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Progress in the rapidly expanding exploration of planetary atmospheric and oceanic
environments demands an adequate qualitative and quantitative representation of various
processes in anisotropic turbulence. The existing analytical spectral theories are developed
for homogeneous isotropic flows. They quickly become very complicated when expanded
to anisotropic flows with waves. It is possible, however, to extend one such theory,
the quasinormal scale elimination (QNSE), to stably stratified and rotating flows. Here
the results of the theory are compared with a large variety of oceanic and atmospheric
flows. These comparisons make it possible to clarify the physics of some processes
governing the atmospheric and oceanic dynamics, quantify their spectra, and investigate
their latitudinal and longitudinal variabilities. Some of the main results of this analysis
are that vertical and horizontal spectra of atmospheric and oceanic turbulence can be
derived within QNSE analytically; there exists a quantitative affinity between atmospheric
and oceanic spectra; on large scales, spectral amplitudes are determined by the extra
strains that cause flow anisotropization, rather than the energy or enstrophy fluxes; and
planetary circulations appear to be amenable to classification as flows with compactified
(compressed) dimensionality.

DOI: 10.1103/PhysRevFluids.5.063803

I. INTRODUCTION

Planetary circulations feature huge Reynolds numbers and are turbulent on almost all scales. In
addition, the action of density stratification, rotation, streamline curvature, geometric confinement,
magnetic fields, etc. (i.e., the variety of external factors that can be characterized as extra strains [1]),
renders these circulations anisotropic.

A systematic description of turbulence behavior in response to the impact exerted by extra strains
is one of the important outstanding problems of fluid dynamics. Addressing this problem runs into
difficulties from the outset because proliferation of dimensional variables hinders the application of
the dimensional analysis. Direct numerical simulations are limited by the value of the resolvable
Reynolds number even in relatively simple cases of channel flows [2]. Linear and nonlinear theories
of anisotropic turbulence have been developed [3–6]. However, a clear understanding of the spectral
behavior of such flows has proved to be elusive. Further progress relies upon the development of
basic self-consistent theories that make verifiable predictions suitable for testing against a large
variety of data.
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This study employs a spectral closure known as quasinormal scale elimination (QNSE), in which
interactions between different physical processes, including waves, are analyzed on a scale-by-scale
basis under the assumption of an infinite Reynolds number. The waves’ contributions are accounted
for by computing the frequency integrals over wave-generated complex poles in the course of the
calculation of the renormalized Green’s function [7,8].

The main purpose of QNSE is to produce expressions for the renormalized viscosities and
diffusivities in anisotropic turbulence that can be used for the development of subgrid-scale (SGS)
parametrization schemes suitable for practical applications either in large-eddy simulations or in
models employing the Reynolds-averaged Navier-Stokes equations. In addition, QNSE provides
analytical expressions for the spectra of kinetic and potential energies that are valuable on their
own. They can be used to diagnose turbulence characteristics which, when measured globally by
satellite networks and assimilated into numerical models, may significantly improve the models’
performance.

In this paper, theoretical predictions of various spectra will be compared with measurements in
atmospheric and oceanic flows. Particular attention will be given to one-dimensional (1D) spectra
that quantify the turbulence anisotropy. The existing literature shows a lack of clarity with regard to
spectral slopes and amplitudes of atmospheric and oceanic turbulence, their dependence on latitude,
and generally their governing physics.

For vanishing extra strains or on scales on which their effect is small, a theory of anisotropic
turbulence must attain its isotropic limit, e.g., the Kolmogorov theory [9–14]. This theory predicts
that in the inertial range (IR), where turbulence characteristics depend on the dissipation rate
ε yet are independent of the molecular kinematic viscosity ν0, the scaling for the second-order
longitudinal structure function is DLL(r) = C(εr)2/3 and the ratio of the transverse to longitudinal
structure functions in incompressible (solenoidal) flows is DTT(r)/DLL(r) = 4/3. Here C is a
constant and r is a separation distance in the physical space.

The structure functions DLL(r) and DTT(r) can be related to 1D, longitudinal, and transverse
energy spectra EL(k1) and ET (k1) by the Wiener-Khinchin relationships [11]

DLL(r) = 2
∫ ∞

0
[1 − cos(rk1)]EL(k1)dk1, (1)

DTT(r) = 2
∫ ∞

0
[1 − cos(rk1)]ET (k1)dk1, (2)

where k1 is a 1D vector in the longitudinal direction. By straightforward integration one can establish
full expressions for the structure functions and the corresponding 1D spectra (see, e.g., [11])

EL(k1) = 18
55CKε2/3k−5/3

1 , (3)

ET (k1) = 24
55CKε2/3k−5/3

1 (4)

and

DLL(r) = CL(εr)2/3, (5)

DTT(r) = CT (εr)2/3, (6)

where

CL = − 18
55�(−2/3)CK , (7)

CT = − 24
55�(−2/3)CK , (8)

with �(x) the Gamma function and CK the Kolmogorov constant in the 3D Kolmogorov spectrum

E (k) = CKε2/3k−5/3, (9)
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where k2 = k2
α and the summation over the repeating indices is enforced. The value of CK , as

established in [15] based upon numerous experiments and observations, is

CK = 1.62 ± 0.17 (10)

(see also the book by McComb [13]). Using (7) and (8), one computes CL = 2.13 ± 0.22 and
CT = 2.84 ± 0.3. Note that the value of CK in (10) almost perfectly agrees with the one computed
in the renormalization-group (RNG) theory of turbulence when the two-parametric viscosity by
Kraichnan [16] is used [17,18]. With one-parametric viscosity, one obtains CK � 1.5, the value that
will be employed in the applications of QNSE theory in this paper.

In [14], CL was rounded to 2. In applications, CL varies around 2. For instance, in [19], DLL(r)
was used in data processing from Doppler radar measurements of atmospheric turbulence which
gave CL � 2.1. This value was used several years later for computing the dissipation rate from
oceanic flow velocity profiles [20–23].

The power-law dependences of the structure functions may deviate from those prescribed by
Kolmogorov theory due to the effect of the intermittency (see, e.g., [12–14,24]) or the finite values
of the Reynolds number (see, e.g., [25–27]). In any case, the deviations from the Kolmogorov theory
are small for low-order moments such that (3) and (4) can be used as good approximations of 1D
spectra from which one can estimate the dissipation rate ε.

Equations (3), (4), and (9) apply to homogeneous turbulence where the dissipation rate ε is
equal to �ε, the rate of the energy transfer through the IR. In inhomogeneous turbulence and/or
in complex flows with extra strains and waves, multiple IRs with different values of the throughput
fluxes may develop. For such IRs, a more appropriate form of (9) would be the one advanced by
Kraichnan [28–30],

E (k) = CK�2/3
ε k−5/3. (11)

In a similar manner, ε should be replaced by �ε in the 1D spectra (3) and (4). The resulting
equations are of paramount importance. In the theory of homogeneous isotropic turbulence,
they establish a one-to-one correspondence between the rate of the spectral energy transfer and
amplitudes of energy spectra, up to the experimentally determined coefficients. In flows with
multiple IRs interlaced with regions of instabilities and enhanced and/or decreased energy fluxes,
they can be used to quantify these fluxes and reconcile them with pertinent physical processes.
One can expect that an accurate numerical simulation of these processes would critically depend on
accommodating the values of the incoming and outgoing fluxes. Multiple Kolmogorov subranges
were considered in, e.g., [31,32].

When laws of the Kolmogorov turbulence are applied to geophysical flows, it is usually implied
that the assumption of homogeneity approximately holds and that ε in Kolmogorov’s laws is a
standard rate of viscous dissipation. In numerical models, however, laws of turbulence are applied on
grid scales far exceeding the viscous scales and so �ε represents collective dissipation processes in
large areas that encapsulate energy losses due to a variety of processes. In the oceanographic context,
such processes include the topographic friction and form drag, tides, submesoscale instabilities,
fronts, wave breaking, etc. They may significantly exceed the viscous dissipation measured on
the microstructure [33–38]. Thus, in the oceanographic context, it is preferable to refer to �ε as
the effective submesoscale dissipation (ESD). The precise meaning of the submesoscale will be
elaborated in Sec. IX A.

Measurements reveal that in anisotropic turbulence with extra strains, laws of Kolmogorov
turbulence are modified in a nontrivial way. The energy spectra acquire anisotropy while amplitudes
of some 1D spectra steepen beyond Kolmogorov’s slope of −5/3. This steepening facilitates energy
accumulation in certain directions giving rise to the emergence of physical-space structures unseen
in the conventional Kolmogorov turbulence. Among such structures are the horizontal layers in
stably stratified oceanic flows (see, e.g., [39]), columnar vortices in rotating fluids and hurricanes in
the atmosphere (see, e.g., [6,40]), and zonal jets on giant planets (see, e.g., [41]).
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What determines spectral amplitudes and slopes in anisotropic flows with extra strains? Pro-
liferation of the extra strain-related terms in the Navier-Stokes and energy equations hinders the
application of the dimensional analysis, although some progress has been achieved for turbulence
in stably stratified flows (see, e.g., [42]). That and other studies indicate that the characteristic for
a stable stratification steep slope k−3

z in the vertical direction and the associated spectral amplitude
are determined by the Brunt-Väisälä frequency N rather than the energy and/or enstrophy fluxes.

