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Deformation of a conducting drop in a randomly fluctuating electric field
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We quantify the transient deformation and breakup of a conducting drop suspended
in a dielectric medium and subjected to a fluctuating electric field. Specifically, the
magnitude of the field fluctuates randomly in time, while its orientation is fixed. Hence,
the deformation of the drop is axisymmetric about the direction of the field. The temporal
fluctuations are described by a stationary Markovian Gaussian process, characterized
by a mean, variance, and correlation time. Small deformation theory predicts that the
fluctuations produce a larger deformation than under a steady electric field of strength equal
to the mean of the fluctuating electric field. Next, we utilize boundary integral computations
to quantify the deformation and breakup of drops beyond the small deformation regime.
When the mean of the fluctuating field is greater than the critical field for breakup under a
steady field, we find that the average time taken to undergo breakup is less than that under
an equivalent steady field. More interestingly, a certain fraction of drops are observed to
undergo breakup even when the mean field is less than the critical field. The fraction of
drops undergoing breakup and the range of mean electric field below the critical where
breakup is observed depends on the strength of fluctuations of the electric field. An
operating map is presented for the percentage of drops undergoing breakup as a function
of the dimensionless mean field for different strength of field fluctuations. The present
study sheds light on the response of drops in applications such as electrocoalescence
and electroemulsification, where interactions with surrounding drops or disturbances in
operating conditions can produce a random field around a drop, even when the applied
macroscopic field is uniform.
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I. INTRODUCTION

When an electric field is applied around a drop of fluid of initial radius a0, suspended in another
immiscible fluid, there is a discontinuity in the electric field distribution across the interface due to
a mismatch in the electrical properties of the two fluids. As a result, electric stresses are generated
at the interface, which deform the drop from an initial spherical shape. The electric stresses are
balanced by the capillary stress, which arise due to an interfacial tension, γ . For perfectly conducting
or perfectly dielectric drops suspended in a perfectly dielectric liquid, the electric stresses are
nonuniform along the interface, and consequently the drop deforms along the direction of the
applied field into a prolate shape [1–7]. Understanding how drops respond to an applied electric
field is important in applications like electrospray mass spectrometry [8], electrocoalescence [9,10],
and electric-field-based emulsification [11,12]. For small values of a uniform, direct current (D.C.)
applied electric field, the deformation of the drop is small. In this small deformation limit, Allan
and Mason [5] predicted that the steady deformation of a conducting drop in a dielectric liquid,
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FIG. 1. Schematic of the electric field induced deformation of a conducting drop. The axis of symmetry,
ϕ, is along the direction of the electric field, E∗

∞. The average magnitude of the electric field is Ec, and the
fluctuations are denoted by ε∗. The drop having viscosity μi, permittivity εi and conductivity σi is suspended
in a dielectric medium with viscosity μo, permittivity εo and conductivity σo. The initially undeformed state of
the drop is shown by the dashed curve. The semi-major and semiminor axis of the deformed drop are denoted
by L and B, respectively. The unit normal (n) and tangential (s) vectors, the continuous tangential coordinate
(s), the polar angle (θ ), and a fixed source point on the interface (x) are also shown.

D = L−B
L+B , is proportional to the square of the applied electric field, E∗

∞,

D ∼ 9
16 CaE , (1)

as CaE → 0. Here L and B are the half lengths of the drop along and normal to the direction
of the applied electric field, respectively (Fig. 1), and CaE = a0εoE∗2

∞/γ is the electric capillary
number defined as the ratio of electric stresses to capillary stress, with εo representing the dielectric
constant of the medium phase fluid. The electric capillary number can also be defined as the ratio of
the capillary time scale, tc = μoa0/γ , which is the time scale for the capillary stress to restore
the drop to the undeformed state, to the flow time scale, t f = a0/U , where the velocity scale,
U = εoa0E∗2

∞/μo, is obtained by balancing the viscous shear to electric stresses, with μo denoting
the viscosity of the medium phase fluid. To O(CaE ), the drop deforms to a spheroidal shape.
Equation 1 is first order in CaE ; the deformation is nonlinear in CaE at larger values of the electric
field strength.

The small deformation theory given by Eq. (1) is valid for CaE � 1. At larger field strengths,
the drop deformation is nonlinear in CaE , and the shape is nonspheroidal [13–15]. The inclusion of
higher order terms to (1) is not sufficient to predict the experimentally observed deformation [16].
The drop ultimately breaks up to form smaller drops beyond a critical value of the electric field.
Numerical methods, particularly the boundary integral method and the finite element method, have
been employed to calculate the steady nonlinear deformation of drops at larger CaE , and predict the
breakup criteria and breakup modes for both uniform [17–22] and oscillatory [13] external fields.
The manner in which the deformed state is attained, i.e., the transient deformation of the drop, has
also been established [23–26].

Previous studies have predominantly focused on the transient deformation and breakup of a
single drop subjected to a deterministic (uniform or oscillatory) external electric field. In practical

063701-2



DEFORMATION OF A CONDUCTING DROP IN A …

systems, the response of a drop will be influenced by the interaction with surrounding drops,
interaction with walls, and disturbances in operating conditions. For instance, in equipment like
electrocoalescers or electroemulsifiers, the surrounding drops will have different sizes and be
randomly distributed around a given (“test”) drop. Thus, even when the applied macroscopic voltage
(for example, the potential difference across the electrodes in an electrocoalescer) is steady, the
behavior of the test drop could be drastically different from the response of a single drop under
a deterministic field. An equivalent description of the dynamics of drop deformation and breakup
in such practical applications is to quantify drop response to a randomly fluctuating external field.
A similar approach has been adopted to study drop fragmentation in mixers and packed beds via
experiments [27–29], and simulations [29–32]. In particular, the fluid flow through a dilute fixed bed
was modeled as an equivalent anisotropic Gaussian flow field through a spectral expansion method,
where the wave number vectors were chosen from statistical distributions to realize a desired flow
field. The orientation of tracer polymers, extension of polymer molecules, and droplet breakup in the
simulated stochastic flow field was predicted [29–32]. An alternate approach to model a stochastic
external flow field was followed in Ref. [33], where the random component of the flow was modeled
as an Ornstein-Uhlenbeck process using a mean, variance, and correlation time. The response of
the drop was quantified in terms of a probability distribution function of the final deformation
and breakup.

