outermost patch out of three patches is shown. Further rectangular
patches are shown in Figs. 9(b) and 9(c). Note that Figs. 9(b) and 9(c). are scaled by a factor 80
with respect to Fig. 9(a) and the cells “cells” and the boundary layer are to scale. The roughness
centered at x = 0 is represented by the aforementioned configuration “single.” The overall grid size,
including some general refinement toward the capsule surface and the shock wave, is 300 million
cells. The boundary layer refinement contains 60 million and the rectangular patches consists of
32 million cells. Note that these regions of refinement requiring 30% of the cells only account for
a tiny fraction of the computational domain, i.e., the refined boundary layer covers approximately
1% of the computational domain and the 32 million cells in the vicinity of the roughness account
for 6.5 × 10−5%. Implementing the 100 × 100 elements applied in the experiments requires at least
additional 6 billion grid cells.

To emphasize the importance of WMV and support the grid topology, some comparative numbers
are given. If the ellipse of the boundary layer refinement is extended to include the entire capsule,
only the number of cells required to resolve the boundary layer rise to 5 billion. Keeping the
innermost rectangle refinement patch at a minimum height over the entire capsule, 14 billion cells
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FIG. 9. Grid topology of the capsule simulations: (a) front view of the capsule, “sp” denotes the stagnation
point, the ellipse “bl refinement” encloses the region of local boundary refinement, and the rectangle “outermost
patch” is the front view of the outermost rectangle refinement patch shown in the subfigures below; (b) detailed
view of cross section showing the wall normal and streamwise dimensions of the rectangle refinement patches
in the vicinity of the roughness, scaling factor 80, boundary layer “bl” and cells are to scale; (c) detailed view
of cross section showing the wall normal and azimuthal extent of the refinement patches, scaling factor 80.

are generated. To circumvent the resulting computational humungous effort for single simulations,
let alone parameter variations, WMV has to be used to restrict the computational effort to the regions
of interest.

IV. RESULTS

Before the results are presented, the various cases are outlined. All the configurations of the
DNS are summarized in Table I. First, the unperturbed flow over the smooth capsule is computed
for three Reynolds numbers using the grid presented in Sec. III B. These solutions serve as reference
for the perturbations induced by the roughness. They are denoted cases No. 1 to 3 in Table I. Then,
the three roughness configurations, i.e., aligned, staggered, and single, are defined by cases 4 to 9 to
investigate the receptivity of the boundary layer and the subsequent streamwise development of the
disturbances at the lowest and highest Reynolds number.

Compared to the measurements in Ref. [24], the unit Reynolds numbers linked to the Reynolds
numbers in Table I are ReL/D = 6.25 × 106 m−1, ReM/D = 12.5 × 106 m−1, and ReH/D = 18 ×
106 m−1. In the experiments, cases 1, 3, 4, and 5 were investigated.
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TABLE I. Flow configurations and parameters: Reynolds number Re = ρ∞u∞D/η∞ with ReL =
1 062 500, ReM = 2 125 000, and ReH = 3 060 000; roughness type with “aligned” depicted in Fig. 7(b)
“staggered” in Fig. 7(c), and “single” denotes a single element having the same extent as the distributed
roughnesses. Constant parameters throughout are the freestream Mach number Ma = 5.9, freestream total
temperature T0 = 470 K, wall temperature Tw = 295 K, and the angle of attack 24◦.

Smooth Aligned Staggered Single

ReL 1 4 6 8
ReM 2 − − −
ReH 3 5 7 9

A. Unperturbed flow

The unperturbed boundary layer of the clean configuration is compared to numerical results from
Ref. [26]. The reference DNS of the unperturbed flow were the basis for stability analyses. The
solutions are validated by experimental heat flux data on the entire capsule forebody. Therefore,
instead of validating the current solutions versus the experimental surface heat flux data, the former
numerical boundary layer data from Ref. [26] are considered for the validation. Figure 10 shows a
comparison of the velocity and temperature boundary layer distributions at the position of the later
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FIG. 10. Validation of the simulated boundary layers of the smooth capsule configuration at the location of
the roughness, i.e., at x = 0, for the three Reynolds numbers in Table I. The circles “◦” denote the data from
the present simulations and the lines denote corresponding data from Theiss et al. [26].
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TABLE II. Properties of the unperturbed boundary layers: Reynolds number Reδ∗ based on the displace-
ment thickness δ∗ and boundary layer edge values; Reynolds number Re� based on the momentum thickness
� and the boundary layer edge values; boundary layer thickness δ at 99.5% of the freestream total enthalpy;
roughness Reynolds number Rekk based on the roughness height k = 0.02 μm and the fluid properties at η = k
of the unperturbed boundary layer, for Rekk,w , the kinematic viscosity at η = 0 is used; velocity ue, temperature
Te, density ρe,i, and Mach number Mae at the boundary layer edge. For the density, i refers to the No. in the
upper table.

