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A series of laboratory experiments on energy-conserving gravity currents in a
lock-exchange facility are conducted for a range of Reynolds numbers, Re = UF h

ν
=

485–12 270, where UF is the front velocity of the current, h the current depth, and ν the
kinematic viscosity of the fluid. The velocity and density fields are captured simultaneously
using a particle image velocimetry–planar laser induced fluorescence system. A moving
average method is employed to compute the mean field and a host of turbulence statistics,
namely, turbulent kinetic energy (K), shear production (P), buoyancy flux (B), and energy
dissipation (ε) during the slumping phase of the current. The subsequent findings are
used to ascertain the quantitative values of mixing efficiency, Ri f , Ozmidov length scale
(Lo), Kolmogorov length scale (Lκ ), and eddy diffusivities of momentum (κm) and scalar
(κρ). Two different forms of Ri f are characterized in this study, denoted by RiI

f = B
P and

RiII
f = B

B+ε
. The results cover the entire diffusive regime (3 < Reb < 10) and a portion

of the intermediate regime (10 < Reb < 50), where Reb = ε

νN2 is the buoyancy Reynolds
number that measures the level of turbulence in a shear-stratified flow, with N being the
Brunt-Väisälä frequency. The variation of turbulence quantities, P(z), B(z), and ε(z), along
the depth of the current shows a marked increase at the interface of the ambient and current
fluids, owing to the development of a shear-driven mixed layer. Based on the changes in
the turbulence statistics and the length scales, it is inferred that the turbulence decays along
the length of the current. The mixing efficiency monotonically increases in the diffusive

regime (Reb < 10) and is found to be RiI
f ≈ 0.15 and RiII

f ≈ 0.2 in the intermediate regime.

Using the value of RiII
f , the normalized eddy diffusivity of momentum is parameterized as

κm
ν.Rig

= 1.2Reb, where Rig is the gradient Richardson number, and the normalized eddy

diffusivity of scalar is parameterized as κρ

ν
= 0.2Reb.
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I. INTRODUCTION

Turbulent mixing in a shear-stratified environment is a complex process, the understanding of
which is important for natural and industrial flows. Distribution of nutrients and suspended matter
in the environment, ocean overflows, katabatic flows, river discharges, and pyroclastic flows are
a few examples. Mixing in a shear-stratified flow occurs through exchange of fluids, triggered by
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Kelvin-Helmholtz (K-H) instability, which leads to a final stable state, but not before going through
a series of mixing transitions [1,2]). The stratification either suppresses or enhances turbulence
and mixing, depending on the configuration of the system. The interplay of shear and density
stratification modifies the dynamics of a turbulent flow, which has been a topic of research for a
long time now.

One of the variants and a classic example of a shear-stratified flow is a gravity current. It is
defined as the horizontal flow of a dense fluid into a lighter fluid or vice versa and is driven by the
density difference between the two fluids. For a gravity current, the Boussinesq approximation is
often valid, except when the density difference between the fluids is large. The resultant mixing of
the two fluids and the eddy diffusivities depends on the level of turbulence and is independent of
the fluid properties. The first theoretical attempt to study the propagation of a gravity current was
made by von Kármán [3], who approximated the front velocity as UF ∝ √

2g′h, where g′ = gρ2−ρ1

ρ0

is the reduced gravity, with ρ2 being the density of the heavier fluid, ρ1 the lighter fluid, ρ0 the
reference density taken to be the mean of the two densities, and h the depth of the gravity current
[4]. Later Benjamin [5] postulated the dynamics of the lock-exchange gravity current using inviscid
fluid theory and estimated h and UF . Different regions of a gravity current based on h, UF , and
associated dynamics were first proposed by Britter and Simpson [6] and later revised by Britter and
Simpson [7], Britter and Linden [8], and Huppert and Simpson [9]. For a lock-exchange current,
two distinct regions have been documented: (1) a head having a foremost point (front/nose) slightly
lifted from the surface and the transient portion where the front moves with a velocity UF and (2)
a body composing the major portion of the gravity current. These regions are usually distinguished
based on the fractional depth, h/H [10], where H is the depth of the ambient fluid. The head’s
frontal view will usually exhibit lobe and cleft structures that form because of the no-slip condition
imposed by the surface lying underneath the current [11] causing a certain amount of mixing. As
the head progresses, it displaces the lighter ambient and engulfs or “entrains” it within itself, finally
feeding the mixed fluid to the stratified body [12]. The body of the current, on the other hand,
undergoes mixing through Holmboe waves or Kelvin-Helmholtz instability. The gravity current
once released from its initial lock-exchange position undergoes a series of transitions [13]. First
there is a slumping phase, where the heavier fluid “slumps” and forms a gravity current. The front
maintains a constant velocity during the slumping phase and the current is energy conserving. As
the heavier fluid slumps, the lighter fluid rushes behind to fill the void, and in this process a wave
from the end wall is reflected, which is called the “bore.” The bore catches up with the front, and
once that happens, it marks the end of the slumping phase. The spatial location at which the bore
catches up with the front is known as the slumping point. The slumping point usually lies at around
5–10 lock lengths from the gate, depending on the initial configuration [14]. Immediately after this,
the current undergoes an inertial phase, where the buoyancy and inertial forces are in balance. In the
inertial phase, though the front velocity now decays in a self-similar manner (a significant dilution
of the current and it is no longer energy conserving ([12]), the body of the gravity current has a
quasisteady behavior, which has been quantified through the measurements of mean velocity and
density fields [15]. This is followed by a purely viscous phase (where buoyancy and viscous forces
are in balance) where the current retards significantly and the turbulence almost vanishes. If the
viscosity plays a role in the slumping phase itself, the current skips the inertial phase [9].