However, to the best of our knowledge, the dynamics of drop deformation and breakup in
a random electric field has not been studied before. Therefore, in this work, we quantify the
transient deformation and breakup of a drop of conducting liquid suspended in a dielectric
liquid when subjected to an electric field, the magnitude of which fluctuates randomly in time.
We choose the simplest system of a conducting drop, where no sustained fluid flow exists
at steady state, to elucidate how fluctuations affect deformation and the criterion for breakup.
Again, we emphasize the importance of this problem in the context of practical applications like
electrocoalescence and electroemulsification. A complete description would have to account for
many-body hydrodynamic and electrostatic interactions between drops, and spatial fluctuations in
the electric field. Nevertheless, our approach is a reasonable first step. We employ small deformation
theory and the boundary integral method to predict the effect of fluctuations on the final state
of the drop. In Sec. II, we state the problem and describe the statistics of the electric field
signal. We also outline the small deformation theory, boundary integral method formulation, and
the numerical scheme used to implement the computations. In Sec. III we present the results of
the theory and computations. In Sec. IV we discuss the results, and draw an analogy with the
extension and coil-stretch transition of polymers in flow fields. Finally, we state the conclusions
in Sec. V.

II. MODELING DROP DEFORMATION AND BREAKUP

An uncharged drop of a conducting liquid with initial radius a0 is suspended in a dielectric
medium, as shown in Fig. 1. The drop and medium phase fluids are density and viscosity matched.
The drop is subjected to an electric field, the magnitude of which fluctuates randomly in time,
but the direction remains fixed. The electric field deforms the drop from its initial, spherical state.
We assume that the deformation is axisymmetric and quantify the effect of fluctuations in the
electric field on the transient deformation and criteria for drop breakup. The problem requires the
calculation of electric field distribution and fluid flow in the drop and medium phase fluids. Although
at steady state there is no fluid flow for conducting drops, the solution to the flow problem is
necessary to predict the transient deformation of the drop. We present the governing equations in this
section. Henceforth, a superscript “*” denotes a dimensional variable, and a lack of the superscript
denotes a physical parameter, scale, dimensionless group, or the dimensionless version of a
dimensional variable.
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A. Statistics of the fluctuating electric field

The external electric field, E∗∞, is composed of a constant part, Ec, and a part whose magnitude
fluctuates randomly in time, ε∗, i.e., E∗∞(t∗) = [Ec + ε∗(t∗)]êz, where êz is the unit vector along
the direction of the field. In practice, the fluctuations could be caused by the polydispersity of
the system, interaction with surrounding drops, interaction of the drop with walls, or disturbances
in operating conditions. Note that we only consider temporal fluctuations of the field and neglect
spatial stochasticity. This assumption is valid when the source of the fluctuations is solely temporal
disturbances in operating conditions, or when the concentration of drops in the system is relatively
dilute, such that the center-to-center distance between drops is much larger than their radius, and
drops do not reorient or experience relative motion due to electrostatic interactions [34]. Instead of
determining the contribution of each of the possible factors to the fluctuations in the field, we assume
that the random temporal variation of the electric field is described by a stationary Markovian
Gaussian process (the Ornstein-Uhlenbeck process) [33,35]. Hence, the evolution of ε∗ follows
the stochastic differential equation

dε∗

dt∗ = −λ∗[ε∗ − g∗
w(t∗)], (2)

where g∗
w is the underlying Gaussian white noise driving the fluctuations and λ∗ is the inverse

correlation time. The fluctuations in the electric field are specified by λ∗ and the statistics of g∗
w. We

nondimensionalize Eq. (2) using Ec to scale the electric field, and the capillary time, tc = μoa0/γ ,
to scale time, and obtain the dimensionless governing equation for the fluctuations in electric
field as

dε

dt
= −λ[ε − gw(t )]. (3)

Here, λ = λ∗tc is the dimensionless inverse correlation time. The underlying Gaussian white noise
has the properties 〈gw(t )〉 = 0, and 〈gw(t )gw(t ′)〉 = 2Gwδ(t − t ′), where δ is the Dirac δ function,
and 2Gw is the variance of the white noise. A term in the angle brackets denotes an average over
an ensemble of initial distribution of the variable. The driven noise is generated using an algorithm
described in Ref. [35], after integrating Eq. (3) to obtain

ε(t ) = ε0e−λt +
∫ t

0
λe−λ(t−t ′ )gw(t ′) dt ′, (4)

where ε0 is an initial value of the fluctuation. At any given time, the driven noise is Gaussian
distributed, ε(t ) ∼ N (〈ε0〉e−λt , Gwλ), where N (μ, ν) denotes a normal distribution with mean μ

and variance ν. The distribution of initial value of the fluctuations, ε0, is given by

P (ε0) = 1√
2πGwλ

exp

{
− (ε0 − 〈ε0〉)2

2Gwλ

}
. (5)

We choose 〈ε0〉 = 0, so that the mean electric field is set by the constant part, Ec, and fluctuations
to the field is set by the variance of ε(t ), i.e., Gwλ. The driven noise has the properties

〈ε(t )〉 = 0, (6)

〈ε(t )ε(t ′)〉 = Gwλ exp(−λ|t − t ′|). (7)

where the term 〈...〉 denotes an average over an ensemble of initial distribution of ε0,
given by Eq. (5).

It follows from Eq. (7) that ε(t ) is an exponentially correlated colored noise. Further, the
nondimensional electric field follows a Gaussian distribution at any given time, E∞ ∼ N (1, Gwλ).
A simulated fluctuating electric field signal is shown in Fig. 2(a) for a specified variance, Gwλ = 0.1.
The signal was obtained by taking an average over 100 realizations of the algorithm over the initial
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FIG. 2. (a) A simulated electric field with variance Gwλ = 0.1. The solid line is an average over 100
realizations of the algorithm over the initial distribution of ε0. The dashed line shows the mean value of the
fluctuations. (b) Probability density function of the numerically computed (circles) and theoretically predicted
(solid line) electric field at t = 1.

distribution given by Eq. (5). Comparing the statistics of the simulated signal with the statistics
predicted theoretically, i.e., E∞ ∼ N (1, Gwλ) at t = 1, shows that averaging over 100 realizations
over Eq. (5) is sufficient to describe the fluctuating electric field [Fig. 2(b)]. The random temporal
fluctuations can be generated in experiments by using virtual instrumentation platforms such as
Labview to trigger the voltage source. The waveform of the voltage to be applied can be specified
in the virtual instrumentation.