No. Reδ∗ Re� δ (μm) δ∗ (μm) � (μm) Rekk (Rekk,w ) k/�

1 109 83 548 88.8 67.8 5.82(6.02) 0.295
2 152 116 383 62.3 47.5 15.6(16.3) 0.421
3 181 134 295 51.3 38 26.3(27.9) 0.526
ue (m/s) Te (K) ρe,1 ρe,2 ρe,3 (kg/m3) Mae

212 445 1.43 2.85 4.1 0.5

added roughness, i.e., the axis of rotation. The velocity component parallel to the wall u and its
derivative in the normal direction ∂u/∂η agree well with the reference data. At the highest Reynolds
number, small deviations occur. The temperature distributions in Figs. 10(b) and 10(d) show a small
deviation toward a somewhat fuller profile. Overall, we consider the boundary layer at the location
of the roughness in the present simulations to be in good agreement with the simulations in Ref. [26]
and the experiments in Ref. [24].

Integral values of the unperturbed boundary layers are summarized in Table II. At the highest
Reynolds number, the ratio of roughness height k and momentum thickness � is closest to the
range of k/� being related to boundary layer transition induced by transient growth [24]. The effect
of the surface roughness on the boundary layer is shown next.

B. Disturbance energy

The development of disturbances in perturbed flows can be quantified using the energy norm
derived by Mack [16] and Hanifi et al. [47]. Deviations from the unperturbed velocity u′ and
thermodynamic state (ρ ′, T ′) contribute to the total disturbance energy σ · σ defined by

σ(ξ) =
⎛⎝√

T ρref

ρ Tref

1

γ Ma2
ref

ρ ′

ρref
,

√
ρ

ρref

u′T

uref
,

√
ρ Tref

T ρref

1

γ (γ − 1)Ma2
ref

T ′

Tref

⎞⎠T

. (6)

The overbar denotes quantities of the unperturbed flow. This energy norm is commonly used in
analyses of optimal perturbations in compressible boundary layers for maximum disturbance growth
using the linearized Navier-Stokes equations [23,32,34,48]. The reference values “ref” are taken
from the boundary-layer edge. To obtain the disturbance energy of a structure, σ · σ is integrated in
space. The components of the integrated disturbance energy E in a ζ−η slice at constant ξ read

E(ξ ) =
∫ ∞

−∞

∫ ∞

0
PSDζ [σ(ξ)]d (η/δ)d (β/βref ) (7)

using the azimuthal power-spectral density PSDζ . Since only azimuthal PSDs are considered,
the subscript is omitted in the following. Computing PSDs at constant ξ yields the wall normal
distribution of disturbance energy in the wave-number space. Spatial integration of the wall
normal distribution results in the disturbance energy of an entire ζ−η slice in the wave-number
domain. The final integration over β reduces the flow disturbances to the components of the
integrated disturbance energy E = ∑

i Ei. The sum of the components of E related to the velocity
perturbations are denoted kinetic disturbance energy Eki and the sum of the components defined by
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the thermodynamic state is Est, i.e., E = Eki + Est. This nomenclature also holds for PSDs of σ, e.g.,
PSD(σki ) = (0, 1, 1, 1, 0)T · PSD(σ). Furthermore, PSD(σ ) = (1, 1, 1, 1, 1)T · PSD(σ) is defined.
Whenever phase information is important, coefficients of fast Fourier transformations (FFT) are
shown. Flows over rough surfaces, i.e., cases 4 to 9, are presented next.

C. Perturbed flow

The roughness induced perturbations of the experiments in Ref. [24] are presented. The
sensitivities to Reynolds number, roughness layout, and roughness extent are investigated.
The analysis is subdivided into the following steps. First, the initial flow displacement downstream
of the distributed roughness is analyzed in the physical domain and the intensity of the perturbations
in the wake are evaluated. Then, the initial disturbance field is scrutinized in the wave-number
domain to identify the most relevant spectral components. Next, the disturbance energy is analyzed
to quantify transient growth before the underlying mechanism is outlined. Finally, the disturbance
fields and growth computed in the DNS are compared to results of optimal transient growth theory.

1. Wake topology in the physical domain

The topology of the flow perturbation imposed by the distributed roughness can be characterized
by, e.g., the streamwise mass flow deficit m′ = (ρu)′ in the vicinity of the elements. Figure 11 shows
the mass flow deficit in the ζ -η plane at �ξ = 0.05 mm downstream of the distributed roughness.
At negative values of ζ , the data of the staggered configuration is shown whereas for positive ζ , the
aligned flow field is depicted. Figure 11(c) shows the data of Fig. 11(a) integrated in the wall normal
direction. Furthermore, the data of case 8, i.e., the large single element, is included for comparison.
A corresponding integration is shown in Fig. 11(d) for the higher Reynolds number.