The earliest account on bulk mixing in a gravity current was reported by Ellison and Turner
[16]. Referred to as an inclined plume in their research, which had a negatively buoyant source
as the driving force, the entrainment coefficient was based on the velocity at which the ambient
entrained into the mean flow. Thus, entrainment as a function of an overall Richardson number,
Ri = g′h

U 2 , was proposed, where U is average velocity of the current. Subsequently, a link between
the type of instability and mixing was given by Linden [17]. The qualitative observations pertaining
to mixing in lock-exchange kinds of flows were also made by Hacker et al. [18] and Hallworth
et al. [19]. A Ri-based power law was proposed for parametrizing entrainment in a sloping gravity
current [20], where the argument was that the entrainment law proposed in Ref. [16] underestimated
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the entrainment rate. The entrainment and mixing in a lock-exchange gravity current, based on the
available potential energy method, was reported for the slumping phase by Fragoso et al. [21] using
the light attenuation method. More recently, mixing efficiency (a detailed explanation of which is
presented in Sec. II) in a lock-exchange setup has been reported for a range of Reynolds numbers,
Re = UF h

ν
. Ilıcak [22] reported the mixing efficiency for 125 < Re < 10 000 using direct numerical

simulations based on the evolution of background potential energy. Experimentally, Hughes and
Linden [23] for 7000 < Re < 72 000, and Micard et al. [24] with 5000 < Re < 25 000 performed
lock-exchange experiments to report the mixing efficiency once the motion had completely ceased.
Here the density profiles were measured before and after the end of the experiment, once the fluid
had come to rest after reflection from the wall. The upper bound value of mixing efficiency was
different in all these studies but less than the generally accepted value of 0.17 used in oceanic
flows [25]. The reason for lower values of mixing efficiency could be attributed to the fact that
it was integrated over the entire volume of the tank and the entire gravity current that also
contained lesser energetic regions. Simultaneous particle image velocimetry (PIV) and planar laser
induced fluorescence (PLIF), which henceforth will be called simultaneous PIV-PLIF, gives an
added advantage of capturing velocity and density data at discrete locations with unprecedented
spatial and temporal resolutions. Using this technique, entrainment and mixing dynamics were
reported by Odier et al. [26] for an inclined gravity current with continuous flow of fluid into
an ambient with varying turbulence intensity. The structural development of the gravity current
when it was laminar or turbulent was studied, and with the help of turbulence statistics the mixing
efficiency was reported. Reference [2] reported entrainment dynamics of a lock-exchange gravity
current using simultaneous measurements of velocity and density fields and concluded that the
flux entrainment coefficient undergoes a series of mixing transitions, depending on the mode of
instability that governs the mixing between the two fluids. Despite abundant literature on gravity
currents, characterization of turbulence and mixing based on the flow energetics for a lock-exchange
gravity current has not been reported to the best of our knowledge.

In this study, we focus on quantifying the terms in the turbulent kinetic energy budget equation,
namely, turbulent kinetic energy (K), shear production (P), buoyancy flux (B), and dissipation
rate (ε) to understand the local dynamics of a lock-exchange gravity current when it is in the
slumping phase. We limit our analysis to the slumping phase of the current because (a) the current
is not energy conserving in the inertial-buoyancy regime, i.e., the dissipation of mean flow kinetic
energy is significant, (b) the inertial-buoyancy regime is not always present and the current directly
transitions to a purely viscous phase depending on the initial conditions, and (c) most of the
turbulence and mixing is limited to the slumping phase after which the current is significantly
diluted. Therefore, to quantify the energetics and mixing dynamics of the current, it is important
to look at the slumping phase. Based on the energetics, mixing efficiency and eddy diffusivities are
then calculated to characterize the mixing. All the measurements are made exclusively for the body
of the gravity current. By using simultaneous PIV-PLIF, both large- and small-scale flow statistics
are well resolved, which otherwise is very difficult to measure. This also helps in resolving the two
most common length scales in shear-stratified turbulence, namely, Kolmogorov (Lκ ) and Ozmidov
(Lo) length scales that form the backbone of the turbulence activity parameter or buoyancy Reynolds
number, Reb. When it comes to field scenarios, Re loses its importance since it is difficult to
measure. Therefore, for shear-stratified flows, Reb is a preferred parameter, which is relatively easier
to measure in field campaigns and serves the purpose of dynamic similarity between experiments
and field [27,28]. The mixing efficiency and the eddy diffusivities are ultimately parameterized as a
function of Reb, which would serve as an useful input to the numerical models aimed at simulating
shear-stratified flows.

The paper is structured as follows: Sec. II explains the turbulent kinetic energy budget equation,
mixing efficiency, and indirect forms of eddy diffusivities. In Sec. III description of the experimental
setup is given along with the averaging technique used for calculating the turbulence statistics. This
is followed by results and discussion in Secs. IV and V. The main conclusions are given in Sec. VI.
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II. TURBULENT KINETIC ENERGY BUDGET EQUATION AND MIXING EFFICIENCY

The genesis of mixing and its energetics is attributed to turbulence in the system and thus makes
it important to look into the turbulent kinetic energy (K) budget equation [29]:

∂K

∂t
+ Uj

∂K

∂x j
= ∂

∂x j

(
− 1

ρ0
p′u′

j + 2νu′
is

′
i j − 1

2
u′2

i u′
j

)
− 2νs′

i j s
′
i j − u′

iu
′
j

∂Ui

∂x j
− g

ρ0
ρ ′w′, (1)

where K = 1
2 (u′2 + v′2 + w′2) is the turbulent kinetic energy, u′, v′, and w′ are the fluctuating

components of the velocities in streamwise (x), lateral (y), and vertical directions (z) respectively,
p′ is the pressure fluctuation, s′

i j is the fluctuating strain rate tensor, ν is the kinematic viscosity, and
g is the acceleration due to gravity. The total derivative on the left-hand side is the rate of change
of turbulent kinetic energy in a control volume in a Eulerian frame of reference. The temporal
change is the unsteady component (Un) and is zero for stationary turbulence. The convective term
represents spatial inhomogeneity and is zero when the turbulence is homogeneous. The first term
on the right-hand side is the divergence, which is again zero for homogeneous turbulence. It is
responsible for transport (Tr) of turbulent kinetic energy through turbulent pressure fluctuations,
viscous diffusion, and turbulent stress. The second term on the right-hand side is the viscous
dissipation of turbulent kinetic energy (ε). The third term on the right-hand side is the rate at which
K is produced through shear production (P) deriving its energy from the mean flow. The last term on
the right is the buoyancy flux (B) or the rate at which K is consumed in mixing. The Un and Tr terms
in (1) measure the rate of change of K and the degree of homogeneity in the chosen control volume,
respectively. The only terms that have a definite exchange of energy and act as a source or a sink are
P, B, and ε. Mixing efficiency, Ri f is defined as the fraction of K that is consumed during a mixing
event which is used to bring about irreversible increment in the background potential energy of the
system encasing the mixing event. Under the assumptions of stationarity (Un = 0) and homogeneity
(Tr = 0), the rate of change of K and the divergence term in the chosen control volume is negligible,
and the mixing efficiency is defined as [30]

RiIf = B

P
. (2)

