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Nature often uses capillary forces to manipulate fluids, which has inspired scientists to
develop new applications, such as in microfluidics and laboratory-on-a-chip systems. Here
we present a method to transport fluids in microfluidic channels, by exploiting the capillary
interaction of fluid interfaces with traveling surface waves, called mechanowetting. We
found that the three-phase lines of fluid slugs dynamically attach to the crests of the
waves, resulting in fluid velocities that are equal to the wave speed. By comparing this
microfluidic slug flow to conventional peristaltic fluid propulsion, we demonstrate that
fluid velocities can be reached that are one order of magnitude larger. We quantified the
efficiency numerically and theoretically in terms of the generated pressure gradient using
a closed channel and measured the evolution of the pressure distribution as the wave
progresses. The method was shown to work for a very wide range of contact angles. We
anticipate that our results will lead to new microfluidic applications based on switchable
topography technology.

DOI: 10.1103/PhysRevFluids.5.063604

I. INTRODUCTION

Capillary forces are omnipresent in nature, governing fluid transport in a wide range of plants
and animals [1]. Additionally, capillarity is very successfully employed in industry in, e.g., picoliter-
droplet generation for inkjet printing, functional textiles for (self-)cleaning [2], and reduction of
flow separation [3]. A major field that utilizes capillary properties is microfluidics [4], where fluid
transport can be realized by applying wetting gradients induced by varying surface topographies
or chemical composition [5–9] or by active manipulation of the interfacial energies by means of,
e.g., electrowetting [10–13] and the Marangoni effect [14]. At the same time, more and more use is
made of responsive materials and deforming topographies to manipulate fluids and solid objects, by
exploiting time-dependent deformations that are externally controlled by, e.g., electric fields [15,16],
light [17,18], and magnetic fields (e.g., by using artificial cilia [19,20]). Here we theoretically study a
manifestation of capillary forces by surface deformation-controlled three-phase line motion, termed
“mechanowetting,” that is able to generate fluid transport that is remarkably fast, efficient, and
versatile [21]. Because the three-phase line dynamically pins to traveling surface undulations, we
show that the fluids in the channel can be transported. Such undulations can be generated by using
moving light sources over light-responsive liquid crystal polymers [17,18,22–24], by alternating
heating and cooling of responsive hydrogels embedded in elastic channel walls [25], or by utilizing
vacuum-pressed thin polymer films on a moving structured belt [21].
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FIG. 1. (a) Schematics of the slug flow setup, highlighting the parameters in this study. For the closed-
channel simulations, no-slip and no-flux boundary conditions are applied to the striped area at the right,
while the boundary conditions at the right are traction-free. For the infinite-channel approach, the striped
area is connected to the channel inlet at the left through periodic boundary conditions. (b) Streamlines (black
lines, center-of-mass frame), velocity profile (white arrows, laboratory frame), and the pressure distribution
(colors) of the infinite channel approach. Here L = 200 μm, θY = 90◦. For an animation of the infinite channel
simulation. (c) Streamlines (black lines, laboratory frame), velocity profile (white arrows, laboratory frame),
and the pressure distribution (colors) of the peristaltic case, i.e., the wave topography applied to a channel
filled with a single fluid. For the configurations shown in (b) and (c), the blue and red colors denote regions of
low and high pressure, respectively, with absolute values that depend on the applied wave speed. Qualitatively
the fields remain the same. (d) Steady-state slug speeds depending on slug length ratio L/λ and Ca St for
the infinite-channel approach. U/λ f = 1 corresponds to fluid transport at the wave speed. Here θY = 90◦,
λ = 100 μm. The red lines correspond to the flow speed of single fluids (A and B) in the microchannel,
subjected to the same traveling wave.