In magnetohydrodynamic flows with low magnetic Reynolds number, the effect of the magnetic
extra strains differs from that in stratified flows. It causes an increase of the correlation length in the
magnetic field direction, turbulence quasi-two-dimensionalization, and development of the inverse
energy cascade on scales larger than the forcing scale, as would be expected in forced 2D turbulence
(see [43] and references therein). The application of the QNSE theory in this case reveals spectral
steepening beyond the Kolmogorov slope of −5/3 on large scales. The spectral amplitudes are
determined by the magnitude of the extra strain, which is the Joule dissipation time scale in this
case, and attain a slope of −7/3 in all directions in a relatively weak magnetic field [43]. Slopes of
−3 emerge in a strong field.

Rotating flows also exhibit spectral steepening to the slope −3 in all directions and in addition
they preserve the isotropy in the plane orthogonal to the rotation vector. The isotropy between
the vertical and horizontal directions is not preserved. Dating back to the pioneering study by
Charney [44], the spectral steepening has been attributed to flow quasi-two-dimensionalization and
the ensuing direct cascade of the potential enstrophy (PE).

An alternative explanation of the spectral steepening in rotating flows was given by the QNSE
theory elaborated in [8]. It was demonstrated that the large-scale spectral amplitudes are determined
by the Coriolis parameter rather than the PE fluxes. This result is in line with that in stably stratified
flows and points to some general framework underlying modification of turbulence by extra strains.

One of the purposes of the present paper is to present a comparison of the QNSE results for
rotating flows with the existing data. Theoretical predictions will be scrutinized against numerous
observational data sets collected in the atmosphere and the ocean and good agreement between the
theory and data will be demonstrated.

The steepening of the large-scale spectra in stably stratified and rotating flows and the depen-
dence of the spectral amplitudes on the magnitude of the respective extra strains in both cases
indicate that even though the physical processes are different, there is a similarity in modification
of the spectral amplitudes by the extra strains. In fact, the similarity extends even further, to flows
with a β effect and inverse energy cascade. In that case, a steep spectral amplitude is determined
by an extra strain known as a β term and a spectrum steepens to β2k−5

y , where ky is the meridional
component of the horizontal wave vector [41,45].

To identify the processes responsible for the spectral steepening, we note that the extra strains
modify interactions of vector triads and through them alter the turbulence dynamics. Extra strains
may cause the selection of preferred triad interactions, leading to energy concentration in low-
dimensional subspaces [columnar vortices in rotating flows, horizontal layers in stratified flows, and
zonal jets on a rotating sphere (see, e.g., [40,46,47])]. A recent review of flows with extra strains
was given by Alexakis and Biferale [32].

On decreasing scales, the effect of extra strains weakens and turbulence returns to a quasi-
isotropic state. Then Eqs. (3) and (4), written in terms of the energy transfer rate �ε rather than
the dissipation rate, hold to a good approximation and can be utilized for estimating �ε over these
scales.

Quantification of anisotropic spectra beyond dimensional analysis has important implications
for rapidly developing technology of remote sensing of atmospheric and oceanic dynamics and
transport properties by satellite altimetry, scatterometry, and similar tools. The QNSE theory can
help to guide future data collection and interpretation of the results.

The rest of the paper is composed in the following way. Section II provides a brief description
of the QNSE theory of turbulence. Section III provides a brief survey of theoretical results for
stably stratified flows. Section IV elaborates QNSE results for rotating flows, while Sec. V compares
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these results with atmospheric data. Sections VI and VII provide the derivation of the structure
functions using the QNSE theory and compare them with observations. Section VIII extends the
QNSE analysis to spherical geometry, while Sec. IX applies the QNSE results to the analysis of
oceanic data. Section X embeds theoretical insight into planetary flows by combining the results for
stably stratified and rotating flows. Finally, Sec. XI provides a discussion and conclusions.

II. BRIEF DESCRIPTION OF THE QNSE THEORY

The QNSE theory is formulated for a 3D turbulent flow. For stratified flows, governing equations
include a vertical stabilizing temperature gradient; for rotating flows they include the Coriolis force.
Flows are governed by the momentum, temperature in the case of stratification, and continuity
equations in the Boussinesq approximation. A detailed derivation of the QNSE equations is given
in [7,8,43,48,49] and only a brief summary is given here.

The governing equations are space-time Fourier transformed. They are strongly nonlinear as the
Reynolds number Re is large on large scales. Thus, the smallest scales are those where viscous
processes prevail and Re = O(1). The smallness of Re allows one to explore the renormalized
perturbation methodology employing the dressed, or effective, or eddy viscosity and eddy diffusivity
rather than their bare molecular values [50,51]. This methodology allows one to gradually coarse
grain the flow domain by recursive elimination of small shells of small-scale modes and calculate
the compensating effective eddy viscosity and eddy diffusivity accounting for turbulent transport
on the eliminated scales. Technically, this approach follows the RNG procedure of successive scale
elimination [17,52] but is distinct in some important details. Unlike the RNG method, the QNSE
procedure employs no fixed point arguments. In another diversion from the RNG method, it uses a
self-substitution method [48,53] to evaluate the product of slow and fast modes, i.e., the cross term,
in the expansion series.

An important element of the QNSE procedure is the mapping of the velocity modes in the small
shell �	 which is subject to elimination by ensemble averaging to the Langevin equation

uα (k̂) = Gαβ (k̂) fβ (k̂), (12)

where uα (k̂) is a space-time Fourier transform of the velocity, k̂ = (k, ω), and Gαβ (k̂) is the
renormalized Green’s function containing renormalized viscosity and possibly diffusivity resulting
from elimination of small scales with wave numbers larger than 	. The random force fβ (k̂) is
generated by nonlinear interactions as elaborated in, e.g., [30,50,54–56]. Numerous attempts to
derive this force from first principles have been unsuccessful so far [50,57] and so its form has to be
postulated. Physically, fβ (k̂) accounts for steering of a mode k by all other modes; it is solenoidal,
zero mean, white noise in time, homogeneous in time and space, and its correlation function is

〈 fα (ω, k) fβ (ω′, k′)〉 = 2D(2π )4k−3Pαβ (k)δ(ω + ω′)δ(k + k′), (13)

where

Pαβ (k) = δαβ − kαkβ

k2
(14)

is the projection operator that ensures the solenoidality of the velocity field. The forcing amplitude
D is proportional to the energy transfer rate �ε. As elaborated in [7], the proportionality factor is
not adjustable; it is calculated from the energy balance considerations.

As shown in [7,48], an important requirement for f is that 〈 fα (p) fβ (q) fσ (k − p − q)〉 = 0 for
vector triads such that p, q, and k − p − q belong in the shell �	 subject to elimination. This
property alone suffices to develop a rigorous self-contained mathematical procedure of successive
averaging. The force does not need to be Gaussian, although a Gaussian field would meet the
above requirement. Generally, fβ (k̂) could be characterized as quasinormal. The combination of the
quasinormal forcing and eddy damping represented by the eddy viscosities and eddy diffusivities
places QNSE in the class of quasinormal eddy-damped theories of turbulence [6,50,58,59]. Note,
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however, that unlike conventional renormalized perturbation theories, the QNSE procedure does not
engage the entire range of scales at once.

By straightforward computation one establishes that, under the action of stable stratification
or rotation, not only does the Langevin equation (12) acquire a tensorial form but, in addition,
corrections to the eddy viscosity and eddy diffusivity differ in the vertical and horizontal directions,
thereby rendering renormalized viscosities and diffusivities anisotropic. In dealing with anisotropic
turbulence it has been assumed that the anisotropization of the forcing fβ (k̂) can be neglected such
that the anisotropization of the flow field is fully reflected in the anisotropization of the Green’s
function. The results based upon this assumption agree well with various data sets and provide a
retroactive justification to the initial assumption.

The SGS viscosity and diffusivity are well defined in flows with a wide spectral gap between
the eliminated implicit or subgrid scales k > 	 that generate the SGS parameters and explicit or
resolvable scales k < 	 upon which these parameters act [16,60,61]. In real flows, however, such a
gap does not exist and so one has to introduce two-parametric viscosity and diffusivity that possess
a cusplike behavior on the smallest resolvable scales k � 	 [16]. The QNSE theory employs an
important simplification known as the distant interaction or spectral gap approximation in which
the limit k/	 → 0 is taken and only the terms up to O(k2) are retained [17,56]. Essentially, this
approximation enforces a spectral gap between the resolvable and subgrid scales and accordingly
renormalized viscosities and diffusivities are taken as functions of 	 only. In doing so, the
dependence on k, and thus the cusplike behavior of the viscosities and diffusivities, is lost. The
degree of inaccuracy introduced by this approximation cannot be estimated rigorously at present.
However, its utility was demonstrated by Kraichnan [54] by showing that it provides a reasonably
accurate description of the effective viscosity in isotropic 3D turbulence. Additional heuristic
arguments in its justification were advanced by Smith and Woodruff [56]. Upon calculation of the
Green’s function in (12), this equation can be used to compute the velocity correlation function and
then 3D and 1D spectra.

In flows with inverse energy cascade, e.g., 2D flows, the spectral gap approximation cannot be
used. Nevertheless, for such flows, the QNSE-based renormalized Green’s functions can be utilized
to compute the two-parametric viscosity [62].