In (2), the expression B
P can also be written as ( B

B+ε
) when the homogeneity and stationarity

constraints prevail, which is seldom the case. Therefore, RiIf will predict the mixing incorrectly
in nonhomogeneous and nonstationary flows, and one should account for the additional terms in
the form of unsteadiness and inhomogeneity. This leads to the second definition of flux Richardson
number, defined as RiII

f , first proposed by Ivey and Imberger [31]:

RiII
f = B

−Un + Tr + P
= B

B + ε
. (3)

The second definition of mixing efficiency (RiII
f ) is generic and is widely applicable in shear-

stratified flows. Rearranging the terms in (1), it is evident that B and ε are enough to calculate
RiII

f and there is no need to calculate Un and Tr terms.
The pitfall of using the above two definitions of Ri f is that it fails to segregate the down-gradient

buoyancy flux (mixing) and the countergradient buoyancy flux (stirring). Down-gradient buoyancy
flux brings about an irreversible change in the background potential energy of the system, whereas
countergradient buoyancy flux is the reversible component that adds to the turbulent kinetic energy,
K . For a mixing event to start, the eddies have to carry a heavier parcel of fluid into a lighter
environment or vice versa. This movement needs an external agent that is provided by K , which
also determines to what extent the heavier and lighter fluid parcels mix. If K is insufficient, the
parcel does not lose its identity completely because of insufficient mixing and tries to revert to
its new equilibrium position, and this becomes the reversible components of the buoyancy flux
[32]. It should be noted that the countergradient flux (reversible component) cannot be eliminated
completely in density stratified flows. However, it reduces as the turbulence activity increases,
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and it has a more pronounced effect when the turbulence activity is low. Essentially, K is the
sole reason that promotes mixing and the intensity, and its duration decides the dominance of the
countergradient fluxes. There exists a third definition of mixing efficiency, Ri∗f , that provides a
fix for the effect of countergradient flux. The total energy of the system is compartmentalized into
available and background potential energies according to a framework as explained by Winters et al.
[33]. The Ri∗f uses a formulation based on the dissipation of available potential energy, and ε, that
deals with the countergradient fluxes. To calculate Ri∗f from laboratory experiments is challenging
and therefore is left as future scope.

In the present study, we report only the first two definitions of mixing efficiency, which have not
been reported in previous studies for lock-exchange gravity currents to the best of our knowledge.
A universal parametrization of Ri f is difficult because of the inherent variability in natural flows,
which arises as a result of different mechanisms by which turbulent kinetic energy can be produced.
This variability is evident from the discrepancies in the quantitative values of Ri f of field data at
two different geographical locations and also from the laboratory experiments, and a unified and
an unambiguous framework therefore becomes difficult [34,35]). Therefore, it becomes interesting
to delve into the energetics and mixing in a gravity current generated using a lock-exchange
mechanism. The detailed analysis of the present problem is likely to help in understanding many
natural flows that have similar dynamics.

The in situ measurements of eddy diffusivities become difficult, as they are usually expressed
in terms of turbulent fluctuating quantities that result from small-scale mixing. For a simple
unidirectional flow, the eddy diffusivities are expressed as

κm = −u′w′
dU
dz

, (4a)

κρ = −ρ ′w′
dρ

dz

, (4b)

where u′w′ is the Reynolds stress acting in the direction perpendicular to the flow to capture vertical
mixing, ρ ′w′ is the turbulent density flux, and dU

dz and dρ

dz are the mean vertical velocity and density
gradients of the flow field. Equations (4a) and (4b) are the traditional ways of expressing eddy
diffusivities, which has its pitfall since mathematically there exists a lack of closure because of
Reynolds stress and density flux terms; moreover, simultaneous measurement of the fluctuating
field variables are extremely challenging in field conditions. Therefore, one needs to resort to
controlled laboratory experiments or numerical models that provide parametrizations for the eddy
diffusivities of scalar and momentum. Osborn [25] proposed an indirect form of representation of
eddy diffusivity of a scalar as a function of mixing efficiency or flux Richardson number (Ri f ).
A value of Ri f = 0.17 was proposed on the basis of controlled laboratory experiments conducted
by Britter [36] and their field campaigns in the Atlantic Ocean using stationarity and homogeneity
conditions. We believe that Ri f from our present study would allow for a direct comparison with
that reported in Ref. [25], since in both these studies, the common sources of K production are
(a) Reynolds stress working against mean velocity gradient and (b) collapsing Kelvin-Helmholtz
billows (which are a typical feature of a lock-exchange gravity current). Using Ri f , (4a) and (4b)
could be modified as

κm =
(

1

1 − Ri f

)
ε

S2
, (5a)

κρ =
(

Ri f

1 − Ri f

)
ε

N2
, (5b)

where S is the mean shear rate (denoted as S = dU/dz) and N (denoted as
√

− g
ρ0

∂ρ

∂z , where ρ0 is

a reference density and ∂ρ

∂z is the mean density field’s gradient in the direction of acceleration due
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FIG. 1. Schematic of the experimental setup (not to scale). Isometric view of the setup, where 1 is the tank,
2 is the lock-exchange gate, 3 is the laser source illuminating the central portion of the tank, 4 and 5 are PIV
and PLIF cameras, and 6 and 7 are high-pass and low-pass filters.

to gravity, g) is the buoyancy frequency of a parcel of fluid in a stably stratified environment or the
Brunt-Väisälä frequency. The way Ri f behaves over a domain of time and space gives insights into
the dynamics of the flow, and a parametrization of Ri f for shear-stratified flows is of paramount
importance and a contemporary interest to the scientific community.