B. Small deformation theory

We first consider a slightly spheroidal deformation of the drop surface at small values of the
mean electric field (which corresponds to a small value of the mean electrical capillary number). In
this limit, the drop can be treated as a sphere during the implementation of the boundary conditions
[25,26]. Spherical coordinates are employed and the axis of symmetry is taken along the direction of
the applied field. The electric field is irrotational, and since the drop is electrically neutral, Gauss’s
law reduces to the Laplace equation for the inner and outer electrostatic potentials (φ∗

i,o), giving

∇∗2φ∗
i,o = 0, (8)

with the electric field calculated using E∗
i,o = −∇∗φ∗

i,o. The potential in the drop phase, φ∗
i is

bounded at the center of the drop, and at far field, the potential in the medium phase satisfies
−∇∗φ∗

o → E∗
∞. The electric field distribution in the drop and medium is obtained from the solution

of Eq. (8) with these boundary conditions, along with the interface conditions at the surface of the
drop, r∗ = a0, where the potential is continuous,

φ∗
i = φ∗

o , (9)

and the jump in electric displacement follows

[−ε∇∗φ∗·n] = q∗(t∗). (10)

The term in the square brackets in Eq. (10) represents a difference between inner and outer
quantities, n is a unit normal vector, positive in the outward direction (Fig. 1), and q∗ is the interfacial
charge density, which is an unknown. Hence, an additional interface condition to describe the
continuity of current across the interface is used. For a perfectly conducting drop, effects of surface
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charge convection and charge relaxation can be neglected, and the interfacial charge conservation
equation reduces to [7,36]

[σ∇∗φ∗·n] = 0. (11)

For a perfectly conducting drop, σi � σo, hence Eq. (11) predicts that the normal electric field inside
the drop phase, En,i = 0.

After solving the electric field distribution in the two phases, the Maxwell electric stresses at the
interface can be calculated using τ∗

Ei,o
= εi,oE∗

i,oE∗
i,o − (E∗

i,o·E∗
i,o)I/2.

The flow field in the drop and medium phases is governed by the continuity equation and the
Navier-Stokes equation,

∇∗·u∗
i,o = 0, (12)

and

ρi,o

[
∂u∗

i,o

∂t∗ + u∗
i,o ·∇∗ u∗

i,o

]
= −∇∗ p∗

i,o + μi,o∇∗2
u∗

i,o, (13)

where u is the velocity and p is the hydrostatic pressure. We consider millimeter sized drops in
this work. Hence, even though the electric field is fluctuating randomly in time, the flow field is
described by the deterministic Navier-Stokes equations. For microscale drops, fluctuations driven
by thermal noise may lead to deformation of the drop interface and would necessitate a description
of the flow field using fluctuating hydrodynamics, where a stochastic forcing term is added to the
momentum balance Eq. (13) [37,38]. How such thermal fluctuations couple with a deformation due
to an applied field is an interesting problem for future study.

We first nondimensionalize the problem. The electric field is scaled with the constant mean
electric field, Ec. Distance is scaled with the radius of the underformed drop, a0. The capillary
time, tc, is used to normalize time. Interfacial charge density is rendered dimensionless using εoEc.
Electric stresses (εoE2

c ) are chosen to scale stresses. The scale for velocity is obtained by balancing
electric stresses and viscous stress at the interface, giving U = εoE2

c a0/μo. These scalings lead to
the dimensionless momentum balance,

Rei,o

〈CaE 〉
∂ui,o

∂t
+ Rei,oui,o·∇ui,o = −∇pi,o + ∇2ui,o, (14)

where Rei,o = ρi,oεoE2
c a2

0/μ
2
i,o is the Reynolds number, and 〈CaE 〉 = a0εoE2

c /γ is the mean electric
capillary number. We assume creeping flow, Rei,o � 1, and further assume that Rei,o/〈CaE 〉 � 1 to
reduce the momentum balance to

−∇pi,o + ∇2ui,o = 0. (15)

Since the problem is axisymmetric, Eq. (15) can be solved using a stream function ψ ,
which automatically satisfies incompressibility Eq. (12). The stream function satisfies the
biharmonic equation

D4ψi,o = 0, (16)

where D4 = D2(D2), and D2 = ∂2/∂r2 + (sin θ/r2){∂/∂θ [(1/ sin θ )∂/∂θ ]}. The velocity is related
to the stream function through

ui,o = ∇ ×
[

ψi,o

r sin θ
êφ

]
, (17)

where êφ is the unit vector in the azimuthal direction. The flow field is subject to the constraints
that the velocity at the center of the drop is bounded, and the far field condition in the medium,
uo = 0 at r → ∞. The complete solution requires four more interface conditions. At small field
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strengths where 〈CaE 〉 � 1, the interface is only slightly deformed, and the instantaneous shape
can be described using [25,26]

ξ = 1 + 2
3D(t )(3 cos2 θ − 1), (18)

where D(t ) is the instantaneous deformation of the drop, defined as the ratio of the difference in
semimajor and semiminor axis of the drop to the sum of the semimajor and semiminor axis. In the
limit of small deformation (〈CaE 〉 � 1), the interface conditions

uθ,i = uθ,o (19)

and

ur,i = ur,o = 1

〈CaE 〉
dξ

dt
(20)

can be applied at r = 1, and the deformation subsequently calculated using the interfacial stress
balance equation, which in the absence of surfactant reads

(pi − po)n + (τH,o − MτH,i ) ·n +[
τEi,o ·n ] = 1

〈CaE 〉 (∇s · n)n. (21)

Here, τH represents the deviatoric stress tensor, and ∇s · n is the curvature of the interface where ∇s

is the surface gradient operator, defined as ∇s = (I − nn)·∇. A detailed procedure of solution of the
equations can be found in Ref. [25], and an overview of the procedure is presented in this work. The
general solution of the flow field is obtained from Eqs. (16) and (17), and the constants are rewritten
in terms of the instantaneous deformation, D(t) using the constraints of bounded flow at the drop
center, far field condition, interfacial velocity Eqs. (19) and (20), and the tangential stress balance
obtained from Eq. (21). The normal stress balance is then used to obtain the governing equation for
transient deformation,

τ
dD
dt

+ D = DDC[1 + ε(t )2], (22)

where τ = (19M+16)(2M+3)
40(M+1) , M = μi/μo, and DDC = 9〈CaE 〉/16 is the steady deformation of a

conducting drop in a dielectric medium under a uniform D.C. electric field at small electric field
strengths [5,6]. Integrating Eq. (22), we obtain the instantaneous deformation of a conducting drop
in a randomly fluctuating field,