The deviation from the unperturbed flow is due to two effects. First, disturbances related to
single roughness elements occur close to the roughness elements. Second, the distributed but finite
roughness appears as a large obstacle to the flow. That is, disturbances related to the length scale
of the roughness elements develop inside the disturbance of the overall distributed roughness.
For the lower Reynolds number, the differences between the aligned and staggered roughness are
insignificant in Figs. 11(a) and 11(c). Differences can be observed in Figs. 11(b) and 11(d) for the
higher Reynolds number. The misaligned elements reduce the local maxima at ζ = −0.1 mm and
ζ = −0.3 mm. The aforementioned second effect is hardly affected.

The flow perturbation generated by the roughness is now modulated in the downstream direction.
In linear transient growth theory, the ratio of disturbance energy G = Eout/Ein defines the gain G of
an arbitrary perturbation field and since the theory is linear, the amplitude of the initial perturbation
distribution does not affect the gain. However, in the present simulations, the streamwise develop-
ment of the perturbations is computed solving the nonlinear governing equations. Being a nonlinear
product of streamwise velocity and density, the mass flow rate perturbations of cases No. 5, 7, and
9 are checked for linearity. In Fig. 12(a), the maximum mass flow rate deviation in each ζ -η plane
is normalized and plotted versus the streamwise distance �ξ . In close vicinity of the roughness,
the perturbation is high but it decreases downstream. The error of the linear reconstruction of the
perturbation m′ in Fig. 12(a) is evaluated in Fig. 12(b). Even in close vicinity of the roughness, the
linear expansion m′

lin = uρ ′ + ρu′ gives good results with a relative error below 3%. Note that this
is not a sound proof of the applicability of linear transient growth theory. This simple computation
indicates the flavor of nonlinear effects due to roughness induced flow perturbations.

In the following, we switch from the analysis in the physical domain to the wave-number domain
to identify the relevant spectral perturbation components in the wake.

2. Wake topology in the wave-number domain

The decomposition of the perturbation field of, e.g., Fig. 11(b), into the aforementioned scales
will be based on PSDs or FFTs. However, before PSDs of the actual disturbances are presented, an
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FIG. 11. Mass flow deficit of cases 4 to 9 in Table I at �ξ = 0.05 mm downstream of the distributed
roughness, at negative values of ζ , the data of the staggered configuration is shown whereas for positive ζ ,
the aligned flow field is depicted, the dotted lines in (a) and (b) indicate the grid refinement in Fig. 9(c):
(a) lines of constant m′ < 0 of cases Nos. 4 and 6, ReL = 1 062 500; (b) lines of constant m′ < 0 of cases Nos.
5 and 7, ReH = 3 060 000; (c) integrated mass flow rate perturbation of Fig. 11(a) including data of the single
configuration No. 8, ReL = 1 062 500; (d) integrated mass flow rate perturbation of Fig. 11(b) including data
of the single configuration No. 9, ReH = 3 060 000.
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FIG. 12. Peak mass flow rate deviations in ζ -η planes (——aligned, - - - staggered, -·-·-single): (a) nor-
malized using the local mass flow rate; (b) error of the m′ reconstruction using the linear expansion m′

lin =
uρ ′ + ρu′.

analytic representation of the last row of elements of distributed roughness in the wave-number
domain for n = 5 and n = 100 elements is shown in Fig. 13. The former number of elements
is defined by the DNS and rows of 100 roughness elements are installed on the capsule in
the experiments in Ref. [24]. Given the different overall extent of the distributed roughness in
the experiment and DNS, possible interactions of the disturbance components of the elements and
the overall scale in the wave-number domain are scrutinized. Consider an azimuthal PSD at �ξ = 0
and η = k of the perturbation, e.g., streamwise velocity, mass flow rate, or temperature, at low order.
In comparison to the flow over the smooth configuration, at the location of the elements the value is
prescribed by the isothermal no-slip wall boundary condition on the protruding elements. Anywhere
else the smooth wall boundary conditions are applied. The unchanged regions are represented
by 0 and the perturbation by 1. The abscissa is scaled by the wave number of a single element
βL = 2π/L. The PSD of the distributed roughness is compared to the PSD of a single element of
width (n − 0.5)L denoted by “single” and the PSD of an infinite number of elements denoted by
“∞” defined by a square wave oscillating between 0 and 1. The ordinate is scaled by the value
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FIG. 13. Analytic representation of the last row of elements of distributed roughness in the wave-number
domain using the PSD: (a) numerical configuration “DNS” of n = 5 elements; (b) experimental configuration
“EXP” of n = 100 elements in Ref. [24]. The data denoted “single” assume a large element of (n − 0.5)L,
whereas “∞” shows the PSD of an infinite number of elements, i.e., a square wave. The wave number is scaled
by the wave number of a single element 2π/L. The ordinate is scaled by the value of “single” at β = 0.
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FIG. 14. PSD of the streamwise velocity perturbation (——aligned, - - - staggered, -·-·-single): (a) cases
4, 6, and 8, ReL = 1 062 500; (b) cases 5, 7, and 9, ReH = 3 060 000.