III. QNSE RESULTS FOR STABLY STRATIFIED FLOWS

In the case of 3D flows with stable stratification, QNSE predicts both the slopes and the
amplitudes of the 1D vertical spectra of the horizontal velocity, E1(k3) and E2(k3), and temperature
ET (k3) [or potential energy Ep(k3) = (αg/N )2ET (k3), where k3 is the vertical (or z) component of
the wave vector, α is the thermal expansion coefficient, g is the gravity acceleration, and N is the
Brunt-Väisälä frequency] in the limit of weak stratification [63],

E1(k3) = E2(k3) = 24
55CK�2/3

ε k−5/3
3 + CBN2k−3

3 , (15)

Ep(k3) = CT �χ�−1/3
ε k−5/3

3 + γ3N2k−3
3 , (16)

where CB = 0.214, CT = 0.62, γ3 = 0.23, and �χ is the rate of the potential energy transfer
analogous to �ε. These spectra consist of two branches, Kolmogorov and N-dependent ones, on
smaller and larger scales, respectively, with the crossover scale proportional to the Ozmidov scale
LO = (ε/N3)1/2. Of significance, the latter branch develops in the vertical direction, along which
the phase speed of the gravity wave is zero. This result is stipulated by the restriction imposed upon
the wave vector triad interactions by the frequency resonance condition elaborated in, e.g., [64]. An
alternative explanation of the N-dependent spectral branches was given by [65–67] based upon the
hypothesis of internal gravity wave saturation. Unlike QNSE, however, this heuristic approach does
not consider turbulence anisotropy and turbulence-wave interaction. In addition, it cannot predict
numerical coefficients in the spectral expressions.
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As shown in [63,68], Eq. (15) provides an analytical expression for the composite vertical spec-
trum of the horizontal velocity fluctuations observed in the ocean [69,70] and the atmosphere [71]
(see also references in [68]). The QNSE-based vertical spectra of the horizontal velocity components
provide a good approximation not only for those derived from atmospheric and oceanic data but
also for those obtained from laboratory measurements (see [63,68] and references therein) and
from computer simulations [72]. In addition, they agree well with the vertical temperature spectra
obtained on Mars and Venus in [73,74] from the radio occultation data.

The spectra (15) and (16) appear as corrections to the respective Kolmogorov-Corrsin spectra in
the approximation of weak stratification. As was shown in [7], the QNSE-based eddy viscosities and
eddy diffusivities as well as the spectra can be derived for arbitrary stratification. The expressions
in this case are very complicated and can only be dealt with numerically. However, the above
expressions for the spectra seem to hold on scales far exceeding those on which they are valid
according to the theory and, being analytically transparent, they are very useful for applications to
stably stratified atmospheric and oceanic flows.

IV. QNSE RESULTS FOR ROTATING FLOWS

Consider 3D, neutrally stratified, incompressible (i.e., solenoidal) rotating flows in an unbounded
domain. The angular velocity vector of the system rotation is aligned vertically, � = {0, 0,�}, while
f = 2� is the Coriolis vector (in spherical coordinates, its local vertical projection is f = 2� sin θ ,
where θ is the latitude). The horizontal (or x and y) components of a wave vector k are k1 and k2.
The QNSE theory yields the expressions for 1D horizontal kinetic energy (KE) spectra in the limit
of a weak rotation [8],

E1(k1) = 18
55CK�2/3

ε k−5/3
1 + Cf 1 f 2k−3

1 , (17)

E2(k1) = 24
55CK�2/3

ε k−5/3
1 + Cf 2 f 2k−3

1 , (18)

where Cf 1 = 0.0926 and Cf 2 = 0.24. The vertical direction and vertical spectral component will
not be considered here as they depend on stable stratification which has not been included yet in the
theory along with rotation.

Rotation breaks the isotropy of 3D flows yet the spectra remain horizontally isotropic and so
the two longitudinal [E1(k1) ≡ EL(k1) and E2(k2) ≡ EL(k2)] and two transverse [E2(k1) ≡ ET (k1)
and E1(k2) ≡ ET (k2)] spectra are congruent. Note that the horizontal spectral isotropy of large-
scale forced, rotating turbulence and a spectral law close to (17) were reproduced in recent direct
numerical simulations in [75].

Similarly to the case of stable stratification, the spectra (17) and (18) exhibit a superposition of the
Kolmogorov and flux-independent (yet f -dependent in this case) branches with the crossover scale
being proportional to the Woods scale L� = (ε/ f 3)1/2, the rotational analog of the Ozmidov scale.
There exists abundant evidence of the Kolmogorov range with a direct energy cascade for horizontal
flows in the atmosphere (e.g., [76]) and the ocean (e.g., [77,78]), although the applicability of the
Kolmogorov results to strongly anisotropic flows has been questioned. Some of these issues will be
addressed later on in this paper.

The crossover scale between the Kolmogorov and rotation-dominated subranges can be com-
puted by equating the two terms in (17). In terms of the wavelength, this scale is

Lc � 2π × 5.43/4L� � 22L�. (19)

In solenoidal isotropic fields, E1(k1) and E2(k1) are related by

E2(k1) = −k1
dE1(k1)

dk1
(20)
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FIG. 1. Ratio R ≡ ET (k1)/EL (k1) based upon Eqs. (17) and (18). The latitude θ = 30◦ N and the energy
transfer rate �ε = 5 × 10−5 m2 s−3.

in 2D flows (see, e.g., [79]) and

E2(k1) = 1

2

[
E1(k1) − k1

dE1(k1)

dk1

]
(21)

in 3D flows [11]. If the 1D spectra are represented by the power laws E1(k1) = A1k−n
1 and E2(k1) =

A2k−n
1 , then for 2D and 3D solenoidal flows, R(k1) ≡ E2(k1)/E1(k1) is equal to n or (n + 1)/2,

respectively. Thus, for n = 3, R = 3 for 2D flows and R = 2 for 3D flows.
In some studies, in the light of (20), the proximity of R to 3 has been taken as an evidence

of flow two-dimensionalization on large scales [80–84]. On smaller scales, R decreases to about
1, which was interpreted in terms of proximity to the range dominated by internal gravity waves
and describable by the Garrett-Munk spectrum [85,86]. Some observational studies (e.g., [84]) have
found it difficult to explain the change of R with the wave number. The QNSE theory, on the other
hand, offers a self-consistent framework highlighting the dependence R(k1).

As discussed earlier, R = 4/3 for the Kolmogorov subrange with n = 5/3. In real flows, due to
a variety of factors such as the density stratification, interaction with the topography, and turbulence
intermittency [87], this ratio may differ somewhat from 1.33. The dependence R(k1) according to
QNSE in the range of scales relevant to atmospheric turbulence as analyzed in [88] is shown in
Fig. 1.

In QNSE, a flow field is solenoidal ab initio and so R > 1 in both rotation-dominated and
Kolmogorov ranges. Using (17) and (18), one obtains R � 2.6 on large scales, which is an
intermediate value between those characteristic of isotropic 2D and 3D turbulence. A similar
average value was also reported in [84] for the Southern Ocean. This outcome hints that turbulence
in rotating systems and possibly some large-scale geophysical flows can be placed in the category
of those with a spatial dimension larger than 2 but smaller than 3, i.e., flows with compactified
dimensionality mentioned earlier in the Introduction (see also [31,89]). Such flows may feature
both upscale (inverse) and downscale (direct), i.e., dual energy cascade [90–93] in the same IR.
There may exist a transition, either continuous or discontinuous, between the scales with opposite
cascade directions [94]. An interesting example of such a transition was discovered in the hurricane
vortices where the cascade was found to have changed the sign with altitude [95].

V. COMPARISON OF QNSE RESULTS WITH ATMOSPHERIC DATA

In this section, spectra predicted by the QNSE theory are compared with those derived from
atmospheric data collected by commercial aircraft during two campaigns, the Global Atmospheric
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FIG. 2. Longitudinal KE spectra from [88] for flight segments in the troposphere and stratosphere in the
latitudinal band 25◦N–50◦N. Red lines are the QNSE analytical solutions (17). The spectrum for the meridional
wind is shifted one decade to the right. The latitude for the theoretical lines is θ = 30◦N and the energy
flux is �ε = 5 × 10−5 m2 s−3 [99]. An estimate in [100] is �ε = 6 × 10−5 m2 s−3. Straight black lines show
Kolmogorov’s −5/3 and synoptic −3 slopes.

Sampling Program (GASP) [96,97] and the Measurement of Ozone and Water Vapor by Airbus
In-Service Aircraft (MOZAIC) [98]. For these comparisons, the axes k1 and k2 were aligned in the
zonal (east-west) and meridional directions, respectively, and (17) and (18) were juxtaposed with
the longitudinal and transverse, when available, spectra of the tropospheric and lower stratospheric
aircraft winds. Generally, the spectra feature two distinct branches. On synoptic scales (between a
few thousand and about 500 km), they exhibit a slope proportional to k−3

h , kh being the isotropic
horizontal 1D wave number, with the amplitudes decreasing towards the equator. On mesoscales
(between about 500 and 10 km), the spectra gradually transition to the classical Kolmogorov slope
k−5/3

h . The slopes and amplitudes appear to be preserved, on the average, throughout all seasons.
Figure 2 (an earlier version of this figure was reproduced as Fig. 7.21 in [6]) shows the

longitudinal spectra of the zonal and meridional winds known as the Nastrom-Gage (NG) spectra
vs the QNSE expression (17). The value of the energy transfer rate was estimated in [99] at
�ε = 5 × 10−5 m2 s−3. The data-based spectral amplitudes were averaged between 25◦N and 50◦N,
while (17) employed θ = 30◦N. Even though, in the visual account, the agreement between the data
and the theory is quite good, the discord between the latitudinal dependence of spectral amplitudes
in (17), on the one hand, and the latitudinal averaging of the data, on the other, requires some
elaboration. Indeed, the accuracy of the comparison is difficult to ascertain as it is hampered by an
unknown latitudinal distribution of the aircraft trajectories in the 25◦N–50◦N belt, uncertainty of
their deviations from constant latitude circles during flights, etc.