D(t ) = DDC(1 − e−t/τ ) + DDC

τ

∫ t

0
[2ε(t ′)e−(t−t ′ )/τ + ε(t ′)2e−(t−t ′ )/τ ] dt ′. (23)

The first term on the right-hand side is the expression of the transient deformation of a drop under
a uniform D.C. field when transient fluid inertia can be neglected, i.e., the flow is established
instantaneously on the timescale that momentum diffuses from the deforming interface [23,25,26].
This predicts that the deformation monotonically settles toward the steady-state result given in
Eq. (1) as t → ∞. The second term represents the contribution of the fluctuations in the electric
field to the transient deformation. Note that fluctuations lead to D(t ) being nonlocal in time; the
history of the electric field is remembered through the correlation time. A closed form solution
of D(t ) cannot be obtained because a closed form expression of ε(t ) is not known. Therefore, we
obtain the statistics (mean and variance) of the instantaneous deformation as

〈D(t )〉 = DDC(1 + Gwλ)(1 − e−t/τ ) (24)

and

var[D(t )] = D2
DCGwλ

τ
(2 + Gwλ)(1 − e−2t/τ ). (25)
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Clearly, the mean deformation of a drop in a randomly fluctuating field is greater than under a
uniform D.C. field when the field strength is small, and the difference in deformation increases with
fluctuations in the field (Gwλ). When the fluctuations vanish, i.e., Gwλ → 0, the electric field around
the drop assumes the form of a steady D.C. field. In this limit, we find that 〈D(t )〉 = DDC(1 − e−t/τ ),
and var(〈D(t )〉) = 0, which is the expected result for drop deformation under a steady electric field
that is suddenly applied at t = 0.

C. Boundary integral formulation

The nonlinear drop deformation at a larger value of the mean electric field, and possible breakup,
is predicted using the boundary integral method. This requires the solution of the electric field
and fluid flow at the interface only, thereby reducing the dimensionality of the problem by one,
and consequently reducing the computational cost [39–41]. The Laplace Eq. (8) is recast into a
nondimensional integral equation at the interface [20,22,42,43],

S − 1

4πS

∮
A

r · n(x)
r3

En,o(y)dA(y) + S + 1

2S
En,o(x)

= E∞ · n(x) − 1

4πS

∮
A

q(y)dA(y) + 1

2S
q(x), (26)

where S = εi/εo is the ratio of dielectric constant of the drop to medium phase fluid, r = y − x is the
difference between an observer point y that can move along the interface and a fixed source point
x on the interface. The integral is taken over the surface area, A of the drop. The normal electric
field in the drop phase is calculated using the dimensionless form of Eq. (11), En,i = REn,o, where
R = σo/σi is the ratio of electrical conductivity of the medium to drop phase fluid. For a conducting
drop in a dielectric, σi � σo, hence En,i = 0; however in the computations, instead of prescribing
En,i = 0, we specify a very small value of R (≈10−10). The interface is initially uncharged, hence
the normal electric field can be computed at t = 0. The tangential field is obtained by an integral
transform of the Laplace equation in terms of the electrostatic potential, φo [22,43,44],

φo(x) = φ∞(x) +
∮

A

1

4πr
[En,o(y) − En,i(y)]dA(y), (27)

and using the relation Et,o = −∂φo/∂s and Eq. (9). Here, s is the tangential coordinate measured
from θ = 0 (Fig. 1), and Et,o = Eo · t . From the distribution of the electric field in the drop and
medium, the jump in electric stresses at the interface is calculated, which in nondimensional
form reads

[τE · n] = 1
2

[(
E2

n,o − SE2
n,i

) + (S − 1)E2
t,o

]
n + Et,o(En,o − SEn,i ) t = �pE n + qEt,o t . (28)

For a conducting drop, Et = 0, and En,i = 0, and Eq. (28) reduces to [τE · n] = (E2
n,o/2) n.

The Stokes Eqs. (15) can be cast as an integral equation in dimensionless form [45], and when
the drop and medium are viscosity matched this yields

uo(x) = − 1

8π

∮
A
� f (y) · J(y, x)dA(y), (29)

where J denotes the free-space Green’s functions for velocity, and � f (y) is the jump in hydrody-
namic stresses at the observer points on the interface, calculated using Eq. (21).

After obtaining the electric field and interfacial velocity, the interfacial charge is updated using
the dimensionless form of Eq. (10),

q = En,o − SEn,i. (30)

Finally, the interface is updated using the dimensionless kinematic condition

dx
dt

= 〈CaE 〉 (uo · n)n. (31)
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TABLE I. Physical properties of the fluids used. The interfacial tension between the fluids is γ = 17 mN/m
[21]. The drop phase corresponds to system (G10) of Ref. [21]. Here εr denotes the dielectric constant.

Fluid σ (S/m) εr μ (Pa s) ρ (kg/m3)

Glycerol 7.8 ×10−2 40 0.76 1256
Castor Oil 4 × 10−11 4.9 0.79 970

D. Numerical scheme

An initial value for the fluctuations in the electric field, ε0, is chosen from the distribution given
by Eq. (5). Equations (26), (27), and (29) are solved sequentially. The details of the numerical
scheme have been provided before [22,43] and are briefly reviewed here. The field and flow are
assumed to be axisymmetric, which allows an analytical integration over the azimuthal direction,
reducing surface integrals to line integrals over the contour of the drop. The top half of the drop
is divided into N elements, creating N + 1 nodes. The nodes are called source points, and their
coordinates are denoted by x (Fig. 1). All variables of interest are interpolated as cubic splines
with respect to the arc length, s. The integral over the contour of the drop is expressed as a sum of
integrals over each element. Singular terms in the integrand are subtracted out and then added back,
following standard regularization techniques [44]. The integrals are evaluated using Gauss-Legendre
quadrature. The points at which the integral are evaluated are referred to as observer points, and their
coordinates are denoted by y. After the electric field and fluid flow is calculated, the surface charge
density Eq. (30) and shape of the interface Eq. (31) are updated, the latter using the second-order
Runge-Kutta method, and the deformation is calculated. The fluctuation in the electric field at the
next time step is then calculated from Eq. (4) using the algorithm given in Ref. [35] and is used to
update the boundary value of E∞ in Eq. (26).