of the “single” case at β = 0 which denotes the projected area of the roughness in the ζ -η plane.
For the numerical and experimental configuration in Figs. 13(a) and 13(b), the odd multiples of βL

have the same order of magnitude like the “∞” data. Furthermore, the perturbation related to the
configuration “single” is one order of magnitude lower than the numerical setup and several orders
than the experimental configuration with 100 elements. Between the odd multiples for n = 5, the
finite extent of the distributed roughness causes minor peaks at odd multiples of the fundamental
wave number βL/(2n − 1) of the single configuration. Although different in their azimuthal extent
at odd multiples of the fundamental wave number βL, the results of the DNS can be considered
unaffected by the smaller extent in comparison with the experiments in Ref. [24]. Furthermore, the
configuration “single” can be used to estimate the interference in the wave-number domain.

Figure 14 shows the wall normal integrated PSDs of the azimuthal distribution of the streamwise
velocity perturbation. Compared to Fig. 13(a), the similarity of the pattern is evident. As expected
for 5 elements, the impact of the individual elements acting as a single large element is apparent.
At β/βL = 1 and 3, the effect of the individual elements is one order of magnitude higher than the
harmonics of the wave number β/βL = 1/9 excited by the configuration “single.” For the lower
Reynolds number in Fig. 14(a), the aligned and staggered configuration show almost identical
velocity fluctuations corroborating the previous observation in Figs. 11(a) and 11(c). In contrast
to Fig. 13, also even multiples of βL show pronounced peaks. At β = 2βL, for the higher Reynolds
number in Figs. 14(b), the distributed roughnesses differ significantly. The suppression of the second
harmonic of the aligned distribution at the higher Reynolds number is peculiar since the harmonic is
present for the lower Reynolds number. This feature of the high Reynolds number flow is analyzed
next using the wall normal distribution of FFTs at fixed wave numbers βL and 2βL in Fig. 15.

Since the flow is symmetric with respect to ζ = 0, the perturbations of the streamwise velocity
in Fig. 15(a) are proportional to ± cos(βζ ). The same holds for the wall normal velocity in
Fig. 15(c). Finding the center of a roughness element in the last row of the distributed roughness at
ζ = 0, Fig. 15(a) shows a negative streamwise velocity perturbation in the wakes downstream of the
elements. Next to these wakes, the displaced fluid forms positive streamwise velocity perturbations.
The wall normal velocity perturbations in Fig. 15(c) denotes downwash downstream of the elements.
The azimuthal velocity in Fig. 15(b) is proportional to ± sin(βζ ), i.e., the Fourier coefficients are
imaginary, and is rotated onto the real axis by a multiplication with the imaginary unit i = √−1.
Hence, the data in Fig. 15(b) shows convergent flow in the wakes behind the elements and diverging
flow in between. The “single” data indicates an amplification of these effects due to the finite
azimuthal extent of the distributed roughnesses since this effect is included in the FFTs downstream
of these configurations.
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FIG. 15. Wall normal distribution of the velocity perturbation for cases No. 5, 7, and 9 at �ξ = 0.05 mm
downstream of the distributed roughness (——aligned, - - - staggered, -·-·-single): (a)–(c) fundamental wave
number βL; (d)–(e) second harmonic 2βL . The imaginary unit i in (b) and (e) denotes a phase shift of π/2 with
respect to, e.g., the streamwise velocity perturbation.

The wall normal distribution of the streamwise velocity at 2βL in Fig. 15(d) shows the reason for
the differences in Fig. 14(b), i.e., the suppression of the harmonic at β/βl = 2 for the experimental
“aligned” configuration. The negative data for the staggered configuration causes the velocity deficit
based on βL to occur more cusp like in the physical domain and flattens the regions with locally
increased velocity shown in Fig. 11(d). The disturbance does not constitute a plain harmonic of
the fundamental perturbation but is explicitly generated, i.e., it occurs not before the first staggered
row of elements and grows up to �ξ = 0.05 mm. The disturbance for the aligned case is generated
at the first row of elements and shows a pronounced positive peak, i.e., peaky regions of positive
and flat regions of negative velocity fluctuations. It monotonically decreases up to �ξ = 0.05 mm.
Evidence for both trends can be found in Fig. 17(d) for �ξ � 0.05 mm discussing the development
of the disturbance energy. In Fig. 15(e), the azimuthal velocity component at 2βL is illustrated.
All cases show a global maximum in the vicinity of the wall and the influence of the distributed
roughness acting as a large obstacle is high. For η/θ > 1, the staggered configuration possesses
a unique further maximum. The wall normal velocity component at 2βL in Fig. 15(f) shows only
a minor contribution of the harmonic belonging to the full extent of the roughness. Clearly, the
perturbations induced by the staggered roughness at 2βL contribute more energy. The evaluation of
the disturbance energy to show transient growth is presented next.