Figure 3 provides a more detailed comparison of the latitudinal dependence of the longitu-
dinal spectra estimated from data in [88] with (17). Both the observed and theoretical spectra
exhibit a weak dependence on θ on mesoscales and strong dependence on θ on synoptic scales.
Quantitatively, the agreement is satisfactory but, again, it is difficult to ascertain its details as the
measurements were not designed for appraising the latitudinal dependence. The theoretical value of
�ε was set the same as in Fig. 2.
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FIG. 3. Latitudinal variation of the NG spectra. The latitudes increase from bottom to top and their values
are specified in the plot. The data points are from [88]. The spectra for the meridional wind are shifted one
decade to the right.

The spectral branch with the −3 slope decreases towards the equator. The increasing with scale
and latitude span of data spread and the range of its variability are well encapsulated in (17), both
qualitatively and quantitatively. The decrease of the spectral slope towards the equator was also
noted in the analyses of observational data in [97,99,101], but in the present study this phenomenon
is explained and quantified. The complete disappearance of the Coriolis subrange in the equatorial
regions anticipated by the theory was observed by Xu et al. [102] and King et al. [103] in their
analyses of data from different scatterometers.

Various numerical simulations demonstrate the crucial role of system rotation for the formation
of spectra of atmospheric turbulence with a slope steeper than Kolmogorov’s −5/3. On the other
hand, studies that excluded the Coriolis parameter featured horizontal spectra with the slope around
−5/3 only [104,105]. When the Coriolis parameter was retained, the synoptic-range spectra not
only developed the −3 slope but their amplitude was invariably close to the one predicted by (17),
even in the cases with convective forcing [106,107].

In [88] and other publications by the same authors, only longitudinal NG spectra were presented.
Without their transverse counterparts, however, the physical picture is incomplete. Fortunately,
the MOZAIC data set contains sufficient information to evaluate both longitudinal and transverse
spectra.

Figure 4 compares (17) and (18) with the longitudinal and transverse spectra as evaluated in [81]
(see their Fig. 1A) using the MOZAIC data in the latitude belt between 30◦N and 60◦N. The
details of the data selection and processing are given in the original paper. There is generally good
agreement between the data-based and theoretical spectra, although the theory cannot reproduce
all details of the data such as the convergence of the longitudinal and transverse spectra together
on mesoscales. In the theory, the strictly enforced incompressibility ensures that the transverse
spectrum is always larger than its longitudinal counterpart [11], i.e., as explained in Sec. II,
R(k1) > 1 for all k1.
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FIG. 4. Comparison of the longitudinal (red) and transverse (blue) observational spectra from [81] (solid
lines) with (17) and (18) (dashed lines) for θ = 60◦N and �ε = 5 × 10−4 m2 s−3.

Figure 5 compares (17) and (18) with the longitudinal and transverse spectra as evaluated in [108]
[see their Fig. A2a]. The data set was basically the same as that used for Fig. 4, but the data selection
criteria were somewhat different. To account for the air density variation with altitude, the data-
based spectra were density weighed. To reflect this change, the theoretical spectra were multiplied
by 0.4 kg m−3, which is the standard air density at 350 hPa. The differences in the data selection and
processing had practically no effect on the values of the latitude θ and �ε reported earlier for Fig. 4.
With these values, good agreement is achieved between the data-based and theoretical spectra with

FIG. 5. Comparison of the longitudinal (red) and transverse (blue) density-weighed observational spectra
from [108] (solid lines) with (17) and (18) (dashed lines) for θ = 60◦N and �ε = 5.5 × 10−4 m2 s−3.
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the limitations mentioned for Fig. 4 remaining intact. Unlike Fig. 4, however, on scales smaller than
about 50 km, the longitudinal and transverse spectra in Fig. 5 become nearly indistinguishable, with
the former still being a little larger than the latter. Generally, however, the agreement between the
observed and theoretical Kolmogorov spectra is remarkable.

Note that, unlike Fig. 3, some analyses show that the amplitude of the stratospheric spectra
increases towards the equator [109]. The exact reasons for the differences in the spectral amplitudes’
behavior have not been identified yet, nor has they been confirmed in other studies such as [108]. The
dissimilarities in the physical processes in the troposphere and lower stratosphere were underscored
in [110], where it was shown that, while the former features the direct energy cascade, the energy
flows upscale in the stratosphere. In addition, between the troposphere and stratosphere, N may
sharply change by a factor of 2.

VI. SECOND-ORDER STRUCTURE FUNCTIONS

As discussed in Sec. IV, the 1D spectra E1(k1) ≡ EL(k1) and E2(k1) ≡ ET (k1) given by (17)
and (18), respectively, are in fact the longitudinal and transverse 1D spectra in rotating flows. The
second-order longitudinal and transverse structure functions DLL(r) and DTT(r) are related to EL(k1)
and ET (k1) via the Wiener-Khinchin relationships (1) and (2). In a solenoidal isotropic fluid, DLL(r)
and DTT(r) are related by a general expression

DTT(r) = DLL(r) + r

d − 1

dDLL(r)

dr
, (22)

valid for any spatial dimension d . For d = 3, this relationship was derived in [11], while for d = 2,
it can be found in [111].

VII. STRUCTURE FUNCTIONS FOR ROTATING TURBULENCE IN THE QNSE THEORY

Using (17) and (18), Eqs. (1) and (2) can be integrated analytically to yield expressions for the
second-order structure functions in the entire range of separation scales,

DLL(r) = − 18
55CK�

(− 2
3

)
(�εr)2/3 + Cf 1( f r)2F (k0r), (23)

DTT(r) = − 24
55CK�

(− 2
3 )(�εr)2/3 + Cf 2( f r)2F (k0r), (24)

F (x) = x−2[1 − cos(x) + x sin(x) − x2Ci(x)], (25)

where Ci(x) = − ∫ ∞
x

cos t
t dt is the cosine integral, k0 = 2π/L0 is the lowest wave number in the

turbulence spectra, and L0 is the maximum fluctuating scale. For small separations, (23) and (24)
asymptote like r2/3 prompting DTT(r)/DLL(r) → 4/3. A comparison with data (see, for instance,
Fig. 6 below) reveals that this ratio may be somewhat smaller than 1.33 on mesoscales of real
atmospheric flows. These flows are spatially anisotropic due to a variety of factors such as the
density stratification and interaction with the topography. In addition, finite-Reynolds-number
effects and turbulence intermittency may also play a role in modifying the value of that ratio. The
limit of large separations is more subtle; although the Coriolis branches of (23) and (24) become
predominant with increasing r, the argument of F (x), k0r, cannot exceed a value of about 2π . Thus,
the large separation asymptotic behavior for (23) and (24) is not well defined.

Figure 6 compares the QNSE-based expressions (23)–(25) with the second-order structure
functions empirically fitted in [111] to the MOZAIC data. The data are treated as a unified
compilation under the assumption that they represent essentially homogeneous atmospheric dy-
namics. As in [88], data variability with respect to altitude, latitude, season, and land or sea
contrasts was disregarded. The free parameters in the analytical expressions were set to θ = 20◦
and �ε = 8 × 10−5 m2 s−3.
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FIG. 6. Comparison of the theoretical longitudinal (blue) and transverse (red) second-order structure
functions with the empirical ones (black dotted lines) computed by Lindborg [111] based upon the MOZAIC
data [98]. Here θ = 20◦ and �ε = 8 × 10−5 m2 s−3.

As already discussed in Sec. V, the utility of comparing latitude-averaged atmospheric data with
latitude-dependent equations (23) and (24) is limited. The comparison in Fig. 6 can only be used to
illustrate that the structure functions computed in [111] are approximately the same as the theoretical
expressions both shapewise and magnitudewise.

As was already mentioned earlier, if the structure functions DLL(r) and DTT(r) can be estimated
from data, then (5)–(8) can be used to evaluate �ε from small-scale separation profiles (see,
e.g., [20–23]). The expressions for DLL(r) and DTT(r) are insufficient, however, for determination
of the direction of the energy transfer. The sign of �ε can be found from the third-order structure
functions. Based upon this technique, it was found that the Kolmogorov branches of the atmospheric
spectra feature a downscale energy cascade [111] which is fully consistent with QNSE. However,
what can be said about the energy transfer on synoptic scales?