The time step of the Runge-Kutta method and N are chosen to ensure that the volumetric flow rate
across the interface, which should identically be zero to conserve mass, is at most O(10−6) for the
initial 20 iterations. This ensures numerical stability of the computations. If the volumetric flow rate
across the interface remains O(10−6) or less, while the maximum value of the radial velocity keeps
on decreasing, and reaches O(10−4) or less, then we conclude that the drop has attained a steady
shape. If the volumetric flow rate slowly starts to increase, along with an increase in the maximum
value of the radial velocity, then we conclude that the drop shape will be unsteady, and it will result
in break up. The boundary integral method cannot track the interface after the drop breaks; in this
case, the results are reported at a time instant very close to breakup, where the ratio of volumetric
flow rate across the interface to the initial volumetric flow rate is 100. Some computations predicted
drop shapes that were not fore-aft symmetric. This occurred when the electric field fluctuated by
a large magnitude in one time step, causing numerical errors. The results of these computations
were discarded.

After performing one computation for the final state of the drop using a given initial value of ε0,
the numerical scheme is repeated for several other initial values of ε0 taken from the distribution
Eq. (5). The transient deformation of the drop, and the final state of the drop are reported as an
average over this ensemble of initial values of ε0. For this work, the computations were performed
for 100 different initial values of the fluctuation in the electric field.

III. DROP DEFORMATION AND BREAKUP

We select parameter values corresponding to a drop of glycerol with 5M sodium chloride,
having an initial radius a0 = 0.5 mm suspended in castor oil. The physical properties of the system
can be found in Ref. [21], and are listed in Table I. For this combination of fluids, the ratios
of physical properties are M = 0.96, S = 8.16, and R = 5.1 × 10−10. Since the two fluids are
nearly viscosity matched, we take M = 1 in the computations. At the highest electric field strength
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FIG. 3. Deformation plotted as a function of the electric capillary number. For drops that deform to a
steady shape, the deformation corresponds to the steady final deformation. For drops that undergo breakup, the
deformation corresponds to the deformation before breakup. The insets show the final shapes of a drop that
reaches a steady shape, and a drop that breaks up with pointed ends. The vertical line demarcates the transition
of the system from a steady final state to breakup by pointed ends. The critical electric capillary number for the
transition is CaE ≈ 0.21.

chosen in this work, Rei = 6 × 10−3, Reo = 4 × 10−3, and for any field Rei,o/〈CaE 〉 < 10−2. This
justifies the assumptions in reducing the Navier-Stokes equation to the quasisteady Stokes equations.
The assertion of quasisteady Stokes flow also means that we have (implicitly) assumed that the
time scale for fluctuations in the field is large compared to the momentum diffusion time around
the drop.

A. Constant electric field

We first evaluate the response of the drop to a uniform D.C. electric field. When the applied
field is such that the electric capillary number CaE � 0.21, the drop deforms to a steady spheroidal
shape, as shown in Fig. 3. The steady deformation increases with an increase in CaE because of
an increase in the strength of the electric stresses. At CaE ≈ 0.21 the electric stresses become large
enough to overcome capillary stresses, and cause the drop to undergo breakup. As shown in the inset
of Fig. 3, the drop breaks up with the formation of pointed ends for all CaE > 0.21. This predicted
critical CaE for breakup is similar to the values reported earlier for conducting drops [21,46]. The
deformation and instability of drops is similar to the dynamics of vesicles in external fields [47–49].
However, the deformation of the drop diverges linearly as CaE approaches the critical value, unlike
the deformation of vesicles, where the vesicle extension diverges as a power-law as the capillary
number approaches a critical value [48].

B. Comparison of small deformation theory to boundary integral computations

We first predict the transient deformation of a drop under small electric fields, and compare
the results from boundary integral computations to the small deformation theory. Figure 4 shows
the result at a mean electric capillary number, 〈CaE 〉 = 0.01, and a variance in the fluctuations,
Gwλ = 0.1. The computations involve selecting an initial value for the fluctuations in the electric
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FIG. 4. Transient deformation of the drop at a mean electric capillary number 〈CaE 〉 = 0.01 and variance
in the fluctuations Gwλ = 0.1. The light-gray curves correspond to the transient deformation for a given initial
value of the fluctuation in electric field, ε0, calculated using boundary integral computations. The solid curve
is calculated as the average of the gray curves, and represents the average transient deformation taken over
100 values of ε0. The dashed curve corresponds to the average transient deformation, 〈D(t )〉, calculated using
the small deformation theory Eq. (24). The dash-dotted curves predict the deformation one standard deviation
from the mean, obtained from the small deformation theory Eq. (25). The dotted curve shows the transient
deformation of the drop under a steady D.C. field at CaE = 0.01, predicted by boundary integral computations.

field, ε0, from the distribution given by Eq. (5), and calculating the transient deformation for the
chosen ε0. Each light-gray curve in Fig. 4 corresponds to the computed transient deformation for a
given ε0. After computing the deformation for 100 different values of ε0, an average is taken over
the ensemble of initial distribution, and is shown by the solid curve. The mean transient deformation
〈D(t )〉, predicted by the small deformation theory in Eq. (24), is shown by the dashed curve in Fig. 4.
The mean deformation obtained from the boundary integral computations match the predictions of
the small deformation theory. Moreover, nearly all the transient deformation curves obtained for a
given ε0 from the computations lie within one standard deviation from the mean predicted by the
small deformation theory, shown by the dash-dotted lines in Fig. 4. This verifies that the numerical
scheme we use in the computations is accurate.

For comparison, the transient deformation of the drop under a steady D.C. electric field at
CaE = 0.01 is shown by the dotted line in Fig. 4. Both the computations and the small deformation
theory predict that the final steady deformation of the drop under a fluctuating electric field is greater
than the deformation under a constant field. The small deformation theory, Eq. (24), predicts this
difference in the final steady deformation to be proportional to the fluctuations in the electric field.
Comparing the final steady deformation, we find that 〈D(t )〉 − DDC = 8 × 10−4 ∼ O(DDCGwλ), as
predicted by Eq. (24). This difference increases as the fluctuations grow stronger. The fluctuations
increase as the variance of the underlying white noise, Gw, increases, or as the correlation time
λ−1 decreases. A higher variance increases the spread of the electric field around the mean.
A reduction in the correlation time implies that the fluctuations have less memory of their history,
and can suddenly grow from values less than the mean to values greater than the mean. Hence, the
probability of the drop being exposed to larger fields increases with the strength of the fluctuations.
The deformation of the drop scales quadratically with the electric field, E2