3. Quantification of transient growth

Figure 16 exhibits the disturbance energy components Eki and Est at �ξ = 0.05 mm in the wave-
number domain using PSDs of σki and σst. The results in Fig. 16(a) reflect the previous observations
from the analysis of the streamwise velocity since σki contains u′. In general, the contribution of σki
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FIG. 16. Integrated components of the disturbance energy at �ξ = 0.05 mm in the wave-number domain
for cases No. 5, 7, and 9 (——aligned, - - - staggered, -·-·-single): (a) kinetic disturbance energy and (b) state
disturbance energy.

to the total disturbance energy is higher than for σst. This is most evident at βL and 3βL. Again, the
main difference between the two distributed roughnesses occurs at 2βL.

To evaluate the development of the perturbation in the wake of the roughness, the PSD
components at βL and 2βL are computed in subsequent η−ζ slices from �ξ = −0.95 mm just
L/2 upstream of the roughness up to �ξ = 1.2 mm downstream of the roughness. For the “single”
configuration, only the data in the wake starting from �ξ = 0.05 mm is considered. The disturbance
energy and its components are plotted in Fig. 17. The distributions in Figs. 17(a)–17(c) show that the
development of disturbance energy at βL can be split into four regions. First, there is growth up to
the rear of the first row of elements at �ξ = −0.75 mm. Then, to �ξ = 0.05 mm, the levels remain
almost constant implying saturation. In fact, the trend is rather decreasing implying even weaker
disturbances downstream of the 100 × 100 roughness elements of the experiments in Ref. [24].
Third, both components of the disturbance energy decay severely and reach a local minimum.
The minimum of the disturbance energy component related to the state of the fluid is located
further upstream than for the component determined by the velocity perturbation. Therefore, the
local minimum of the total disturbance energy in Fig. 17(c) is less distinct than the minima of
its components and it is located between these minima. The growth downstream of the minima in
Figs. 17(a)–17(c) is evident for all cases of distributed roughness. Wake disturbances induced by the
“aligned” configuration of the corresponding experiments are more intense than for the “staggered”
configuration.

The circles in Fig. 17(a) denote Eki considering only the streamwise velocity perturbation
u′/(u

√
ρ/ρe) for the “aligned” configuration. Whenever streaks at the fundamental wave number

occur, i.e., upstream and downstream of the local minimum at �ξ ≈ 0.4 mm, it is sufficient to
consider the streamwise velocity perturbation. However, the disturbance energy gain G is based on
the lowest value of disturbance energy and cannot be computed using only the streamwise velocity
perturbation. For the comparison of gains, consistent definitions of the kinetic disturbance energy are
crucial. The circles in Fig. 17(b) denote a simplified computation of Est using only the temperature
perturbations T ′/(T

√
γ − 1Mae) which will be motivated in Sec. IV C 4. The circles in Fig. 17(c)

define the sum of the corresponding data from Figs. 17(a) and 17(b) and give a good approximation
of the total disturbance energy.

The effect of the finite extent of the distributed roughness on the disturbance energy components
and their gain at the fundamental wave number can be evaluated by comparing the distributed
roughnesses to case “single” in Figs. 17(a) and 17(b). For both components, the disturbance energy
of all the cases is of identical order at the location of the local minimum downstream of the
roughness. Therefore, interference of disturbances induced by the elements with higher harmonics
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FIG. 17. Development of integrated PSDs of disturbance energy in η-ζ planes for cases No. 5, 7, and 9
(——aligned, - - - staggered, -·-·-single): (a) kinetic disturbance energy at the fundamental wave number βL ,
the circles “◦” denote PSD data of u′/(u

√
ρ/ρe) for case “aligned”; (b) state disturbance energy at βL , the

circles “◦” denote PSD data of T ′/(T
√

γ − 1Mae) for case “aligned”; (c) total disturbance energy at βL , the
circles “◦” denote the sum of the circle data in (a) and (b); (d) kinetic disturbance energy at the second harmonic
wave number 2βL; (e) state disturbance energy at 2βL .

of the disturbance field related to the overall extent of the roughness distribution is apparent. By
defining the input disturbance Ein, the disturbance energy at the minimum downstream of the
roughness introduces uncertainty into the gain G. The total disturbance energy in Fig. 17(c) is
less affected by this interference. Between the locations of the minima of the disturbance energy
components, i.e., at the minimum of the total disturbance energy, the decaying kinetic disturbance
energy and the increasing disturbance energy related to the state of the fluid are more intense and
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FIG. 18. Integrated PSDs of quantities driving the lift-up effect at βL in η-ζ planes for cases No. 5, 7,
and 9 (——aligned, - - - staggered, -·-·-single): (a) streamwise vorticity perturbation; (b) wall normal velocity
perturbation.

less affected by the disturbance field determined by the overall extent of the distributed roughness.
For the experimental “aligned” roughness layout, the disturbances of case “single” are one order of
magnitude lower. That is, for comparison of the DNS results with potential experimental data or the
optimal transient growth data in Sec. IV C 5, the gain of the total disturbance energy is considered.