III. EXPERIMENTAL SETUP AND METHODOLOGY

The experimental setup, shown in Fig. 1, comprises a plexiglass rectangular tank with a lock-
exchange gate provided to separate the two fluids initially. The tank dimensions are 175 cm long,
15 cm wide, and 30 cm high. The tank is separated into two parts by installing a lock-exchange gate
30 cm away from one of the ends; the smaller portion contains the heavier fluid (source), and the
larger portion contains the lighter fluid (ambient). The heavier fluid is a saltwater solution, and the
lighter fluid is an ethanol-water-based solution. This salt-ethanol-based solution is employed so as to
have matching refractive index of both the fluids. Details of the method of matching refractive index
are available in Hannoun et al. [37] and Xu and Chen [38]. A densitometer and a refractometer are
used to measure the density and match the refractive index of the two fluids, respectively. The gate is
lifted in one swift motion to reduce any secondary disturbances, resulting in a gravity current shown
in Fig. 2. The swift motion ensures that the gravity current generated as a result of the density
difference primarily controls the flow dynamics, and any secondary disturbances bear minimal
impact. A range of Reynolds numbers, varying from Re = 485–12 270, is realized by varying either
the density of the two fluids or the height of the denser fluid in the initial lock-exchange position
or both. Simultaneous measurements of velocity and density fields at different instances of time
is obtained by employing simultaneous PIV-PLIF techniques, which is triggered using the same

Front

Head

Body 

x

z

FIG. 2. Qualitative image of a lock-exchange gravity current, moving from right to left. The image is
obtained by collating snapshots recorded at different time instances. Blue represents ambient fluid (lighter),
and red is the source fluid (denser). Intermediate colors are a result of mixing between the two fluids. Dashed
white line shows the region where turbulence and mixing statistics are computed in the present study.
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controller. The rate at which the data are collected is varied as per the flow velocity of the current.
For low and intermediate Re, the cameras are set to collect the data at a rate of 50 fps, and for high
Re, it was set to 75 fps. The velocity field in x-z (along the mean flow and perpendicular to it, in
which the gravity acts) directions are obtained using PIV for a particular rectangular window located
at the center of the tank, and the region is illuminated by a continuous-wave 500 mW, 532 nm laser
from the bottom of the tank. The illuminated sheet measures 10 cm long and 10 cm wide, and its
center coincides with the center of the tank, which is ≈58 cm from the gate or ≈2 lock lengths away
from the gate. This ensures that all the measurements were made during the slumping phase of the
current. Neutrally buoyant particles made of polystyrene material of median diameter ≈15 μm are
used as tracer particles to capture the flow field. Particle images are captured using an IDS UI 3360
CP-M/C USB 3.0 camera with a resolution of 2048 by 1055 pixels, and each pixel has an area of
5.5 μm2. A lens is used with an aperture f/2 to reduce aberrations and to get an appropriate depth
of field.

The density field is obtained using PLIF for the same window and using a separate camera. The
laser source for both PIV and PLIF is the same. PLIF images are recorded with a IDS UI-1220 C
USB 2.0 camera which has a CMOS sensor with 752 by 480 pixels. Rhodamine 6G (R6G) is used
as a fluorescent dye that is mixed uniformly with the lighter fluid (only). The R6G concentrations
in lighter and heavier fluids are 100 μg L−1 and 0 μg L−1 respectively. The gray value of the image
and the R6G concentration are calibrated first, varying the concentration of R6G from 0 μg L−1 to
100 μg L−1 in increments of 10 μg L−1. Decoding the image gray value, it is observed that R6G
concentration is linearly proportional to the local density field. So when the heavier fluid (volume V
and density ρ2) mixes with the lighter fluid (volume αV and density ρ1, R6G concentration C1), the
local concentration of R6G in that region changes, and the local fluid density in that region could
be expressed as

ρ = ρ1αV + ρ2V

αV + V
= ρ1α + ρ2

1 + α
.

The local concentration, C, is related to C1 as

C = C1αV

αV + V
= αC1

1 + α
.

Since the R6G concentration is known, the local density can be found using

ρ = ρ2 − C

C1
(ρ2 − ρ1). (6)

Therefore in the regions where the local concentration C is equal to C1, the local density ρ is equal to
ρ1, i.e., the density of the lighter fluid. When the setup is in its initial position the local density field
is same as that of the lighter fluid. However, once the gate is released and there is mixing between
the two fluids, the local concentration of R6G changes signifying different local density.

Experiments with different values of Reynolds number ranging from Re = 485–12 270 are
performed, as shown in Table I. Note that all the experiments were a case of a full depth release, i.e.,
the initial depth of the heavier and the lighter fluids in the locked position is the same. Each set of
experiments is conducted at least two times to ensure repeatability of the flow. The bulk parameters
are chosen in a manner such that the Re covers a spectrum of mixing regimes driven by waves and
instabilities [2]. The Re is calculated using UF and h, where UF = 0.4

√
g′H . Here h is defined as the

length from the bottom of the gravity current to the first vertical location where the current density
equals that of the ambient (ρ1). For all cases, h ≈ H/2. The empirical constant in UF usually varies,
most commonly between 0.4 to 0.5 depending on the fractional depth h

H [5]. In our case, it is found
to be 0.4. The heavier and the lighter fluids used in our experiments are completely miscible (that
promotes mixing) and the flow is near inviscid in nature (energy conserving).

For all 10 experiments, the data are gathered at the central region of the tank illuminated by a laser
sheet. The 2D PIV and PLIF measurement techniques have a vector resolution of 1.4 mm/vector
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TABLE I. Experimental parameters.

ρ1 (kg m−3) ρ2 (kg m−3) Height, H (m) UF (m s−1) Re

996.1 1000.9 0.05 0.0194 485
990.4 1009.9 0.05 0.0393 985
980.4 1029.0 0.05 0.0623 1560
990.3 1011.7 0.08 0.0521 2080
993.2 1007.0 0.12 0.0511 3070
980.4 1026.0 0.10 0.0854 4270
971.6 1046.0 0.10 0.1096 5480
980.3 1028.1 0.15 0.1071 8050
971.4 1046.8 0.15 0.1351 10150
971.2 1047.1 0.17 0.1443 12270

and 0.35 mm/vector, respectively. Since the PIV vector resolution is coarser, the data from PLIF are
mapped onto the PIV grid to measure the mean and fluctuating components of velocity and density
fields at the same spatial location, thereby enabling calculation of the scalar flux. The measurements
are restricted to the body of the current, as shown in Fig. 2, since the head is the transient and
spatially inhomogeneous part of the current. Moreover, the head region stays in the illuminated area
for a very short time (especially at high Re) leading to inadequate averaging. Neglecting the head
region from the analysis will not change the results as the bulk of the current is composed of the
body.