Most of the existing theories of the synoptic range spectra utilize the paradigm of geostrophic
turbulence by Charney [44] according to which a fast rotating, stably stratified 3D flow acquires dy-
namical properties analogous to those of purely 2D turbulence. Thus, the conservation of enstrophy
(equal to the one-half of the squared vorticity) in purely two dimensions gives rise to the enstrophy
range [29,112,113] with the spectrum proportional to �2/3

ω k−3 on scales smaller than the forcing
scale (here �ω denotes the constant spectral enstrophy flux and k is the horizontal 2D wave number).
Similarly, the conservation of the potential enstrophy [equal to one-half of the potential vorticity
(PV) squared; PV is a vorticity modified by rotation and stratification in such a way that it becomes a
materially conserved variable in geostrophic turbulence (see, e.g., [114])] gives rise to the spectrum
proportional to �2/3

ω k−3 when forcing resides on large planetary scales (in this case, �ω denotes
the spectral flux of the potential enstrophy). Lindborg and Cho [100] stated that an alternative to
Charney’s theory that could explain the shape of the second-order structure functions and underlying
KE spectra on synoptic scales does not exist. The geostrophic turbulence underpinning is important
for the dispersion processes as much as for the dynamics [115] and has been reasserted recently
by Bierdel et al. [116], who stated that “. . . there is a wide consensus about the crucial role of
quasi-two-dimensional balanced motions in generating the shape of the kinetic energy spectrum on
synoptic scales . . .,” and by Asselin et al. [117], who wrote that “[s]ynoptic-scale dynamics are
typically interpreted in the light of [Charney’s] theory of geostrophic turbulence, which predicts a
forward enstrophy cascade along a −3 spectrum below the baroclinic injection scale.”
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The QNSE theory offers an alternative explanation of the spectra on synoptic scales which is
readily available for a quantitative comparison with that in [111]. For the 1D variance, the equation
in [111] is E1(k1) = K�2/3

ω k−3
1 , with K � 0.19 and �ω � 1.8 × 10−13 s−3, as estimated from the

MOZAIC data. Compared with (17), this yields �ω ∝ f 3 and θ � 34◦. Other estimates of �ω from
atmospheric data, e.g., [109], yield similar results. The physics behind these scalings may be quite
different. For comparison, the geostrophic turbulence anticipates the direct cascade of potential
enstrophy. The QNSE theory, as derived for 3D turbulence, does not rely upon the assumption of a
constant enstrophy flux and is capable of accommodating a dual energy cascade in a certain range
of scales.

The dependence of the spectral amplitudes on the Coriolis parameter rather than the energy
and/or enstrophy fluxes is a principally different result in the theory of rotating turbulence.
Following Kolmogorov’s theory, it has always been tacitly accepted that spectral amplitudes are
ultimately determined by either of the fluxes. The computation of the fluxes is based upon the
energy equation which does not contain explicit Coriolis terms. The dependence of the spectra on
the Coriolis parameter may be introduced by the velocity, via the momentum equation that depends
on f explicitly, and/or by the pressure-velocity correlation term whose evaluation in the physical
space is very difficult. Lindborg and Cho [100] noted that the impact of the Coriolis terms on the
atmospheric spectra could be profound but, due to the difficulties in evaluating the pressure-velocity
correlation, they did not advance this issue any further.

The QNSE theory operates in Fourier space where the equation for the pressure is solved
exactly (see [8]). This solution is used in the procedure of small-scale elimination that produces
renormalized viscosities and diffusivities with an explicit dependence on f . These viscosities
and diffusivities enter the Langevin equation via the Green’s function rendering the velocity f
dependent. In addition, the dependence of the pressure on f is reflected in the pressure-velocity
correlation implicitly.

From the point of view of dimensional analysis, the spectral amplitudes in the Kolmogorov theory
depend on the energy flux �ε because the Navier-Stokes equation does not provide an appropriate
scaling parameter. On the other hand, the extra strains, when present, usually appear in the
Navier-Stokes equation and so there is no reason why they should not affect the spectra explicitly.
In geophysical flows, the extra strains usually support anisotropic linear waves that interact with
turbulence and render it anisotropic as well. It is not surprising, therefore, that geophysical spectra
reveal different scaling laws in different directions and in different ranges of scales. Proliferation
of the dimensional parameters in flows with extra strains hinders the application of the dimensional
analysis and so progress in this area should rely upon further advances of analytical theories of
turbulence.

VIII. COMPARISON OF THE QNSE AND NG SPECTRA IN THE SPHERICAL GEOMETRY

The design and configuration of atmospheric circulation models and systems of numerical
weather prediction have often been guided by their ability to reproduce the NG spectral slopes.
Replication of the slopes and the crossover scale not only has become a prerequisite ensuring the cor-
rectness of the models’ formulation and configuration but is often taken as a guideline for estimating
the spin-up timescales, forecast error growth, and subfilterscale (or SGS) parameterizations [118].
However, since the magnitudes of the NG spectral amplitudes remained poorly constrained, the
quantitative relation between the model configuration and the simulated spectra as well as the
functional form and magnitude of subfilterscale parametrization has been uncertain [118–120].

By providing a quantitative explanation of the key features of the NG spectra, the QNSE theory
offers a criterion suitable for assessing the accuracy of numerical models, magnitudes of spectral
slopes and amplitudes, and values of the crossover scales.

In a spherical coordinate system, the meridional spectrum of the zonal velocity is in fact a
transverse 1D spectrum that depends on the zonal index n. This spectrum can be represented by
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Eq. (18) adapted for the spherical geometry,

EZ (n) = 24
55CK�2/3

ε (n/R)−5/3R−1 + Cf 2�
2R2n−3. (26)

Here R is the sphere’s radius and EZ is the zonal KE per unit nondimensional index n (rather than a
unit wave number) and so the dimensions of EZ are m2 s−2.

Figure 7 compares Eq. (26) with the results of global simulations of the troposphere and
stratosphere using the nonhydrostatic atmospheric Model for Prediction Across Scales (MPAS) [118].
The agreement is quite good for the troposphere in both mesoscale and synoptic subranges but
worsens in the stratosphere.

Equation (26) quantifies the dependence of EZ on �. Numerical experiments in [120] demon-
strated that the increase or decrease of � by a factor of 2 results in the increase or decrease of the
amplitude of the synoptic branch of the spectrum by a factor close to 4. The mesoscale branch shows
no dependence on �. On the other hand, as shown in [88], seasonal weather variations that drive
changes in �ε mostly affect the mesoscale branch of the spectrum and have a small impact upon its
synoptic branch. Both tendencies are in good qualitative agreement with QNSE predictions.

IX. COMPARISON OF QNSE RESULTS WITH OCEANIC DATA

As suggested by Charney [44], the laws of the geostrophic turbulence are quite general and so
the expressions developed for the atmospheric spectra should be applicable to oceanic flows as well.
Although the QNSE equations (17) and (18) do not imply geostrophic balance, they are quite general
and include only two external parameters �ε and f and so, if they are germane to geophysical flows,
they must provide a route to materialization of Charney’s conjecture.

The applicability of the QNSE results to oceanic flows is not obvious however. On relatively large
scales, oceanic flows feature an inverse energy cascade and spectral anisotropy [121–123] that result
in the emergence of multiple alternating zonal jets (see, e.g., [41,124]). In addition, the magnitude
of the first baroclinic Rossby radius in the ocean is much smaller than that in the atmosphere.
As a consequence, the scale of the baroclinic instability and ensuing eddy forcing is also much
smaller, only of the order of several hundred kilometers and less, and it decreases with increasing
latitude [123].

On the other hand, the QNSE predicts that on relatively large scales, the spectral amplitudes
are independent of the spectral fluxes, and if this prediction is correct, then Charney’s visionary
hypothesis should hold true. To test it, we utilized oceanic data obtained with the ship-mounted
acoustic Doppler current profilers (ADCPs). Along-track spectra derived from the ship-mounted
ADCPs and satellite altimetry have been found in agreement on scales exceeding 70 km, but on
smaller scales, the satellite spectra become noisy and unrealistic (see, e.g., [84,125,126]). The
comparisons in this section are aimed at clarifying qualitative and quantitative agreement between
the QNSE theory and data-based spectra, the soundness of the predicted latitudinal dependence of
the spectral amplitudes, and the elaboration of the KE disparity between the western and eastern
basins (evident in satellite data presented in, e.g., [127–129]) in the theory despite the independence
of the theoretical expressions of the longitude. Some implications of the theoretical predictions will
be discussed.

A. Definition of scales

Prior to engaging in the theory-data comparisons, it is necessary to define the hierarchy of
characteristic length scales. In the oceanographic literature, horizontal scales are distinguished
by the proximity of the respective motions to the geostrophic balance. Thus, mostly ageostrophic
scales, about 10 km and less, with the typical Rossby number Ro ≡ U/ f L > 10−1, are classified as
submesoscales. Nearly geostrophic scales, roughly over 10 km, for which Ro < 10−1, are classified
as mesoscales. There also exist synoptic scales, with a horizontal scale of the order of the internal
Rossby radius Rd = Nh/ f , with h the thickness of the baroclinic layer. This scale, of the order
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FIG. 7. The KE spectra from the 3-km MPAS global simulation for the troposphere and the stratosphere.
Solid lines represent the results of simulations in [118] while the gray line is specified by Eq. (26). Vertical
solid lines show the effect of the resolution as elaborated by Skamarock et al. [118].

of 50 km, is associated with large synoptic eddies produced by the baroclinic instability [130]. In
newer terminology, these eddies are often classified as mesoscale eddies. There exist larger, highly
energetic eddies known as rings that pinch from western boundary currents. Their scale may be of
the order of several hundred kilometers [131].
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This paper does not deal with the effects of baroclinicity; it considers ocean motions through
the prism of neutrally stratified turbulence affected by rotation. For convenience, we use a different
classification of oceanic scales which is based upon parameters pertinent to turbulence as expressed
by the spectra (17) and (18) and the scale Lc given by (19). Galperin and Sukoriansky [132] argued
that Lc plays the role of the crossover between mesoscales and submesoscales in oceanic flows.
The terms submesoscales (mesoscales) will be used for scales smaller (larger) than Lc. On the
mesoscales, the spectra acquire slopes steeper than Kolmogorov’s −5/3 and approach −3. On even
larger scales, the effects of the large-scale friction invoked, for instance, by the bottom drag [114]
become significant and the spectra flatten out and may even decrease. These scales will be referred
to as friction-dominated or simply friction scales.