The disturbance energy contained at 2βL shows another growth behavior and additionally differs
comparing the types of distributed roughness. Again, the analysis holds for the kinetic disturbance
energy in Fig. 17(d) and the disturbance energy related to the state of the fluid in Fig. 17(e). As
aforementioned in the analysis of the streamwise velocity perturbation in Fig. 15(d), the origin
of the disturbance at the second harmonic varies and leads to higher amplitudes downstream of
the roughness at �ξ = 0.05 mm for the staggered configuration. Then, some small growth on a
short streamwise interval can be observed. For �ξ � 0.3 mm, the disturbance energy for all cases
monotonically decays. Therefore, the following analysis of the growth mechanism focuses on the
fundamental wave number.

4. Mechanism of transient growth

It is well known that the disturbance modulation in the wake of the elements is driven by
streamwise vorticity inducing lift-up and down-wash in the perturbed laminar boundary layer. In
Fig. 18, the PSDs of the streamwise vorticity and wall normal velocity component at βL are shown.
When the fluid undergoes rotation in the boundary layer, both quantities decrease monotonically
downstream of the distributed roughness.

The disturbance fields are analyzed next. From the analysis of the disturbance energy at the
fundamental wave number βL, three locations are extracted. First, the final perturbation downstream
of the roughness and preceding the severe decay is of interest. Likewise results were already
presented in Fig. 15. Second, the later minimum initiating the disturbance growth is scrutinized.
Since it is the minimum, this disturbance field has the highest gain of disturbance energy. Finally,
the disturbance field subsequent to the growth is presented. The corresponding locations for the
kinetic disturbance energy in Fig. 17(a) are considered.

The velocity disturbances occurring at the remaining two locations, i.e., of the minimum of
disturbance energy and the subsequent maximum upstream of �ξ = 1.2 mm, are shown in Fig. 19.
The streamwise velocity in Figs. 15(a), 19(a), and 19(d) reflects the development of the kinetic
disturbance energy. The vorticity turns the low-speed streaks downstream of the elements into
high-speed streaks. The minimum of the disturbance energy occurs in the region where the wake
is most homogeneous, i.e., the differences between the flow downstream of the roughness elements
and in between are small. The velocity perturbations in the ζ -η plane show the vorticity decay
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FIG. 19. Wall normal distribution of the velocity perturbation for cases No. 5, 7, and 9 (——aligned, - - -
staggered, -·-·-single): (a)–(c) At the location of the minimum kinetic disturbance energy; for the configuration
“single,” the location of the aligned configuration is adopted; (d)–(f) at �ξ = 1.2 mm, the end of the region
with increased grid refinement.

at constant rotational direction. In other words, there is no change of sign in the wall normal
velocity disturbance, hence the lift-up and down-wash remain at constant azimuthal position. The
mechanism for both distributed roughnesses is identical, but leads to more intense streaks for the
aligned configuration used in the experiments in Ref. [24].

Recalling the discussion of the gains G based on the disturbance energy in Sec. IV C 3, Fig. 19(a)
illustrates the intensity of the distributed roughness cases and the “single” configuration at the
location of the kinetic disturbance energy minimum to be similar.

The development of the disturbance energy component related to the state of the fluid in
Fig. 17(b) is analyzed analogously. Figure 20 shows the wall normal temperature distributions at
the fundamental wave number βL. Since the wall normal temperature gradient in the unperturbed
boundary layer is positive, the wall normal displacement of fluid induced by the streamwise vorticity
leads to a temperature perturbation pattern similar to the velocity streaks. This is evident when
Figs. 15(a) to 20(a), 19(a) to 20(b), and 19(d) to 20(c) are compared. Assuming negligible pressure
perturbations in the boundary layer p′ = 0, the linearized equation of state directly relates density
and temperature perturbations via T ′ = −T ρ ′/ρ. The circles in Fig. 20 denote this reconstruction
of the temperature perturbation distribution from the density perturbation and the unperturbed
boundary layer. At all three streamwise locations in Fig. 20, the reconstructed distributions agree
well with the original data. Reconsidering the two terms in Eq. (6) for the state dependent
disturbance energy, they can be combined using p′ = 0 and p = pref from boundary-layer theory.
Then, the first term in Eq. (6) can be dropped and the last term reads T ′/(T