∞; hence, the net effect of
the fluctuations about the mean field will not negate each other, and the mean deformation under a
fluctuating field will be different from that under a constant field. The drop is exposed to fields both
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FIG. 5. (a) Transient deformation of a drop at 〈CaE 〉 = 0.1 and Gwλ = 0.1. The light-gray curves
correspond to the transient deformation for a given initial value of the fluctuation in electric field, ε0, calculated
using boundary integral computations. The solid curve is calculated as the average of the gray curves, and
represents the average transient deformation taken over 100 values of ε0. The dotted curve shows the transient
deformation of the drop under a steady D.C. field at CaE = 0.1. (b) Probability density function of the final
deformation of the drop. The dashed curve is a fit of a mixture of two normal distributions to the probability
density function. The solid line shows the final deformation of the drop under a steady D.C. electric field. The
top-right inset shows the mean deformed steady state of the drop at t = 25, with the initial state shown by the
dashed circle for reference.

larger and smaller than the mean field, driven by the fluctuations. On an average, the effects under
the larger fields dominate, and the mean final deformation of the drop is greater than the deformation
under a constant electric field. The net effect of fluctuations in the electric field is to deform a drop
more than a steady D.C. field.

C. “Low” mean electric capillary number

Next we calculate the deformation of the drop at a “low” mean electric capillary number, where
the small deformation theory is not valid, yet which is smaller than the critical electric capillary
number for breakup under a steady field (CaE = 0.21). Figure 5(a) shows the transient deformation
of a drop at 〈CaE 〉 = 0.1 and Gwλ = 0.1. Akin to Fig. 4, the light-gray curves correspond to
computations for a given initial value of the electric field fluctuation ε0, and the solid black curve
represents the average transient deformation over 100 values of ε0. The dotted curve shows the
transient deformation under a steady D.C. electric field for CaE = 0.1. The computations were
performed till twice the time taken for the drop to reach steady state under a steady field. For all
values of ε0, the computations predict a steady deformation of the drop. Similar to the observations
at small deformation, the mean deformation under a fluctuating electric field is greater than under
a steady electric field. This is further shown by plotting the probability density function of the
final deformation [D(t = 25)] of the drop [Fig. 5(b)]. The deformation scales nonlinearly with the
applied field, therefore the distribution function is not Gaussian. The dashed curve was obtained by
fitting a mixture of two normal distributions to the final deformation, and is shown in the figure to
guide the eye. Clearly, fluctuations in the electric field increase the mean deformation of the drop.

D. “High” mean electric capillary number

The system considered undergoes breakup with pointed ends at CaE = 0.21 when subjected to
a constant electric field. We investigate the system at 〈CaE 〉 = 0.28 and Gwλ = 0.1 to determine

063701-12



DEFORMATION OF A CONDUCTING DROP IN A …

FIG. 6. (a) Transient deformation of a drop at 〈CaE 〉 = 0.28 and Gwλ = 0.1. The light-gray curves
correspond to the transient deformation for a given initial value of the fluctuation in electric field, ε0, calculated
using boundary integral computations. The solid curve is calculated as the average of the gray curves, and
represents the average transient deformation taken over 100 values of ε0. The dotted curve shows the transient
deformation of the drop under a steady D.C. field at CaE = 0.1. (b) Probability density function of the breakup
time of the drop. The dashed curve is a fit of a mixture of two normal distributions to the probability density
function. The solid line shows the breakup time of the drop under a steady D.C. electric field. The top-right
inset shows the mean shape of the drop before breakup at the point where the solid curve in panel (a) terminates,
with the initial state shown by the dashed circle for reference.

the effect of fluctuations on breakup. The transient deformation for a given ε0 is shown by the
light-gray curves, and the average over 100 values of ε0 is shown by the solid curve in Fig. 6(a).
The computations were performed till twice the breakup time for the drop under a constant field,
and predict breakup with pointed ends for all values of ε0. The point where the curves terminate
denotes the point of breakup for a given ε0. The average transient deformation curve is plotted till
the mean breakup time obtained from the individual gray curves. The average deformation of the
drop before breakup is greater than the deformation under a steady electric field at all given times
leading to breakup. More prominently, the mean breakup time under a fluctuating electric field is
less than the breakup time under a steady field, as shown by the dotted curve in Fig. 6(a). The
probability density function of the breakup time is shown in Fig. 6(b), with the breakup time under
a constant field shown by the solid line. The breakup time does not follow a universal distribution
for different 〈CaE 〉; hence, a mixture of two normal distribution functions was fit to the probability
density function and is shown by the dashed curve to guide the eye. Fluctuations in the electric field
act to increase the average deformation by subjecting the drop to fields greater than the mean, which
increases the rate of deformation. Although fluctuations also reduce the field from the mean value,
the additional deformation due to an exposure to higher fields dominate, and consequently the drop
is driven to breakup faster than under a constant field.

E. “Intermediate” mean electric capillary number

We next study the system at mean electric capillary numbers slightly less than the critical
capillary number for breakup. Figure 7(a) shows the transient deformation at 〈CaE 〉 = 0.19 and
Gwλ = 0.1. The drop is predicted to reach a steady deformed shape under a constant electric field,
the transient deformation of which is shown by the dotted curve. When the field fluctuates, there are
two populations for the final state of the drop. For certain values of the initial fluctuations in the field,
ε0, the drop attains a deformed state at a time which is twice the time to reach steady deformation
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FIG. 7. (a) Transient deformation of a drop at 〈CaE 〉 = 0.19 and Gwλ = 0.1 calculated using boundary
integral computations. The light-gray curves correspond to the transient deformation for initial values of
the fluctuation in electric field, ε0, which predict steady deformation. The dark-gray curves correspond
to the transient deformation for ε0 values that predict breakup. The solid curve is calculated as the average
of the light-gray curves, and the dashed curve is calculated as the average of the dark-gray curves. The dotted
curve shows the transient deformation of the drop under a steady D.C. field at CaE = 0.19. (b) Probability
density function of the final deformation (for drops reaching steady state) or final deformation before breakup
(for drops that undergo breakup). The dashed curve is a fit of a mixture of two normal distributions to the
probability density function. The insets show the mean drop shape at steady state (t = 45) and just before
breakup [the point where the dashed curve in panel (a) terminates], with the shape of the undeformed drop at
t = 0 shown by the dashed circles for reference.

under a constant field. This set of drops is represented by the light-gray curves in Fig. 7(a). For
other values of ε0, the computations predict drop breakup by pointed ends. This set is shown
by the dark-gray curves. The solid black curve represents the average over the light-gray curves,
and is the average transient deformation of the population of drops that do not undergo breakup
throughout the time the computations were performed. The dashed curve denotes the average
transient deformation of the population of drops that breakup with pointed ends. The probability
density function of the deformation of the drops is shown in Fig. 7(b). For drops that attain a steady
deformed state, the deformation at t = 45, i.e., the time till which the computations were performed
is taken, and for drops that undergo breakup, the final deformation before breakup is taken for
calculating the probability distribution. The distribution is bimodal with one peak corresponding
to the mean deformation of drops that maintain a stable deformed state, and another peak at the
average deformation of the drops before breakup.