Another classification of scales was considered by Qiu et al. [133]. They defined a scale Lt

that separates unbalanced and balanced geostrophic motions. This scale was found to be useful for
characterization of seasonal variability. Note that the representation of the seasonal variability in
terms of Lc (see [132]) is quantitatively consistent with that in [133].

B. Latitudinal variation of oceanic spectra

1. Northwest Pacific Ocean

To study the latitudinal variation of oceanic energy spectra, we used the shipboard ADCP data
presented by Qiu et al. [133]. The data were collected by the Japan Meteorological Society in
the northwest Pacific, along the 137◦E meridian, between 3◦N and 34◦N. Together with Kuroshio,
that region contains three other subregions with different dynamical regimes. The Kuroshio, along
with its southern and northern recirculating branches, occupies the band between 34◦N and 28◦N
where it governs eddy variability. The band between 26◦N and 17◦N, known as the Subtropical
Countercurrents (STCCs), is the southern half of the wind-driven subtropical gyre populated by
multiple jets. The eddy variability in this band is due to the baroclinic instability of the STCC and
westward-flowing North Equatorial Current. The latter occupies the band of latitudes between 21◦N
and 7◦N and is quite stable due to low variability of the meridional gradient of its potential vorticity.
The North Equatorial Countercurrent between 7◦N and 3◦N is wind driven and dynamically
unstable.

Figure 8 shows that expressions (17) and (18) provide a reasonably good approximation for the
slopes and amplitudes of the observational spectra at all four locations and in almost the entire
interval of scales, with the exception of the largest scales where the spectra flatten out. As shown
earlier, this flattening out significantly influences the geographical KE distribution. The latitudinal
dependence in (17) and (18) proved to be crucial, as without the use of appropriate values of f , the
agreement with the data could not be achieved. One also infers that forcing details are immaterial
for the spectra’s appearance on large scales, thereby confirming the theoretical result that they
are largely determined by f . Changes in overall spectral slopes are stipulated by the interplay
between the extents and amplitudes of the Kolmogorov and Coriolis subranges. On large scales,
as f diminishes towards the equator, similarly to atmospheric flows, the steepness of spectral slopes
decreases [123,134].

The rates of the energy flux �ε, listed in Fig. 8, yield the following values of Lc, as shown
in the plates from top to bottom: 52, 126, 150, and 420 km, i.e., the submesoscale region
increases with decreasing θ . Also, the values of �ε at all four regions are around 10−6 m2 s−3,
which is about an order of magnitude larger than the microstructure values of ε of the order of
10−6–10−8 m2 s−3. There exists abundant evidence that �ε corresponds to the direct energy cascade
(see, e.g., [77,122,135]). As explained in Sec. I, �ε is a measure of the ESD that may far exceed the
magnitude of the microstructure dissipation rate ε. The large difference between �ε and ε points to
active submesoscale dynamics that equilibrates the imbalance.

Slopes of oceanic velocity spectra can be related to the slopes of the spectra of the sea surface
height (SSH) Sη(k1) in the geostrophic limit. The relationship has been used to infer the details of the
ocean dynamics from Sη(k1) [136,137]. Those spectra are often approximated by lines with a single
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FIG. 8. Longitudinal (red) and transverse (blue) spectra obtained along 137◦E in the northwest Pacific
for four latitudinal regions. The latitudes are θ = 31◦N, 18◦N, 14◦N, and 8◦N starting at the Kuroshio band
and moving southward. The corresponding values of �ε are estimated at 3 × 10−6, 3 × 10−6, 2 × 10−6, and
3 × 10−6 m2 s−3. The data are from [133]. The dashed red and blue lines are Eqs. (17) and (18), respectively.
The top plate also shows a line with a slope k−3

1 .
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slope, with no consideration of the two different branches. Such an approach is bound to produce
spurious results for either velocity or SSH spectra because these branches are closely entwined
and tend to bleed into each other, thereby affecting each other’s evaluation. For illustration, the top
plate in Fig. 8 shows a black line with the k−3

1 slope. The observed spectra approach that slope on
relatively large scales but remain somewhat shallower on mesoscales and become much shallower
on submesoscales. In addition, the spectral slopes alone are insufficient to infer information on
ocean dynamics. Spectral amplitudes and their variation with the wave number and environmental
conditions provide much more useful information for qualitative and quantitative understanding of
the dynamical processes. Combined with (17) and (18), the spectral amplitudes also provide good
estimates of the representative latitude and the energy flux rate �ε.

The latitudinal dependence of oceanic horizontal spectra was evident in the analysis of altimetric
SSH and the corresponding geostrophic velocity variation considered in [129,138,139]. Simulations
described in [129], particularly Fig. 11e therein, indicate that, similarly to the atmospheric spectra
discussed in Sec. V, the amplitudes of the oceanic velocity spectra decrease towards the equator and
approach the Kolmogorov slopes. This result points to the disappearance of the Coriolis branches
as f → 0.

2. Drake Passage and Antarctic Circumpolar Current

The study by Rocha et al. [84] analyzed the horizontal wave number spectra in the upper
part of the Antarctic Circumpolar Current, 0–200 m, in the vicinity of Drake Passage, between,
approximately, 55◦S and 65◦S. The ADCP data record is 13 years long. Along with the shipboard
data, the authors also analyzed altimeter data and a high-resolution numerical simulation using the
output from MITgcm.

Similarly to the NG data, the ADCP measurements detect no seasonal variability in the vicinity
of Drake Passage. Seasonal variability on oceanic mesoscales and submesoscales was investigated
by Galperin and Sukoriansky [132], who showed that the mesoscale variability is confined by the
spectral amplitudes’ dependence on the Coriolis parameter only. The submesoscale variability is
governed by the variability of �ε.

Rocha et al. [84] noted that the spectra are more energetic across all scales in the range of depths
between 26 and 50 m rather than at deeper layers. A close look at their Figs. 2(a)–2(c) reveals that
the value of �ε indeed decreases with depth, pointing to the diminishing small-scale turbulence
energy. At scales larger than about 100 km, the spectral amplitudes are nearly depth independent,
the behavior expected of the variables that depend on f and the wave number only. The authors
noted that the shapes of the spectra are nearly congruent at all depths.

Generally, compared with (17) and (18), Figs. 2(a)–2(c) in [84] exhibit somewhat lower energy.
Figure 3 in that paper shows higher energy north of the mean polar front than south of it. This
feature was not elaborated by the authors and it cannot be explained within the QNSE theory. It
is quite possible that overall reduction of the KE density in Fig. 2 in [84] was due to the harsh
navigation conditions south of the polar front that result in a lesser amount of data. North of the
polar front, however, as shown in Fig. 9(a), QNSE predictions for the longitudinal and transverse
spectra agree well with those inferred from the ADCP data in the entire range of scales.

In addition to a better understanding of the physics behind the atmospheric and oceanic spectra,
the QNSE theory may help to improve predictions of numerical models. As an example, Fig. 9(b)
compares the QNSE predictions with the results of high-resolution simulations (1/48◦) using
MITgcm as reported in [84]. Aside from the largest scales, the spectra on scales down to about
100 km are reproduced well, thus indicating that the primitive equations with the Coriolis terms
included possess the necessary physics to replicate the large-scale turbulence. On smaller scales,
however, the KE in simulations is overdamped compared with both the data and the theory (a
similar overdamping was reported in, e.g., [141,142]), a fact that underscores the need for further
improvement of the model and particularly representation of the mesoscale and submesoscale
physics which may benefit from the QNSE results.
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FIG. 9. (a) Longitudinal (blue solid line) and transverse (red solid line) spectra obtained from the 13
years of shipboard ADCP measurements north of the Polar Front near Drake Passage at a depth of 59–98 m.
The green and red dashed lines are predictions of the QNSE theory for θ = 58◦S and �ε = 10−6 m2 s−3.
For comparison, the microscale dissipation in the vicinity of Drake Passage is much lower, in the range of
10−8–10−10 m2 s−3 [140]. (b) Results of llc4320 simulations with MITgcm with a resolution of 1/48◦. The
longitudinal and transverse spectra are the blue and red solid lines, respectively. The data and simulation results
are from Rocha et al. [84].

C. Longitudinal variation of oceanic spectra

1. Northeast Pacific Ocean

Ship-mounted ADCP data for the subtropical North Pacific Ocean in the region between 25◦N
and 35◦N along the 140◦W meridian was collected in January and February of 1997 and formed
a part of the Spice data set [80,143]. This region features relatively low KE levels and will be
contrasted later on with the high-energy region of the North-West Pacific, along the 137◦E meridian,
considered in Sec. IX B 1. A detailed description of the spectra computed for the subtropical North
Pacific was given by Callies and Ferrari [80]. Figure 10 compares the observational spectra for
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FIG. 10. Longitudinal (red) and transverse (blue) KE spectra for the subtropical North Pacific region in the
mixed layer (50-m depth) and the thermocline (200-m depth) from ADCP observations [80] (thick solid lines).
The dashed red and blue lines are Eqs. (17) and (18), respectively, with θ = 32◦ and �ε = 6.0 × 10−7 m2 s−3

for both depths.

the mixed layer (50-m depth) and the thermocline (200-m depth) with theoretical equations (17)
and (18) with θ = 32◦ and �ε = 6 × 10−7 m2 s−3 for both depths.