The mean field is calculated based on a moving average filtering method that is commonly used
in field measurements [39]. The filter width used in our study is �tUF /H ≈ 0.5, which ensured the
mean field is smooth and in concurrence with the trend expected for a lock-exchange current (i.e.,
decaying with time). The aim is to achieve a smooth mean field, such that further adjustments in the
filter width will bear a minimal impact on results. In general, the qualitative trends of the mean field
and the turbulence statistics would be independent of the filter width, but the quantitative values
may be a little sensitive to the choice of the filter width. A large number of images for the control
volume (at least >500, by adjusting the frame rate of the camera) were used for all Re to reduce the
statistical random error and for convergence [40]. If the evolution of any turbulence statistics, say,
X in the 2D control volume, has to be found with time, it can be represented as

X (t ) = 1

nxnz

nz∑
a=1

nx∑
b=1

X, (7)

where nx and nz are the total number of grid points in the horizontal and vertical directions,
respectively. Similarly, if the average variation of a quantity across the depth of the current has
to be found, the following expression is used:

X (z) = 1

nxnt

nt∑
a=1

nx∑
b=1

X, (8)

where nt is the finite number of time frames or steps over which the quantity is averaged. Finally, if
the quantity has to be averaged over time and for the entire control volume, the following has to be
done:

X = 1

nxnznt

nt∑
a=1

nz∑
b=1

nx∑
c=1

X. (9)

The gradient of the mean streamwise velocity, U , in the lateral direction (y) is often discarded since
the current spans the entire width. However, the fluctuations in the velocity in all the three directions
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will exist due to the nature of turbulence. The fluctuation in the y direction is closely approximated
to be equal to the fluctuation in the z direction [26]. Hence, the turbulent kinetic energy K is
expressed as

K = 1
2 (u′2 + 2w′2). (10)

Since the gradient of the velocity exists primarily in the z direction because of its unidirectional
nature and x direction because of the inhomogeneity in the body along its length, only two terms
in the Reynolds stress tensor will contribute to the turbulent kinetic energy production, P, which is
given as

P = −u′w′ dU

dz
− u′u′ dU

dx
. (11)

The buoyancy flux in the budget equation inhibits (or promotes) the turbulent kinetic energy
production when the stratification is stable (or unstable) and is expressed as

B = g

ρ0
ρ ′w′. (12)

The estimation of turbulent kinetic energy dissipation rate, ε, is an important aspect of the
energetics of the flow that gives insights about the nature and degree of turbulence. Buoyancy
Reynolds number, indirect form of the diffusivities, and turbulent length scales (Ozmidov scale
and Kolmogorov scale) all have a dependence on ε. Two challenges that are imposed on precisely
finding the energy dissipation using PIV are (1) the spatial resolution of PIV, which should be
close to the smallest length scale in a turbulent flow (Kolmogorov length scale), otherwise ε would
be severely underestimated, and (2) for 2D PIV, there exists an unresolved third component that
has to be taken into account by making approximations using the other two resolved components
of velocity. The smallest length scale is estimated as Lκ = ( ν3

ε
)0.25, where ε ≈ u′3/h is a rough

estimation. The smallest value of Lκ corresponds to the highest Reynolds number, Re = 12 270,
which was found to be Lκ ≈ 0.3 mm. The PIV resolution is 1.4 mm, giving the ratio of vector
resolution (�) to the Kolmogorov length scale (Lκ ) as �

Lκ
≈ 4, which gives a fairly good estimation

of ε. Past studies estimating ε by Baldi and Yianneskis [41], Xu and Chen [42], and Odier et al.
[26] have revealed that when �

Lκ
� 5, the dissipation in experiments can be resolved to a good

extent within the statistical error limit. At low and moderate values of Re, the �
Lκ

was found to

be within �
Lκ

� 3, which again is within the resolvable limit for ε. The 2D fluctuating strain rates
(shear and normal) are computed using the values of fluctuating velocity components at every spatial
location and the PIV resolution in the region of interest. The assumption of local isotropy [43] is
sometimes used as a simplification and estimates the dissipation as ε = 15ν( du′

dx )2, where only one
of the gradients is required. However, this may overpredict the dissipation in our case since the
fluctuations in the y and z directions are considerably lower than the fluctuations in the x direction.
In our experiments, PIV gives the entire 2D velocity field, and therefore we relax the assumption of
isotropy and make use of all the available velocity gradients to estimate ε (see Doron et al. [44]) at
every spatial location. The expression for ε takes the following form:

ε = 2νs′
i j s

′
i j = ν

[
4

(
du′

dx

)2

+ 4

(
dw′

dz

)2

+ 3

(
du′

dz

)2

+ 3

(
dw′

dx

)2

+ 4
du′

dx

dw′

dz
+ 6

du′

dz

dw′

dx

]
.

(13)
This expression makes use of the incompressible continuity equation for a fluctuating flow field to
compute the fluctuating velocity gradient in the transverse (y) direction using the fluctuating velocity
gradients in the x and z directions [ dv′

dy = −( du′
dx + dw′

dz )]. Similarly, the unknown cross-fluctuating

velocity gradient ( du′
dy , dw′

dy , dv′
dx , dv′

dz ) is approximated as the average of the available fluctuating

velocity gradients in the x and z directions ( du′
dx , du′

dz , dw′
dz , dw′

dx ).
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FIG. 3. Density contours sampled from the body of the current for (a) Re = 485, (b) Re = 4270, and
(c) Re = 12 270 qualitatively capturing different energetic regimes. The figure also shows qualitatively how
the thickness of the mixing zone varies with Re. The color bar indicates the densities across the height of the
current in g cm−3.

IV. TURBULENCE AND MIXING IN GRAVITY CURRENTS

A. Modes of mixing and energetics

Based on the thicknesses of velocity and density layers, Ref. [2] demarcated different regimes of
mixing, viz., Holmboe wave-dominated mixing and Kelvin-Helmholtz instability-dominated mixing
(see Fig. 3). For a qualitative and a quantitative comparison, we consider three Reynolds numbers
covering different mixing regimes: a low value, Re = 485 (Holmboe waves), a moderate value,
Re = 4270 (Kelvin-Helmholtz instability), and the highest value, Re = 12 270 (energetic Kelvin-
Helmholtz instability), and compare the turbulence statistics for a better understanding of the small-
scale mixing dynamics. In Fig. 3 the density contour plots for the three values of Re are shown. The
depth of the current is nondimensionalized by H . It can be seen that in the case of Re = 485, the
gravity current holds its shape and does not mix well with the ambient fluid. For low values of Re
ranging from Re = 485–1560, the instabilities are weak, and turbulence and mixing are primarily
driven by Holmboe waves as shown in Fig. 3(a). The time evolution of turbulent kinetic energy,
K (t ), for the lowest Re case is shown in Fig. 4(a). It is observed that K (t ) rapidly reduces up until
tUF
H ≈ 2 and later attains a near-constant value. This indicates that the turbulence decays quickly

due to less energy present in the flow at low values of Re. A mixing transition is observed after

1 2 3 4 5 6
0

1

2

3

4

10
−

4  m
2  s

−
2

tUF

H

2 4 6 8
0

0.5

1

1.5

2

K
 (

t)
 [

10
−

5  m
2  s

−
2 ]

tUF

H

 

 

2 4 6 8
0

0.5

1

1.5

2

10
−

4  m
2  s

−
2

tUF

H

 

 

 

 

(b)(a) (c)

FIG. 4. Evolution of turbulent kinetic energy, K (t ), in the body of the current for (a) Re = 485, (b) Re =
4270, and (c) Re = 12 270. The images of the current are placed underneath to visualize the relative location
with respect to the head.
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FIG. 5. Evolution of turbulence statistics P(t ), B(t ) and ε(t ) for (a) Re = 485, (b) Re = 4270, and (c) Re =
12 270. Refer to Fig. 4 to visualize the relative location with respect to the head.