II. DIMENSIONAL ANALYSIS

We consider a microfluidic channel containing an incompressible fluid A (with density ρA and
kinematic viscosity νA) in which a slug of the incompressible fluid B (ρB, νB) with size L is inserted
[see Fig. 1(a)]. The interface between phases A and B has surface free energy γAB. The surface free
energies of the interfaces between the solid S and the fluids A and B are γSA and γSB, respectively.
The channel has an average height h0 and out-of-plane depth d , and its bottom surface describes
a transverse surface wave with wavelength λ, amplitude A, and frequency f . The three-phase
lines at the surface of the waves cause the propulsion of the slug through mechanowetting [21].
Considering the typical dimensions of a microchannel and the corresponding microfluidic flow
velocities, the slug flow is characterized by small Reynolds and capillary numbers, Re = Uh0/νA

and Ca = ρAνAU/γAB, respectively, where U is the center-of-mass velocity of the slug. The relation
between the applied traveling-wave speed λ f and the slug’s center-of-mass velocity U is best
characterized by the Strouhal number, St = λ f /U . Notably, the product CaSt can be studied, which
can be interpreted as the wave capillary number, i.e., the capillary number of the flow if the fluid(s)
exactly match the wave speed. The surface topography can be parametrized by the dimensionless
ratios A/λ and A/h0, and the slug geometry by the normalized slug length and spacing, L/λ and
S/λ, respectively. The pressure in the channel is normalized by the surface free energy and channel
height, ph0/γAB. The surface-free energies of the solid-fluid and fluid-fluid interfaces are connected
to the contact angle θY by the Young equation, cos θY = (γSB − γSA)/γAB [26]. The remaining
parameters are the ratios between the fluid properties: the viscosity ratio νA/νB and density ratio
ρA/ρB. We assume that there are no variations in the out-of-plane direction (y direction), so that the
problem reduces to a two-dimensional analysis and d does not enter the problem. Unless specified
otherwise, we fix the channel height at h0 = 50 μm, the slug length at L = 200 μm, and three
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of the dimensionless numbers at A/λ = 1/25, νA/νB = 2.5, ρA/ρB = 0.8. The latter parameters
approximately represent an oil-water mixture.

III. NUMERICAL MODEL

We developed a two-phase computational fluid dynamics (CFD) model based on the finite-
volume method to study fluid transport in the microchannel [21]. We solve the Navier-Stokes equa-
tions and the continuity equation, coupled with the smoothed continuous-surface-force formulation
of the volume-of-fluid method (SCSF-VOF) [21,27–31]. The governing equations are given by

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ρg + ∇ · {ν[∇u + (∇u)�]} + γABκ∇α, (1)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

∂α

∂t
+ ∇ · (uα) = −∇ · [urα(1 − α)], (3)

where g is the acceleration of gravity, γAB the surface free energy of the interface between fluids A

and B, u the fluid velocity, κ = −∇ · n = ∇ · (∇α/|∇α|) the interface curvature, and 0 � α � 1 an
indicator field, which is 1 for fluid A and 0 for fluid B, with intermediate values indicating that an
interface is located in the region. The last term at the right-hand side of Eq. (1) is the surface tension
force. Equation (3) describes the evolution of the indicator field, where the term at the right-hand
side compresses the field in the region of the interface, to ensure that the interface width stays
within a small number of mesh points [32]. Here the compression velocity ur = uA − uB represents
the velocity difference between the two phases, a term that arises from defining the fluid velocity
as a weighted average of the two phases A and B [33]. By calculating the interface curvature using
a smoothed α field, we reduced the spurious velocities that appear near the interface in the VOF
method [21,31]. By studying a static slug case as reference, we found that the spurious velocities
at the interface are on the order of 5% of the obtained center-of-mass velocities. Finally, the fluid
properties at each point in the field are implemented using the indicator α through (note that 0 �
α � 1)

ν = ανA + (1 − α)νB, ρ = αρA + (1 − α)ρB. (4)

We employ two types of simulations, one for an infinite channel and one for a closed channel.
For the infinite channel, we use periodic boundary conditions to connect the inlet and outlet of the
channel, which results in an infinite array of slugs of size L that are a distance S apart. For the closed
channel, at the left side of the slug, fluid A may freely enter or leave the domain, and at the right
side the microfluidic channel is closed [see Fig. 1(a)].

For both types of simulations, on the top and bottom boundaries, we apply no-slip and no-flux
boundary conditions. The contact angle θY is implemented through the α field by computing the
interface normal in terms of the contact angle and the boundary normal and tangent vector [28,34]:

n = ∇α/|∇α| = nwall cos θY + twall sin θY. (5)

At the top surface of the channel, for simplicity, we prescribe a contact angle for the fluid interface
of θY = 90◦. The transverse traveling-wave surface topography is applied to the bottom wall and
is modeled using a deforming boundary mesh, where we update the mesh boundary points using a
height function and update the rest of the mesh accordingly to ensure mesh quality [29].