Even though the observed and theoretical amplitudes are in good agreement on scales between
about 5 and 50 km, in the thermocline, the longitudinal spectrum is larger than its transverse
counterpart, an outcome that could be attributed to the effect of the internal waves [80]. The
prevalence of the transverse spectrum on almost all scales in the mixed layer is an indication of
flow incompressibility. Note that the rate of the energy transfer to the submesoscales �ε, which also
is the ESD, remains the same at both depths yet smaller than for the energetic western Pacific, for
which, as evidenced in Fig. 8, it was about five times larger.

A striking difference between the western and eastern Pacific, as obvious in Figs. 8 and 10,
is the spectral behaviors on large scales. In the western basin, the observed spectra agree with
the theoretical expressions (17) and (18) up to scales of about 300 km and then flatten out at a
level of about 5 m2 s−2/cpkm. In the eastern basin, the observed spectra agree with the theoretical

063803-21



BORIS GALPERIN AND SEMION SUKORIANSKY

FIG. 11. Total KE spectrum at a 20-m depth for ADCP transects averaged over six lines of the CalCOFI
data. The transects are season averaged for winter (December to February) and summer (June to August). Here
θ = 30◦N and �ε = 5 × 10−6 m2 s−3. The data are from Chereskin et al. [145].

expressions only up to scales of about 50 km, at which their slopes begin to decrease until eventually
flattening out at a level of about 0.5 m2 s−2/cpkm at a scale of about 200 km. Clearly, such spectral
behaviors should result in vastly different values of the KE between the western and eastern basins,
which indeed has been well documented. The spectra allow one to quantify the differences. Since
the observed spectra can be approximated by the theoretical expressions for scales smaller than
about 50 km, these expressions can be used to estimate the energy fluxes needed for computing the
SGS parameters in numerical models.

2. California Current System

The CCS region studied by Chereskin and co-workers [144,145] occupies the area farther east
from the SPICE site, from 124◦W to 118◦W and from 30◦N to 35◦N. The CCS is embedded in
an eastern boundary current which greatly influences its dynamics. Studies of the CCS utilized
shipboard ADCP velocity observations. Similarly to the Gulf Stream (GS) region south of the GS
meander considered later, the large-scale turbulence in the CCS is nearly isotropic in the horizontal,
as evidenced by the nearly circular shape of the velocity variance ellipses. Comparisons of the
observed and theoretical spectra are expected not only to elucidate and quantify important features
of the CCS dynamics but also to contrast them to those typical of the Spice and Kuroshio sites.

Figure 11 compares QNSE predictions with KE spectra derived from the ADCP data collected
from cruises by the California Cooperative Oceanic Fisheries Investigation (CalCOFI) and averaged
over six lines [144]. The theoretical prediction is in reasonable agreement with the data even
without seasonal adjustment of �ε, whose average value is estimated around 5 × 10−6 m2 s−3.
For comparison, the level of the microscale dissipation in the upper 50 m of the water column is
in the range of 10−6–10−8 m2 s−3 [146]. The seasonal variability is quite low and resembles the
Gulf Stream’s pattern, with higher turbulence levels in winters and lower ones in summers [82,132].
The magnitude of �ε is larger than at the Spice site and even somewhat larger than near Kuroshio,
a result that points to energetic submesoscales. On large scales, up to about 200 km, the spectral
amplitudes are in agreement with the QNSE predictions, reaching a level of about 2 m2 s−2/cpkm,
after which the amplitudes flatten out. The ensuing values of the KE are larger than at the Spice site
but smaller than in the vicinity of Kuroshio.
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FIG. 12. Longitudinal (red) and transverse (blue) velocity spectra for a partial segment south of 36.64◦N,
outside of the GS meander, at a depth of 30 m from the Oleander project. The spectra are computed using
the data of Wang et al. [125]. The thin dashed lines are Eqs. (17) and (18) with θ = 36◦ and �ε = 1.5 ×
10−6 m2 s−3.

3. Northwest Atlantic Ocean

In this section, the longitudinal variability of the oceanic velocity spectra is tested by comparing
the data with the theoretical predictions across the North Atlantic Ocean. Two regions are consid-
ered: the vicinity of the GS and the Greenland-Portugal transects, Fourex and Ovide. Dynamically,
these locations are as different as those in the western and eastern North Pacific considered in the
previous sections. The former harbors the energetic western boundary current that, by virtue of
barotropic and baroclinic instabilities, facilitates the emergence of large-scale eddies that provide
forcing for smaller-scale turbulence. The latter location features weaker circulations on mesoscales
and submesoscales.

For the GS area, a long record of the ship-mounted ADCP data has been gathered by the
container motor vessel Oleander on its regular round-trip cruises between New York Harbor and
Bermuda [147]. As shown by Wang et al. [125], velocity ellipses along the ship track exhibited
a certain degree of polarization induced by the GS. The gradual weakening and eventual near
disappearance of the polarization away from the GS axis pointed to the return of the eddy field
and thus turbulence to the state of horizontal near isotropy.

The strong GS-induced turbulence anisotropy could not be accommodated within QNSE and
so the theoretical predictions were compared with the data for the ship-track segments south of
36.64◦N that excluded the GS meander. The spectra, based upon the database described by Wang
et al. [125], were kindly recalculated for us by Wang. Figure 12 shows good agreement between
these spectra and the theory at a depth of 30 m. Note that the value of �ε = 1.5 × 10−6 m2 s−3,
emerging from this analysis, is in good agreement not only with those in the vicinity of another
western boundary current, i.e., Kuroshio, but also with that in the eastern boundary current that
encompasses the CCS, as shown in the previous sections.

To reduce the effect of the GS-induced anisotropy in spectral estimates, Bühler et al. [148]
developed a mathematical procedure that was tested with the data from the Oleander project.
Figure 13 compares thus evaluated longitudinal and transverse velocity spectra at a depth of 150 m
with (17) and (18). While the comparison yielded a realistic latitude θ = 37◦, the energy flux
to submesoscales became enhanced tenfold compared to that at a depth of 30 m, which is quite
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FIG. 13. Longitudinal (red) and transverse (blue) velocity spectra at a depth of 150 m from the Oleander
project [148]. The thin dashed lines are Eqs. (17) and (18) with θ = 37◦ and �ε = 1.2 × 10−5 m2 s−3.

unrealistic. To alleviate this outcome, the procedure reducing the effect of flow anisotropy requires
further refinement.

4. Northeast Atlantic Ocean

To extend the study of the longitudinal variability of mesoscale and submesoscale oceanic
turbulence, it is instructive to contrast velocity spectra in the western and eastern basins of the
North Atlantic Ocean. The main currents of the North-East Atlantic Ocean drive the North Atlantic
meridional overturning circulation. Compared to the North-West Atlantic, its northeast counterpart
has been studied to a lesser extent. Lherminier et al. [126] noted that the impact of the KE level
and its interaction with the large-scale circulation are not well understood. The only existing study
of the upper ocean transverse velocity spectrum using the ship-mounted ADCP is that described
by Gourcuff et al. [149] for the Greenland-Portugal transect comprised of the Ovide and Fourex
sections. They cover the region between 45◦W and 10◦W in longitude and 60◦N–40◦N in latitude.
The altimetry-based spectra were estimated by Gourcuff et al. [149] for the gridded data and by
Lherminier et al. [126] along three Jason-1 tracks encompassing the transects and denoted traces
20, 122, and 198.

Figure 14 compares the ADCP-based transverse spectrum along the Greenland-Portugal transects
presented in [149] with (18) for θ = 50◦. The agreement is reasonably good for scales up to about
70 km, after which the slope of the observed spectrum begins to lag behind the theory. Recall that
the spectra in the tropical North-East Pacific Ocean, shown in Fig. 10, exhibited a similar behavior
which was attributed to a weak large-scale forcing.

The average energy flux to submesoscales throughout the Greenland-Portugal transect is about
three times smaller than that for the Spice data. Even though the average value of �ε along the
transect is smaller than at other locations considered in this section, it is still much larger than the
dissipation rate ε of the order of 10−10 m2 s−3, estimated from the microstructure measurements by
Ferron et al. [150] in the thermocline at a depth of about 2000 m. This value of ε is about three
orders of magnitude smaller than �ε.
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FIG. 14. Transverse velocity spectrum for the Greenland-Portugal transect. The ship-mounted ADCP
spectrum (black solid line) and the 95% confidence interval estimated by the multitaper method (gray lines)
are from [149]. The red line is the QNSE equation (18) with θ = 50◦ and �ε = 2 × 10−7 m2 s−3.