Re = 2080, where the turbulence and associated mixing are now controlled by Kelvin-Helmholtz
instability giving rise to vortical structures [see Re = 4270 in Fig. 3(b)]. A gradual decay in K (t )
is observed over the entire time period. This possibly indicates presence of large- and small-scale
structures in the flow that transfer energy between themselves, thereby resulting in a monotonic
decay of turbulence. Beyond Re = 8000, a highly turbulent state is achieved and an even more
energetic Kelvin-Helmholtz instability is observed. Large vortical structures in the shape of billows
are formed that eventually break down resulting in efficient mixing [see Fig. 3(c)]. The effect of the
turbulence near the interface has a deeper penetration in the unstratified bulk of the gravity current
present at the bottom, and the motion is quite chaotic. Unlike Re = 485, the mixing at higher values
of Re is predominantly dictated by turbulent diffusion, leaving a trail of thoroughly mixed fluid
in its wake. For Re = 12 270, the unstratified bulk (in dark red) is almost being “eroded,” which
is absent in lower Re cases. The peak in the value of K (t ) occurring at a later time ( tUF

H ≈ 2) for
Re = 12 270 may be attributed to episodic bursts of energy due to the collapsing K-H billows that
may increase K (t ) momentarily. For the benefit of the reader, the images of the gravity current are
placed underneath the line plots in Fig. 4 to visualize the relative location with respect to the head.
This would help in correlating the turbulence statistics with the location of the current.

To complete the discussion related to the energetics within the gravity current, the other terms
in the budget equation, which are the source and sink of K , also have to be found [see (11)–(13)].
A closure or a balance is required to understand the energetics of a shear-stratified flow and to
understand the different ways in which the energy is generated and distributed. Using (7), the
evolution in the shear production rate, the buoyancy flux, and the viscous dissipation rate are found
with time (see Fig. 5). The quantitative and qualitative behavior of these quantities is quite similar
to that of the K’s evolution with time, K (t ), but their competing nature is more interesting to look at.
A balance between P ≈ B + ε means that the flow is homogenous and stationary, and this happens
rarely. In our case, it can be seen from Fig. 5 that for Re = 485 this balance is almost intact for
the entire time period. Similarly, for Re = 4270 and 12 270 a balance is seen at a much later stage,
when the energy of the current becomes quite low. This implies that the source and sink terms of the
budget equation are in a balance when the flow is less energetic. In Fig. 6, variation of P(z), B(z),
and ε(z) along the depth of the current is presented. It can be seen that most of the turbulence activity
and energetics are confined to the region close to the interface of the gravity current fluid and the
ambient fluid, i.e., within the shear layer. The vertical axis in Fig. 6 is nondimensionalized with H to
highlight the relative thickness of the mixed layer compared to the depth of the current. The vertical
extent of the cusp formed by the buoyancy flux B(z) in Fig. 6 gives an estimate of the mixing zone,
and it becomes deeper as the Re increases. A significant change in the energetics is observed near the
interface due to the presence of interfacial Holmboe waves or Kelvin-Helmholtz-type instabilities
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FIG. 6. Average turbulence statistics, P(z), B(z), and ε(z) across the depth of the current (a) Re = 485,
(b) Re = 4270, and (c) Re = 12 270.

that result in an overturning moment, which allows the gravity current to engulf the ambient fluid
through the swirling motion of the eddies. This engulfing action, by large, is absent in low Re
cases, and the mixing is primarily due to weak interfacial waves. This leads to the existence of
countergradient fluxes dominating the flow that can be noticed for Re = 485 from the buoyancy
flux plot in Fig. 6(a), wherein the value of B(z) is negative in the mixing zone. At Re = 485, the
turbulence activity is so small that the irreversible component of buoyancy flux is masked by its
reversible component and therefore shows negative values in the mixing zone. On the other hand,
the buoyancy flux produced in the regime of moderate and high Re is predominantly down-gradient,
resulting in its net positive value, signifying that a part of the turbulent kinetic energy of the flow is
converted to the background potential energy of the system. The relative magnitudes of dissipation
rate, ε(z), and shear production rate, P(z), provide us with some valuable information about the
flow. Usually both these quantities are of the same magnitude in the absence of any stratification,
suggesting that the energy dissipates only into heat. However, when there is a density stratification
present, it results in mixing or a positive buoyancy flux that uses a part of the turbulence kinetic
energy. For the low Re case, even in the presence of stratification, the magnitudes of the shear
production rate and dissipation rate are almost of similar magnitudes [see Figs. 5(a) and 6(a)] which
indicates a presence of a very weak turbulent state. Another feature worth noting in the dissipation
characteristics that is common among all the cases is the secondary dissipation peak that is formed
at the bottom (see Fig. 6). This is because of the bottom surface of the tank or the bed acts as
a solid wall and prevents the adjacent fluid layer to move further because of a no-slip condition
creating a secondary bottom shear layer. In essence, the turbulence activity is limited to a region
near the interface where all the turbulence statistics show a peak, and the instabilities are a result of
relative velocities between the strata of fluids with different densities that give rise to a classic case
of Kelvin-Helmholtz instability (and Holmboe waves for the low Re case).