IV. NUMERICAL RESULTS

First, we analyze the infinite array of slugs by prescribing periodic boundary conditions. When
the wave travels, the liquid-liquid interfaces adjust to the local inclination of the bottom surface
topography. As a result, the interfaces become concave or convex, creating a Laplace pressure.
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The CFD simulations show that the three-phase line dynamically pins to the crests of the surface
wave, transporting the fluid slugs throughout the channel at the wave speed. The interfaces drive
the flow and generate a constant pressure gradient along the length of the slugs (L) and the
fluid compartments (S) that separate them [Fig. 1(b)]. The streamlines inside the slug (relative
to the slug’s center of mass reference frame) show a treadmilling flow profile consisting of a
counterclockwise vortex at the top and a clockwise vortex at the bottom. The velocity vectors
(represented by the white arrows, plotted in the laboratory frame) show that the fluid velocity is
positive throughout the whole channel. This compares positively to the situation where no slugs are
present [i.e., conventional peristaltic flow; see Fig. 1(c)]. Here, although the average fluid velocity
is positive (typically, 0.01 < U/λ f < 0.1), the streamlines and velocity vectors (both plotted in
the laboratory frame) show a strong reflux profile which prevents high fluid throughput. Analysis at
relatively high wave speeds of the microfluidic slug flow [see Fig. 1(d), which shows the steady-state
slug speed U/λ f as a function of CaSt and slug length L/λ] demonstrates that, at integer values of
L/λ, the effectiveness of the transport mechanism (U/λ f = 1) is maintained for a large range of
applied wave speeds (i.e., CaSt � 2 × 10−3). For reference, two fluids of ρA = 103 kg m−3, νA =
10−6 m2 s−1, ρB = 8 × 102 kg m−3, νA = 2.5 × 10−6 m2 s−1, and γAB = 0.05 mN m−1 were used in
the simulations, such that CaSt = 10−3 yields slug velocities of approximately U = λ f ≈ 2 cm s−1.
We compare the two-phase slug speed with the regular one-phase flow speed of a fluid-filled channel
subject to the same transverse wave. The fluid will then be transported in a peristaltic manner,
reaching speeds that, however, are an order of magnitude smaller than the slug speeds [i.e., for fluid
A, U/λ f = 0.028 and for fluid B, U/λ f = 0.070, represented by the solid red lines in the back of
Fig. 1(d)]. It is observed that at integer values of L/λ, a maximum slug speed is reached. For larger
wave speeds, the slugs speed drops to zero, indicating that the capillary forces are not sufficient to
drive the slug at the wave speed, which is due to the enhanced viscous drag at the channel walls.
In addition, at semi-integer values of L/λ, the efficiency drops considerably. This will be further
discussed in the next sections.

Next, we analyze the slug in a closed channel. In contrast to the infinite-channel approach,
the slug is now kept in place by the constant-volume constraint. A single simulation for L/λ = 2
[Fig. 2(a)–2(d)] shows that the pressures in the three regions p1, p2, and p3 are uniform [in contrast
with the infinite channel, where a small pressure gradient was observed in each region; see Fig. 1(b)].
The reference pressure p1 is always zero, due to the open boundary at the left, while the pressures
p2 and p3 can be either positive [when the surface wave attains the position shown in Fig. 2(b)],
negative [for the situation in Fig. 2(d)], or zero everywhere [when the two slug interfaces are both
located at a valley or peak of the wave, Fig. 2(c)]. Because the pressure difference 
p = p3 − p1

is generated by the interfaces of the slug, its magnitude can be used as a measure for the transport
performance of the slug that would take place were the channel not closed (i.e., the infinite channel
case described above). In a second simulation [Fig. 2(f) and 2(g)] for L/λ = 1.5, we see that the
pressure jumps across the interfaces are of opposite sign, effectively resulting in p3 ≈ p1, and thus
no pressure build up can be generated for this slug size-wavelength combination. Further inspection
reveals that the maximum pressure build up is largest near integer values of L/λ [Fig. 2(e)]. The
integer ratios correspond to the situation in which both slug interfaces are concave (viewed from
left to right), i.e., both interfaces contribute to an increased Laplace pressure to the right consisting
of two pressure jumps over the two interfaces [see Fig. 2(b)]. For noninteger values of L/λ, the slug
interfaces can be either concave or convex, which results in a pressure jump of opposite sign over
the two separate interfaces and thus partially canceling the pressure build up. The optimal values for
L/λ shift when the contact angle θY changes due to the fact that the local inclination of the interface
changes when changing the contact angle, leading to a different interface curvature and thus Laplace
pressure (see Fig. 3). In addition, the study clearly shows an optimal pressure build up at θY = 90◦,
for integer values of L/λ.