X. COMBINED EFFECT OF f AND N

While a general QNSE theory of the combined effect of rotation and stratification has not been
developed yet, some interesting conclusions can be drawn from the theory when applied to the
terrestrial planets for which f /N � 1. In this case, it can be argued that stable stratification acts
mostly in the vertical direction while rotation prevails in the horizontal. The QNSE shows that
indeed, the Kolmogorov scaling in the horizontal is not significantly affected by stratification [63].
Consider a portion of a thin atmospheric shell whose characteristic height and horizontal length
scales are H and L, respectively. The total KE of this shell can be estimated by either vertical
integration of (15) to k3 = 2π/H or horizontal integration of (17) to k1 = 2π/L, which should give
the same energy, thus yielding CBN2H2 � Cf 1 f 2L2 or H/L � f /N . This scaling relationship was
exploited in [44] and subsequent literature (e.g., [151]) via introducing the stretched coordinates
(x, y, Nz/ f ). This result is a consequence of the independence of spectra of either ε or �ε and the
closeness of the values of CB and Cf 1. Hassanzadeh et al. [152], Aubert et al. [153], and Marcus
et al. [154] studied modifications of this scaling for vortices with various environmental parameters.

XI. DISCUSSION AND CONCLUSIONS

Even though the QNSE theory in its current configuration considers either stably stratified
flows with no rotation or neutrally stratified flows with constant planetary rotation, it nevertheless
yields many results when applied to atmospheric and oceanic turbulence. Among those, theoretical
predictions of 1D spectra in both the atmosphere and the oceans are in surprisingly good agreement
with various observations. For stably stratified flows, the theoretically predicted vertical spectra of
the horizontal velocity and temperature for atmospheric and oceanic turbulence on Earth and vertical
temperature spectra on Venus and Mars agree well with observations.

In the case of rotating flows, the theoretical spectra replicate their observed longitudinal and
transverse horizontal counterparts evaluated in the troposphere and lower stratosphere from the data
assembled in the GASP and MOZAIC campaigns. In fact, QNSE provides the first derivation of
the Nastrom-Gage spectra, well known in the atmospheric sciences, within an analytical theory
of turbulence. Recent computational studies by Khlifi et al. [75] and Salhi et al. [155] are in
agreement with the theoretical results. In addition, these results reveal the latitudinal dependence of
the spectral amplitudes. Generalized for spherical coordinates, QNSE results are in good agreement
with numerical simulations, replicate the Nastrom-Gage spectra in the spherical geometry, and
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provide guidelines for deriving the subgrid-scale parametrizations suitable for implementation in
numerical models.

In concert with the hypothesis by Charney [44], the theory demonstrates the affinity between at-
mospheric and oceanic spectra. In both media, turbulence is strongly affected by stable stratification
and rotation. Large-scale spectral amplitudes and slopes in the directions of zero phase speed of
linear waves (internal and inertial) are determined by the external parameters N or f rather than the
energy or enstrophy fluxes. Due to the steepness of the spectra in these directions, these parameters
dominate the total energy and allow one to recover the stretched coordinate approach introduced by
Charney [44].

To draw an analogy with flows on a β plane, where turbulence with an inverse energy cascade
commingles with Rossby waves, recall that the horizontal spectrum becomes anisotropic and very
steep along the direction of a zero phase speed of Rossby waves. Similarly to stably stratified and
rotating flows, the spectral amplitude in this direction is determined by the external parameter β (=
�/R) rather than the energy or enstrophy fluxes and the ensuing flow regime, known as zonostrophic
turbulence, reveals multiple alternating zonal jets [156]. Respective structures are the horizontal
layers in stably stratified and columnar vortices in rotating turbulence.

The theory makes it possible to undertake a detailed analysis of oceanic spectra on mesoscales
and submesoscales. The crossover between these scales can be associated with the transition
between the Coriolis parameter-dependent and Kolmogorov branches of the spectra as given by (19).
The validity of the spectral results on large scales may appear questionable, however, because
the weak rotation approximation implies that the range of scales L within which (17) and (18)
apply is L/L� = O(1). On larger scales, the renormalized viscosities cross zero values and become
negative. A full solution of the QNSE equations exhibited similar behavior but a zero-viscosity
limit was attained on somewhat larger scales. On the positive side, comparisons with data indicate
that the analytical QNSE expressions remain valid on scales much larger than those for which the
renormalized viscosities are positive. The reason for this is presently unclear. It is possible that the
spectral amplitudes on scales exceeding L� are set by the Coriolis parameter rather than the energy
or enstrophy fluxes, as implied in the Kolmogorov theory. If so, then once set on scales close to L�,
the expressions for the spectral amplitudes may preserve their form on considerably larger scales. As
was shown throughout the paper, various data sets indeed support the independence of the spectral
amplitudes of fluxes on scales considered in the paper.

Generally, the transverse spectra almost always exceed their longitudinal counterparts, thereby
pointing to the prevailing solenoidality of the flows. In some cases, however, the longitudinal spectra
may be larger in certain wave number intervals. This can be associated with the signature of the wave
dynamics. In either case, the spectral amplitudes are approximated by the theoretical expressions
quite well. These expressions can be used to estimate �ε within the inertial ranges.

The theory helps to analyze the latitudinal and longitudinal variability of oceanic spectra. The
former is well captured on submesoscales and mesoscales, up to the scales on which the large-scale
friction processes begin to be important. The latter is facilitated by the western boundary currents
and associated instabilities that, along with the large-scale friction, maintain a well-observed
contrast in the KE and SSH levels between the western and eastern basins. While the spectral
amplitudes on mesoscales and submesoscales are still in good agreement with the theoretical
expressions, the universality is lost on large scales.

The theory singles out �ε as one of the most important parameters not only in homogeneous
but also in inhomogeneous turbulence that encompasses submesoscales. In flows with multiple
occurrences of the Kolmogorov spectra, the values of �ε estimated from these spectra should be
used to ensure the energetic consistency between flows in different flow regimes. The Kolmogorov
spectra emerging on the transition scales between the oceanic mesoscales and submesoscales can
be used to assess the energy flux from the former to the latter. This energy flux is usually much
larger than the rate of the viscous dissipation on the microstructure and so it serves as an effective
submesoscale dissipation for the mesoscales. The assessment of the discrepancy between that flux
and ε still awaits resolution.
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If the observed data are intended to be used for data assimilation in numerical models, it could be
quite attractive to combine a relatively accurate large-scale satellite altimetry data with the QNSE
predictions on mesoscales and submesoscales. If the satellite data filtering methods can be refined
such that the satellite and QNSE results can be merged on scales of about 20 km, then the QNSE-
based estimates of ESD could be quite reliable and lead to a significant improvement of the SGS
parametrization schemes and ultimately performance of global ocean models.

As mentioned in Sec. VII, longitudinal structure functions have been used to estimate the
oceanic dissipation locally, based upon observations with tethered ADCPs [20–23]. A similar
approach can be implemented to estimate the ESD using ship-mounted ADCPs for relatively small
separation distances. Such a technique, along with data assimilation, may also lead to improved
SGS parametrization schemes in numerical models, although the ADCP data will never be available
to the same extent of geographical and temporal coverage as the satellite data.

In rotating flows, the action of a large-scale forcing facilitates the establishment of a direct energy
transfer throughout scales smaller than the forcing scale. On scales of the order of the Woods scale
and larger, an increasing with scale portion of the energy flux is redirected to the inverse energy
cascade leading to the coexistence of simultaneous direct and inverse cascades referred to as a dual
cascade. The dual cascade can potentially resolve the long-standing conundrum of identifying the
path to dissipation from the large scales [157] which are otherwise dominated by the inverse cascade
inherent in the classical theory of geostrophic turbulence [114].

The dynamics of turbulence is governed by triad interactions of the wave vectors which, in
the case of coexistence of turbulence and waves, are modified by the resonance condition for the
wave vector frequencies [12,64]. Among many others, studies in [94,158] consider a subdivision
of the triad interactions into four different groups that control energy and enstrophy transfers.
Imposing geometrical constraints and/or extra strains affects these groups and through them leads
to modifications of transport and spectral properties of turbulence. A brief summary of such
modifications and associated 3D to 2D transitions was given in [89], while an extensive review
and bibliography can be found in [32].

System rotation and density stratification break the isotropy of 3D flows and confine them in
the vertical direction. These effects cause the compactification of 3D geometry. Thus, geophysical
flows can be categorized as those whose effective geometrical dimension is somewhere between 2
and 3. In such flows, the spectra are not necessarily related to the energy and enstrophy fluxes. An
inherent complexity of these flows manifests in the fact that there are almost no studies attempting
to elaborate and quantify the flux-spectra relationships. As explained in the Introduction, the
dimensional analysis is not overly useful for quantification of spectral laws in flows with multiple
dimensional parameters while analytical theories are scanty.

Finally, recall that in Sec. VII it was shown that the enstrophy flux as estimated from the
MOZAIC spectra could be consistent with the functional dependence �ω ∝ f 3. More precisely,
the flux, �ω, amounted to about 1.8 × 10−13 s−3 which corresponded to (17) with θ � 34◦. The
proportionality between �ω and f 3 can be ascertained using a study by Khatri et al. [159] who
utilized oceanic data and computer simulations to evaluate the energy and enstrophy fluxes in
the upper ocean. Their horizontal 2D spectra were comparable to those in [141]. The values of
�ω, on the other hand, estimated in 5 regions between 41◦N and 52◦S turned out to be some 5
orders of magnitude smaller than their atmospheric counterparts. This outcome does not support the
proportionality between �ω and f 3 and indicates that in geophysical flows, spectral amplitudes may
not be closely related to the spectral enstrophy fluxes. Thus, the physical principles underlying the
connection between flow dynamics and the energy spectra may be due for some re-evaluation. The
QNSE theory offers a self-consistent framework to carry it out. This framework can be enhanced by
extending the theory to include a combined effect of stable stratification [7,63] and rotation.
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