√
γ − 1Maref ). The

circles in Fig. 17(b) show the reevaluation of the disturbance energy related to the state of the fluid
applying this simplification. Except for the first location upstream of the distributed roughness, good
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FIG. 20. Wall normal distribution of the temperature perturbation for cases No. 5, 7, and 9 (——aligned, -
- - staggered, -·-·-single). The circles “◦” denote a reconstruction of the data based on the linearized equation
of state and p′ = 0, i.e., T ′ = −T ρ ′/ρ, for case “aligned”: (a) at �ξ = 0.05 mm downstream of the distributed
roughness; (b) at the location of the minimum disturbance energy related to the state of the fluid; for the
“single” configuration, the location of the aligned configuration is adopted; (c) at �ξ = 0.65 mm, the location
of the local maximum of disturbance energy related to the state of the fluid.

agreement with the original data is obtained. Hence, also the gain G can be computed using only
temperature or density perturbations. Similarly to the discussion of Fig. 15(a), the non-negligible
temperature perturbation of case “single” in Fig. 20(b) indicates the uncertainty on the gain of the
disturbance energy related to the state of the fluid.

To finalize the analysis of the roughness induced disturbances and their growth, the findings of
the DNS are compared to results of optimal transient growth theory.

5. Comparison to optimal transient growth theory

Optimal transient growth theory computes the initial perturbation field undergoing the most
intense growth that leads to the highest gain G. Here the optimization is defined by the fundamental
azimuthal wave number βL, the location of the roughness as starting point, and the objective
function, i.e., the maximization of the total disturbance energy E at some position downstream
of the roughness. For details regarding the governing equations and the adjoint-based optimization
methodology, the reader is referred to Hein et al. [23]. The resulting velocity disturbance field for the
present flow configuration is shown in Fig. 21. As expected, the optimal disturbance corresponds

-1 -0.5 0 0.5
0

2

4

6

8

FIG. 21. Wall normal distribution of the velocity perturbation obtained applying optimal transient growth
theory by Hein et al. [23] for the fundamental wave number βL at the location of the roughness. The objective
function of the optimization is to maximize the total disturbance energy E .
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to a streamwise vortex with a rather weak streamwise velocity perturbation. The highest velocity
occurs in the wall normal velocity component. This disturbance field is compared to the perturbation
field in the DNS having the minimum kinetic disturbance energy in Figs. 19(a) to 19(c). Most
notably, the optimal disturbance spans over the entire boundary layer up to δ/θ = 7.79, whereas
the disturbance induced by the roughness extends only up to δ/θ = 4. The streamwise velocity
perturbation in the DNS is found to be on the same order of magnitude as the velocity disturbances
in the ζ -η plane. That is, although both distributed roughness configurations show gain by transient
growth based on streamwise vortices, the disturbance differs tremendously in size and ratio of the
velocity components from the optimal disturbance.

The total disturbance energy gain of the optimal disturbance in Fig. 21 at the fundamental wave
number βL is G = 66.3 on a length of 1.8 mm. The gain of the total disturbance energy in the DNS
is G = 1.74 for the “aligned” configuration and G = 1.553 for the “staggered” case corroborating
suboptimal growth. Amplification takes place over 0.55 mm and 0.5 mm.

At last, the findings of Sec. IV are discussed in the context of the state of the art considering the
investigation of transition on re-entry capsules including the corresponding experiments in Ref. [24].

V. DISCUSSION

To identify the mechanism triggering boundary layer transition on the spherical forebody of an
Apollo type re-entry capsule direct numerical simulations (DNS) of perturbed flow are analyzed.
The perturbations consist of two deterministic configurations of micro-size distributed surface
roughness that resemble subcritical surface imperfections in Ref. [26] and one configuration with
a greater number of elements mounted on the capsule model of the corresponding experiments in
Ref. [24]. The two roughnesses differ in the layout of the elements, i.e., aligned and staggered
arrangements are considered. They are compared to analyze the sensitivity of the generated flow
perturbations and to challenge the hypothesis that for vanishing differences between these alternate
deterministic micro-size roughness configurations, stochastic roughnesses may be represented by
deterministic roughnesses in numerical simulations or controlled experiments. The analysis is
performed at two Reynolds numbers, i.e., ReL = 1 062 500 and ReH = 3 060 000.

The wakes of the distributed roughnesses at both Reynolds numbers possess common properties.
The azimuthal disturbance distribution contains scales defined by the finite extent of the distribution
and the geometric properties of the distribution. Since the distribution of the roughness elements
in the experiments in Ref. [24] has a larger extent, the wake is decomposed applying a Fourier
transformation to analyze the latter effect. To investigate the effect of the overall extent of the
distributed roughness, analytic power-spectral densities and findings of a DNS configuration of a
single roughness element covering the complete base area of the distributed surface imperfections
are considered.