B. Length scales in shear-stratified turbulence

Another important metric in a shear-stratified flow is the turbulent length scales. Two widely
used length scales for the characterization of shear-stratified flows are the Kolmogorov (Lκ ) scale
and the Ozmidov (Lo) scale. The Kolmogorov length scale (Lκ ) is the smallest length scale at which
energy contained in the larger eddies dissipates into heat. On the other hand, the Ozmidov length
scale (Lo) is the smallest length scale that can be influenced by the stratification. The stratification
preferentially deforms the larger scales first and then the smaller scales, therefore Ozmidov scale
is the size of the smallest eddy that can be deformed and whose energy can be suppressed by the
stratification strength. These two length scales form the backbone of turbulence activity parameter
or buoyancy Reynolds number (Reb), which is the ratio of Ozmidov length scale to the Kolmogorov
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FIG. 7. Evolution of Ozmidov scale, LO(t ), and Kolmogorov scale, Lκ (t ), for (a) Re = 485, (b) Re = 4270,
and (c) Re = 12 270. Refer to Fig. 4 to visualize the relative location with respect to the head.

length scale. The length scales and the buoyancy Reynolds number are expressed as

Lo(t ) =
(

ε(t )

N3

) 1
2

, Lκ (t ) =
[

ν3

ε(t )

] 1
4

, Reb =
(

Lo

Lκ

) 4
3

= ε

νN2
. (14)

The average change in these length scales for the three different Re values is shown in Fig. 7, which
gives more quantitative information about the state of turbulence. A general trend that is seen in all
the plots is that the Kolmogorov length scale increases with the stream-wise direction, x, while the
Ozmidov length scale decreases. In general for all three Re values, it can be seen that Lo(t ) is the
highest just behind the head, where the body begins, indicating that the buoyancy or stratification
affects only the large-scale eddies. As we move downstream, Lo(t ) decreases due to reduced inertial
forces, and the effect of stratification is now felt on smaller eddies as well. In contrast, Lκ (t ) is
smallest at the initial times when the head has just flushed out, indicating high turbulence activity
just behind the head and the initial parts of the body. As we move downstream, the value of
Lκ (t ) increases, signifying decaying turbulence and reduced mixing (as stratification suppresses
turbulence production). It can be seen that for Re = 485, the length scales do not evolve significantly
with time, indicating that the level of turbulence activity is almost the same in the horizontal span
of the particular region. This is consistent with our earlier argument that the turbulence activity is
quite low and the current did not attain a turbulent state. In the more energetic regimes, namely,
Re = 4270 and Re = 12 270, there is a clear evolution of Lo(t ) and Lκ (t ) with time. There is a
gradual decrease in the values of Lo(t ) accompanied by a gradual increase in the values of Lκ (t ),
which indicates that the turbulent activity continuously decreases as we move downstream of the
current’s body. This signifies that the amplitude of fluctuations in field variables about its mean
quantity constantly is reduced as we move downstream resulting in reduced turbulence intensity.
The decrease in Lo(t ) and the increase in Lκ (t ) show that the rate at which the turbulence activity
decays is directly proportional to the intensity of turbulence itself [− dK (t )

dt ∝ K (t )], i.e., larger the
turbulence activity, the stronger is the decay rate, provided there is no external force energizing it.

V. MIXING EFFICIENCY AND EDDY DIFFUSIVITIES OF MOMENTUM AND SCALAR

The evaluation of mixing efficiency, Ri f , based on the flux terms in the turbulent kinetic
energy budget equation is reported in this section. The mixing efficiency calculation helps in
parametrizing the eddy diffusivities in shear-stratified flows, since field measurement of these
diffusivities is challenging. As already discussed, the calculation of Ri f requires simultaneous
measurements of buoyancy flux and shear production rate, which yields the first definition of the

mixing efficiency, viz., RiIf . By measuring the viscous dissipation in the budget equation, we arrive at
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FIG. 8. Mixing efficiency (RiI
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f ) as a function of buoyancy Reynolds number, Reb. The magenta
lines account for all the uncertainties that could arise in the calculations.

the second definition of mixing efficiency, RiII
f , which is free from the homogeneous and stationary

assumptions. Here we report the quantitative values of both RiIf = B
P

and RiII
f = B

B+ε
as a function

of Reb in Fig. 8, by making use of (9).
The Reb in our case ranged from 3 < Reb < 48, which covers the entire diffusive regime and a

part of the intermediate regime (for details refer to Ref. [28], which is very much relevant in oceanic

flows. It should be noted here that the multiple values of RiIf and RiII
f for different runs of Re are

averaged, and a single value for a particular Reb is reported. From Fig. 8, it can be seen that for
0 < Reb < 10, Ri f starts from a low value and monotonically increases. The low mixing efficiency
is attributed to low irreverisble buoyancy flux production, since most of the turbulent kinetic energy
is expended in destabilizing a bottom heavy system (highly stable), which is also evident from
Figs. 3(a) and 6(a). In this range of Reb, the effects of countergradient (or up-gradient) fluxes are
prominent, and its relative magnitude is higher in comparison to the down-gradient or irreversible
buoyancy fluxes. In the intermediate regime (Reb > 10), it is seen that the mixing efficiency, Ri f ,
very nearly plateaus. As Re increases, the turbulent kinetic energy increases, and it promotes a
higher degree of small-scale mixing, which aids in increasing the magnitude of the down-gradient
buoyancy fluxes. Therefore, in the more energetic regime, Ri f increases, and more importantly the

effect of countergradient flux is less compared to the low Reb cases. Both RiIf and RiII
f are plotted

and juxtaposed together to notice the differences between the two definitions of mixing efficiency.
Though the individual quantitative values of the turbulence statistics increase with an increase in Re
or Reb (see Fig. 6), both definitions of Ri f plateau at higher values of Reb (within the experimental
parameter range) because of the competing effects of all the terms in the budget equation. The

values of RiII
f are slightly higher than the values of RiIf , which implies that the assumption of

homogeneity and stationarity in the body of the current does not hold. It should be pointed out
that the second definition consistently predicts a higher mixing efficiency, since our experiments
revealed that P − B − ε is positive for almost all values of Re (except Re = 485). Using (1), we
can estimate the contribution of the transport term (Tr). Due to the decaying nature of turbulence
in our system, the unsteady term (Un) in (1) is negative. Rewriting (1) as B + ε = P + Tr − Un,
we note that in order to satisfy our experimental claim that P − B − ε is positive, Tr has to be
negative. This means that part of the K is used in maintaining the homogeneity, thereby inducing

higher values of RiII
f . The magenta lines in the Fig. 8 are provided to account for all the possible
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FIG. 9. (a) Normalized eddy diffusivity of momentum (κm), and the dashed line (- - -) represents 1.25 Reb