At intermediate values of the mean electric capillary number, fluctuations in the electric field
can drive the field to values greater than the critical electric field. Depending on the amount of time
the drop is subjected to these larger electric fields, it may undergo breakup, or subsequently remain
stable if the fluctuations lower the field back to subcritical values. All computations under random
fields were performed till a time which is twice the time for a drop to reach steady state, or twice
the time to undergo breakup under a constant electric field. From Fig. 7(a) it follows that some of
the drops that are predicted to attain a stable deformed state at t = 45 could undergo breakup if the
computations were run longer, unless the electric field fluctuations eventually become less than the
mean electric field. The final population of drops undergoing breakup or attaining a steady deformed
shape, and the peaks of the bimodal distribution will depend on the time till which the computations
are performed. The transition of the drop from a steady deformed state to a state of breakup does
not occur at a distinct electric capillary number due to fluctuations in the electric field.
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FIG. 8. Percentage of drops that undergo breakup at t∗/tc = 50 as a function of the mean electric capillary
number for Gwλ = 0.001(♦), 0.01(�), and 0.1(◦). The solid curve corresponds to a steady D.C. electric field.
The dashed, dotted, and dash-dotted curves are drawn to guide the eye. Based on the strength of the fluctuations
and 〈CaE 〉, three final states are identified—all the drops reach steady deformation, some drops reach steady
state and some undergo breakup, and all drops undergo breakup.

Droplet breakup at subcritical capillary numbers was also observed in model stochastic flow
fields, and the criterion for breakup was found to depend on the transient nature of the field [29,32].
To quantify the effect of the strength of fluctuations on the transition to bimodal states and breakup,
we plot the percentage of drops undergoing breakup as a function of 〈CaE 〉 for different values of
Gwλ. The percentage is calculated as the fraction of the computations with a given initial fluctuation
in the field (ε0) predicting breakup. The result is shown in Fig. 8. When the external field is steady,
characterized by Gwλ = 0, there is a sharp transition at 〈CaE 〉 = 0.21 from steady deformation to
drop breakup, as shown by the solid curve. Fluctuations in the electric field soften this transition by
instantaneously subjecting the drop to an electric field greater than the critical value, even when the
mean field is subcritical. As a result, instances of drop breakup are observed over a range of 〈CaE 〉,
instead of a distinct critical 〈CaE 〉 = 0.21. The mean fraction of drops that undergo breakup at a
given 〈CaE 〉 and a specific time instant increases with the strength of fluctuations. Large fluctuations,
quantified by a larger value of Gwλ have a higher probability of driving the electric field to values
greater than the critical for a given 〈CaE 〉, compared to weaker fluctuations. As shown in Fig. 8, at
〈CaE 〉 = 0.18, 22% drops undergo breakup for Gwλ = 0.1, while 5% drops undergo breakup at the
same 〈CaE 〉 when Gwλ = 0.001. When Gwλ = 0.1, all the drops were predicted to undergo breakup
at 〈CaE 〉 > 0.21. For weaker fluctuations, a fraction of drops are not observed to undergo breakup
within the time of the computations. This fraction would eventually breakup if the computations
were allowed to run longer. Weaker fluctuations are characterized by a longer correlation time, or a
stronger memory of the fluctuation history. Hence, when fluctuations reduce the field to subcritical
values, the field remains at those values for a longer period of time. Consequently, for the drops
where this occurs, the breakup time for the individual drop would be longer. The mean breakup
time for the population that breaks up is still smaller than the breakup time under constant fields.
Moreover, since the mean field is greater than the critical, all the drops would eventually undergo
breakup. The boundaries in Fig. 8 demarcating regions of steady deformation, bimodal distribution
and drop breakup depend on the time when the system is analyzed.
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IV. DISCUSSION

The response of a drop to a fluctuating electric field is remindful of shape fluctuations and con-
formational dynamics of vesicles [47,49,50] and the extension of polymer molecules under external
flow fields [30,31,51–55]. Fluctuations in the electric field results in a larger drop deformation than
under a steady electric field. The fluctuations in the drop shape are thus equivalent to a drop with
a larger area. This is analogous to fluctuating membranes, where shape fluctuations arise due to
thermal noise and the excess area is proportional to the temperature [50]. Under an external flow
field, vesicles undergo an extension. The rate of extension of an individual vesicle is determined
by the initial configuration, which is set by thermal fluctuations. Similarly, polymer molecules
are stretched from an initial configuration under a flow field. The specific initial configuration of
a polymer molecule, termed molecular individualism [51], is determined from a random thermal
equilibration process, and dictates the rate of extension of the molecule. Akin to the rate of extension
of a vesicle and a polymer molecule, the transient deformation of a drop under a random electric
field follows a trajectory based on the initial random fluctuation, ε0; thus, the time to reach steady
state or to breakup is different for an individual drop.

The softening in transition from steady deformation to drop breakup due to increasing fluctua-
tions in the electric field is analogous to the coil-stretch transition of polymers [30,31,51–55], and
tubular to symmetric dumbbell shape transitions of vesicles under external flows [47–49]. When
subjected to an external flow field, a polymer molecule gets stretched from an initial configuration.
The extension of a polymer molecule depends on the strength and nature of the flow field. In
a pure extensional flow, a polymer molecule exhibits a sharp transition at a critical value of the
dimensionless flow strength from a coiled state, where the extension is relatively low, to a stretched
state characterized by a high extension approaching the contour length. The molecule tends to align
along the extensional axis of the flow, and may be driven out of this axis by Brownian motion
into a coiled state. Beyond a critical value, the flow is strong enough to overcome Brownian forces
and result in a stretched configuration. The addition of a rotational component to the external flow
diminishes the sharpness of this transition. In addition to Brownian forces, the vorticity of the
external flow can also drive the polymer away from the extensional eigenvectors of the flow into
orientations where the flow exerts less stretching force, thereby reducing the sharpness in transition.
Vesicle shape transitions from tubular to symmetric dumbbell shapes also show variability in the
value of the critical capillary number for shape transition. In addition, the vesicle shape transition is
accompanied by large fluctuations in the transient extension of an individual vesicle near the critical
point, which is attributed to membrane fluctuations due to thermal noise. The fluctuations in the
electric field play a role analogous to membrane fluctuations, and Brownian forces and the rotational
component of the flow field, by driving the electric field to values greater than the critical field, even
when the mean field is subcritical, or to values smaller than the critical field when the mean field
is super-critical. As a result, the transition from exclusively steady deformation to breakup occurs
gradually over a range of 〈CaE 〉.