If there are two or more slugs in the channel, their distance can affect the transport efficiency
as well. To analyze this, we modeled two slugs in a closed channel (θY = 90◦) and measured the
pressure difference between the left and right sides of the channel [i.e., 
p = p5 − p1; see Figs. 4(a)
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FIG. 2. Pressures in the closed-channel approach to quantify the efficiency of the (a) steady-state pressure
evolution as a function of time corresponding to the three regions indicated in (b)–(d). The conformations at
three different instances indicated by the dashed lines are shown in (b)–(d). Here L = 200 μm, λ = 100 μm.
(b)–(d) Pressure distributions at times denoted in (a). (e) The maximum pressure built up on the right side of the
slug related to the slug length for the closed-channel simulations (triangles) and corresponding theory [Eq. (11),
solid line]. The two filled upward-pointing and downward-pointing triangles correspond to the situations in
(b) and (g), respectively. (f), (g) Pressure distributions for L = 200 μm, λ = 133 μm. Here the curvatures of
the two interfaces create a pressure jump of opposite sign, resulting in p1 = p3 at all times and no pressure
build up occurs, while p2 is fluctuating between the situations shown in (f) and (g).

and 4(b)]. The influence of the slug spacing S was numerically evaluated for 2.4 � L/λ � 3.6 and
is shown in Fig. 4(c). The results show a clear periodicity of 1 for both S/λ and L/λ (identical
to the one-slug situation for θY = 90◦). This means that, in a similar fashion as the slug length
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FIG. 3. Numerical results for the closed-channel approach. Contour plot showing the dependence of the
generated maximum pressure difference 
pmax on the normalized slug length and the contact angle θY for the
closed channel (see Fig. 2). Here L = 200 μm and the wavelength λ was varied.
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FIG. 4. Numerical results for the closed-channel, containing two slugs. (a) Numerical dual-slug simulation
in a closed channel for θY = 90◦. Here L = S = 200 μm. The wavelength λ and slug spacing S were varied.
Because S/λ = 2, the slugs are both contributing constructively in the pressure build up. (b) Dual-slug
simulation in a closed channel for S/λ = 1.5. The pressure that was built up by two consecutive slugs
destructively interferes, which results in an end pressure of p5 ≈ p1, where p5 is the pressure at the right side
of the channel and p1 at the left (as indicated in the figure). (c) Normalized maximum pressure difference
(
p = p5 − p1) for the two-slug case, as a function of channel parameters L/λ and S/λ. The crosses at
S/λ = 1.5, 2 correspond to the snapshots shown in (a) and (b), respectively.

L, the slug separation-wavelength ratio, i.e., S/λ, must be an integer, to maximally transport the
fluids. Moreover, the magnitude of the normalized pressure difference has doubled in the dual-slug
simulations [see Fig. 4(c) as compared to Fig. 3]. This indicates that the driving force scales one-to-
one with the number of slugs in the channel.

V. THEORETICAL MODEL AND RESULTS

In order to explain the generated numerical data, we carried out a theoretical analysis to calculate
the build up of Laplace pressure. The fluid interfaces are modeled as circular segments, and their
curvature can be written by using the radius of the circular cap, κ = R−1. Because the Reynolds
number is very low, we use a quasistatic approach, i.e., the dynamic (inertial) effects are neglected.
Consequently, the instantaneous surface height profile can be written as

z(ϕ) = A cos(2πϕ), (6)

where ϕ ≡ x/λ. The vertical distance from the three-phase line to the top of the channel [see
Fig. 1(a)] is given by

h(ϕ) = h0 − z(ϕ), (7)

where h0 is the mean height of the channel. The curvature of a single interface can be expressed as