[45]. (b) Normalized eddy diffusivity of scalar (κρ), and the dashed line (- - -) represents 0.2 Reb [25]. The eddy

diffusivities are parameterized using the second definition of flux Richardson number, RiII
f . The magenta line

shows deviation (± 10 %) from Crawford’s and Osborn’s parametrizations.

experimental uncertainties that can arise which may affect the calculation of fluxes. The values
of mixing efficiency and the relative difference between the two definitions show dependence on
the kind of K production mechanism and the turbulence regime. At very low Re (Re < 500) the
two definitions are the same and collapse at a single point (RiI

f = RiII
f = −0.07, for Re = 485),

implying that homogeneity and stationarity conditions can be achieved at a weak turbulent state for
this particular genre of flows, which is also consistent with our earlier discussions in Sec. IV. The
values of mixing efficiency from Fig. 8 indicate that RiI

f saturates to ≈0.15 and RiII
f to ≈0.2 with

a variability (which are inherent and inevitable in these flows) of ±0.05 that will envelope all the
mixing efficiency values in that region (Reb > 10). Both these values, calculated from experiments,
deviate slightly from the value of 0.17 proposed in Ref. [25], but are well within the statistical error
limit.

The mixing efficiency, Ri f , helps in parametrization of eddy diffusivity of momentum and scalar
as a function of buoyancy Reynolds number, Reb. The ultimate aim is to be in a position to specify
the effect of turbulence in enhancing mixing at molecular levels, and it is quantified using the
turbulent diffusivities. One way is to use eddy viscosity hypothesis [see Figs. (4a) and (4b)], but
it often becomes difficult to measure the diffusivities directly in that manner. Therefore the eddy
diffusivities are parameterized in the form of Ri f and flow parameters that can be measured easily.

The second definition of flux Richardson number (RiII
f ), which is more generic and does not use

approximations, is used to parametrize the eddy diffusivities in our case. Figures 9(a) and 9(b)
show the normalized eddy diffusivity of momentum and scalar, respectively, as a function of Reb.
The normalization follows Ref. [25] to express eddy diffusivities as a function of measurable field
variable, i.e., Reb = ε

νN2 :

κm =
(

1

1 − Ri f

)
ε

S2
=

(
1

1 − Ri f

)
Rig

ε

N2
,

κm

ν.Rig
=

(
1

1 − Ri f

)
ε

νN2
, (15)

κρ =
(

Ri f

1 − Ri f

)
ε

N2
,

κρ

ν
=

(
Ri f

1 − Ri f

)
ε

νN2
. (16)
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With a limited number of data points that were available through our experiments on lock-exchange
gravity current and using the parametrization given in (15) and (16), it can be seen from Fig. 9(a)
that the eddy diffusivity of momentum is within ±10% of the parameterized form proposed earlier
by Crawford [45]. Also, from Fig. 9(b) it is evident that the values of eddy diffusivity of scalar
are in close agreement within ±10% with the parametrization proposed in Ref. [25], but only for
a very limited range, Reb < 10, or the diffusive regime [28]. In this region, for Reb < 5, the total
diffusivity is less than zero, a result that is attributed to the presence of the countergradient fluxes.
The negative values do not make sense in a practical scenario, since the third definition of mixing
efficiency has not been resolved, which probably should act as a remedy to this problem. For now,
in this study, negative values simply mean that the turbulence is weak and the turbulent diffusivity
has not enhanced molecular diffusion appreciably for low Reb cases. Beyond Reb > 10 we see a
marked departure, indicating that the scalar eddy diffusivity behaves differently compared to the
parameterized form proposed in Ref. [25] in this regime. Compared to the experimental results,
Osborn’s parametrization underpredicts the eddy diffusivity in this regime and differs by a factor
of about two, which is indicative of the dependence on the mode of mixing. Therefore, a different
parametrization is required for modeling the scalar eddy diffusivity in this regime, underscoring the
importance of this study.

VI. CONCLUSIONS

The energetics and mixing efficiency in the body of a lock-exchange gravity current, while in
its slumping phase, for varying Reynolds numbers (Re) and corresponding buoyancy Reynolds
numbers (Reb) have been quantified. The important terms in the turbulent kinetic energy budget
equation, such as the turbulent kinetic energy (K), shear production (P), buoyancy flux (B), and
energy dissipation (ε), were calculated based on the simultaneous measurements of velocity and
density fields using particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF)
techniques, respectively. The turbulence statistics indicated that most of the mixing activity in
the body of the gravity current was restricted close to the interface of the two fluids and not
the entire depth of the current. The extent of the mixing zone relative to the current depth was
found to increase with increasing Reynolds number owing to transition from weak Holmboe
waves to Kelvin-Helmholtz instability. Moreover, it was observed that for low values of Re, the
turbulence statistics, namely, K (t ), P(t ), B(t ), and ε(t ), decay rapidly, indicating a low level of
turbulence. A more monotonic decay is observed at higher Re values owing to presence of large-
and small-scale flow structures that transfer energy among themselves. The values of P(z), B(z),
and ε(z) show a marked increase at the interface of the current due to the presence of a shear-driven
mixed layer.

The evolution of Kolmogorov (Lκ (t )) and Ozmidov (LO(t )) length scales with time implied that
the turbulence in the particular region of the current decayed as we moved downstream, and the
decay rate was proportional to the instantaneous turbulence intensity. In order to quantify the local
mixing dynamics, the average mixing efficiency, Ri f , was calculated using the turbulent flux terms.
Two different representations of Ri f were used. After a critical value of Re > 2080 and Reb > 10,

the mixing efficiency value was found to have an upper bound of RiIf ≈ 0.15 and RiII
f ≈ 0.2 with

a variability of ±0.05 within our experimental parameter range, which is marginally different
from the generally accepted value of 0.17 used in oceanic models. The marginal difference could
indicate that the mixing efficiency has a strong dependence on the mechanism by which turbulence

is generated and the turbulence regime itself. Following this, RiII
f was used to parametrize the

momentum eddy diffusivity, κm, and scalar eddy diffusivity, κρ . It was observed that the eddy
diffusivity of momentum was in good agreement (within our experimental parameter range) with
previous literature, but the eddy diffusivity of scalar showed an agreement up until Reb < 10 (the
diffusive regime). The departure in the scalar diffusivity values in the intermediate regime, Reb >

10, suggested the importance of quantifying the small-scale mixing dynamics of an energetic gravity
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current. We believe that these results provide good insights into the local energetics and mixing
efficiency in lock-exchange gravity currents.
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