The source of fluctuations in real systems could be the presence of multiple drops of different
size at different positions with respect to the test drop, interaction with walls, or disturbances in
operating conditions. The strength of the fluctuations would depend on the polydispersity of the
system, concentration of drops, and the magnitude of disturbances. As such, determining operating
conditions based on the response of a single drop under a well-defined external field can lead
to unexpected results. For instance, in electrocoalescers, where electric fields are employed to
demulsify oil-water systems, an operating electric field would be set to maximize the frequency of
collision of drops, without causing breakup. The collision frequency, and the separation efficiency
increases with electric field strength [56]; hence, a natural choice is to set the electric field to a large
value, yet less than the critical field for breakup. We show here that fluctuations can cause certain
fraction of drops to breakup even at subcritical fields, which is undesirable for coalescence. The
electric capillary number scales as the square of the electric field, hence even at fields sufficiently
lower than the critical, drop breakup might occur. For the system studied, drop breakup can start
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at 〈CaE 〉 = 0.15 depending on the strength of the fluctuations. This corresponds to a decrease in
the critical electric field for breakup from 4.1 kV/cm to 3.4 kV/cm. On the contrary, the effect of
fluctuations can be desirable in applications where emulsifying immiscible liquids is the goal [11].
A lower electric field can be employed to create an emulsion. Conversely, at the same electric field,
the emulsification can take place faster because of the reduction in the average breakup time of
drops under fluctuating fields.

In this work we have only considered the dynamics of a conducting drop to the fluctuating
electric field. The behavior of leaky dielectric systems, for example an oil drop suspended in a bulk
oil phase, is expected to show more novel dynamics in response to the fluctuations. The electric
field inside the drop phase is finite in leaky dielectric systems. This gives rise to tangential electric
stresses in addition to the normal electric stresses at the interface, which sustains a fluid flow in
both the drop and medium phase fluids even when the drop deforms to a steady shape [57]. For
leaky dielectric systems, the drop can deform to a prolate A shape with the fluid flow directed
towards the tips of the drop, a prolate B shape where the fluid flow is away from the tips of the
drop, or an oblate shape [13,20,22,58]. Similar to the transition from steady to unsteady shapes
for conducting drops, the boundary demarcating prolate A, prolate B and oblate shapes for leaky
dielectric drops may depend on the strength of fluctuations for a fluctuating electric field. Further, the
induced electrohydrodynamic flow leads to the convection of surface charges [7,22,43,57]. Surface
charge convection has been observed to cause a transition in the breakup modes of leaky dielectric
drops [43]. A fluctuating electric field is likely to change the boundaries for this transition in breakup
modes as well.

It should be noted that even under a fluctuating electric field, the conducting drop will not deform
to oblate shapes. The formation of oblate shapes requires an electrohydrodynamic flow directed
away from the tips of the drop, which is sustained due to a tangential component of the electric
stresses at the interface. The electric field inside a conducting drop is zero; thus, a conducting
drop does not support tangential electric stresses. The normal electric stresses (∼cos2θ in small-
deformation theory) is maximum at the ends of the drop and zero at the equator of the drop. Hence,
the drop should always deform to a prolate shape. This can be explained mathematically in the
small-deformation limit as well. For the drop to deform to a steady oblate shape under fluctuations,
we must have 〈D〉 <

√
var(D) in the limit t → ∞, where 〈D〉 and var(D) are given by Eqs. (24)

and (25), respectively. This is a quadratic equation in the variance of the electric field fluctuations,
Gwλ, and has imaginary roots with a negative real part. This means that for all physically possible
fluctuations (Gwλ > 0), 〈D〉 >

√
var(D), which implies that the conducting drop will deform to a

prolate shape.

V. CONCLUSION

We have studied the dynamics of a conducting drop suspended in a dielectric liquid under a
randomly fluctuating electric field. The transient deformation of the drop was first predicted using
a small deformation theory where the mean electric capillary number is small (〈CaE 〉 � 1). The
mean deformation and variance in deformation were predicted, and the expressions were found
to match the results for drop deformation under a constant field in the limit of zero fluctuations.
Nonlinear deformation and breakup were predicted using boundary integral computations, which
were validated using the small deformation theory.

The random electric field is specified by its mean, which sets 〈CaE 〉, and its variance, Gwλ,
which denotes the strength of fluctuations. The net effect of fluctuations at any 〈CaE 〉 is to increase
the deformation of the drop compared to the deformation under a constant field. The extent of the
increase in deformation depends on the strength of the fluctuations. When 〈CaE 〉 is greater than the
critical electric capillary number for breakup, the increased deformation manifests as a decrease in
the time taken for the drop to undergo breakup. More interestingly, at 〈CaE 〉 slightly less than the
critical value, there exists two populations of drops, one that attains a steady deformed state and
another that undergoes breakup. The range of 〈CaE 〉 for which this bimodal distribution is observed
depends on the strength of the fluctuations.
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FIG. 9. Convergence results for the system under a constant electric field at CaE = 0.24. Final deformation
before breakup for (a) different values of N at �t = 0.02 and (b) different values of �t at N = 150.
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APPENDIX: CONVERGENCE TESTS

Here we present a convergence analysis to select the number of nodes, N , into which the top half
of the drop is partitioned, and the time step size, �t . For the system considered here, (M, S, R) =
(1, 8.16, 5.1 × 10−10), and the convergence tests were performed for a uniform D.C. electric field
at CaE = 0.24. The results are shown in Fig. 9. Increasing N beyond 150, and reducing �t below
0.02 does not significantly change the predicted final deformation before breakup. Moreover, all the
chosen N and �t predict breakup with the formation of pointed ends, confirming that this is not a
numerical artefact. In all our computations, we fixed N = 150 and �t = 0.02.
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