At the low Reynolds number where transitional flow is not observed in the experiments in Refs.
[24,26], both types of distributed roughness induce almost identical disturbances on the boundary
layer. In other words, at the lowest Reynolds number based on the roughness height Rekk the
disturbances are determined only by the final row of roughness elements and their azimuthal extent.
The upstream character does not affect the receptivity process. At the high Reynolds number,
transition occurs in the experiments in Ref. [24] under increased freestream noise conditions. For
this configuration, the current results show distinct differences between the roughness patterns. That
is, the receptivity process is also defined by the upstream distribution of the roughness elements.
For the lower Reynolds number, the ratio of roughness height k and momentum thickness θ is
k/θ = 0.295. For the higher Reynolds number, it is k/θ = 0.529. The transition correlation based
on transient growth by Reshotko and Tumin [32] fits the transition data of Reda [36,37] starting at
k/θ = 0.57 [24]. The receptivity process of transition induced by transient growth depends on the
roughness height and the azimuthal and streamwise distribution.

The differences between the two types of roughness arrays show clearly in the discussion of the
fundamental wave number and its second harmonic. Disturbances at the fundamental wave number
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are more intense for the experimental configuration of aligned rows of elements. By analyzing
the streamwise vorticity or wall normal velocity perturbation, their augmentation can be linked
to transient growth due to the lift-up effect. At the second harmonic of the fundamental wave
number, the staggered roughness arrangement leads to stronger disturbances. However, they can
not be attributed to harmonics since they are explicitly generated at the staggered rows.

While the disturbance energy components at the fundamental wave number during the growth
downstream of the distributed roughness are hardly affected by the smaller azimuthal extent of
the DNS configuration in comparison to the setup of the corresponding experiments, the gain of
the components is corrupted by uncertainties of the lowest value defining the input disturbance
energy. When the sum of all components is considered for the computation of the gain, i.e., the
total disturbance energy, the location of the input disturbance energy differs from the location of
the minima of its components. Then, for the experimental “aligned” roughness layout, there is
a difference of one order of magnitude between effects related to the roughness distribution and
disturbances related to the overall extent of the distributed roughness at the fundamental wave
number. In other words, a better ratio of signal, i.e., effects due to the distribution of elements,
to noise, i.e., artificial effects due to the differing overall extent, is achieved and the comparability
to experiments and optimal transient growth theory is enhanced. The smaller streamwise extent of
the DNS compared to the experiments generates more intense disturbances.

The comparison of the most amplified disturbance at the fundamental wave number to results of
optimal transient growth theory based on the total disturbance energy shows that streamwise vortices
define the identical type of disturbance. However, the vortex computed in the DNS is restricted to
the lower half of the boundary layer whereas the optimal disturbance extends up to the edge of the
boundary layer. The disturbance gain and length of growth are suboptimal. Furthermore, the DNS
also contain disturbances at other wave numbers. The most prominent additional perturbation occurs
at wave number zero which alters the flow being displaced by the vortices and excites nonlinear
effects.

Considering the aforementioned hypothesis, the present results lead to the following interpreta-
tion as to the identification of the transition mechanism in Refs. [24,26]. To identify the mechanism
of boundary layer transition initiated by small disturbances that grow subsequently, the most
amplified wave numbers from transitional data are to be compared to those of possible candidates,
e.g., crossflow instabilities, first mode instabilities, or transient growth. If transition is initiated by
stochastic distributed roughness and the relevant wave numbers of the transition process can not be
identified because of, e.g., limited access to the measurement data or enormous computational cost,
the transition scenario can be experimentally reproduced using deterministic distributed roughness
matching and exciting the relevant wave numbers in the streamwise and azimuthal direction.
Then, the identification of the relevant wave numbers of the stochastic distributed roughness
can be achieved by investigating various configurations of deterministic distributed roughnesses
in a parameter study. It goes without saying that this procedure could be very demanding due
to the production time and cost of a single roughness configuration. To decrease the number
of experiments, the wave-number distribution of the stochastic roughness can successively be
divided among several deterministic roughnesses. The more wave numbers are contained in a single
deterministic roughness, the closer it is to the stochastic roughness and the advantage of few wave
numbers as candidates to identify the relevant transition mechanism is lost. However, successively
decomposing the stochastic distributed roughness and excluding irrelevant wave numbers seems a
promising approach to reduce time and cost.

In the current study, the disturbances in the DNS generated by the roughness are weak and
do not exceed their initial amplitude during the short period of growth. In accordance with this
finding, the experiments in Ref. [24] do not show any transitional data due to the low wind tunnel
noise. In a follow-up study, the effect of freestream disturbances, more precisely freestream vorticity,
leading to transitional flow in combination with the micro-sized roughness is analyzed to show how
interactions alter the receptivity of the boundary layer and the disturbance growth.
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