1

R(ϕ)
= sin [β(ϕ)]

h(ϕ)
, (8)
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where the angle

β(ϕ) ≡ arctan

[
−2πA

λ
sin(2πϕ)

]
− (−1)n

(
θY − π

2

)
(9)

expresses the local inclination of the surface at the three-phase line for a sinusoidal surface, with
n = 1, 2, . . . accounting for the fact that the contact angle either increases or decreases the interface
curvature when crossing an interface A → B or B → A. The location of the second interface (B → A

at ϕ2) can be calculated from the location of the first interface ϕ1 and the constant slug volume
constraint, by solving the expression

Lh0 = R2
1

4
[2β1 − sin (2β1)] − R2

2

4
[2β2 − sin (2β2)] + λh0(ϕ2 − ϕ1)

− Aλ

2π
[sin(2πϕ2) − sin(2πϕ1)] (10)

using a root-finding algorithm. Here the substitutions Ri = R(ϕi ) and βi = β(ϕi ) were made. The
four terms on the right-hand side of Eq. (10) represent (i) the increase in volume due to the curvature
of the left interface, (ii) the decrease in volume due to the curvature of the right interface, (iii)
the volume of the bulk of the slug, and (iv) the correction of the sinusoidal shape of the bottom
of the microchannel, respectively. From Eq. (10), ϕ2 is obtained for all values of ϕ1 ∈ [0, 1]. The
obtained parameter set, ϕ1 and ϕ2, is used to calculate the Laplace pressure by using Eqs. (7) and
(8):


p = γAB

(
R−1

1 + R−1
2

)
. (11)

This equation gives an expression for the pressure difference in terms of the fluid and channel
parameters, while the channel surface deforms with time. The maximum value of this pressure
difference is plotted together with the numerical data for θY = 90◦ and L = 200 μm in Fig. 2(e),
showing excellent agreement. Additionally, the θY and S/λ dependencies are correctly reproduced
by the theory, as can be seen by comparing Fig. 5(a) and 5(b) with Fig. 3 and Fig. 4(c), respectively.
Here, to obtain the theoretical data for S/λ, the model was extended in a straightforward manner to
account for multiple slugs, by incorporating higher values for n in Eq. (9).

VI. DISCUSSION AND CONCLUSIONS

A recent experimental study suggests that systems that rely on surface energy minimization of
the fluid end caps require completely wetting liquids, θY = 0◦ [18]. However, our numerical and
theoretical analyses show that the currently proposed mechanism works for a large range of contact
angles, i.e., the partial wetting regime (0 < θY < 180◦), showing a theoretical optimum at θY = 90◦.
The underlying physical mechanism of the slug-driven flow in microfluidic channels studied here
is similar in nature to that of single-droplet transport on free surfaces in air [21]. We termed
this “mechanowetting,” as it is driven by the dynamic three-phase line pinning to mechanically
deforming surfaces. It should thus be noted that not only does the current mechanowetting
propulsion mechanism hold for two distinct liquids such as oil and water, but that it is also operative
for liquid and gas combinations such as water (or glycol) and air.

The measured performance can be sensitive to small changes in the contact angle, but this effect
can be easily compensated for by adjusting the slug size L and spacing S, following the data
presented in this paper [see, e.g., Fig. 4(c)]. Other methods that utilize transverse waves, such as
surface acoustic waves (SAWs), require complex integrated electrodes and are performed at the
MHz-frequency regime and therefore can cause rapid heating of the substrate [35,36]. Although
SAWs and mechanowetting are both based on traveling surface waves, the physical mechanisms
are different and operate in widely different frequency regimes. In SAWs, high-frequency distortion
of the three-phase line generates capillary waves along the interface, while in mechanowetting, the
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FIG. 5. Theoretical model for the closed-channel configuration based on Eq. (11), showing the θY

dependence (a) and the S/λ dependence (b) of the generated maximum pressure differences, showing excellent
agreement with the CFD data of Fig. 3 and Fig. 4(c).

deformation of the solid surface distorts the contact angle and drives the three-phase line along with
the wave.

By making simplifying assumptions, we aim to gain insights in the limiting behavior of Eq. (11).
By assuming θY = 90◦ and L = mλ (where m is an integer), we find that Eq. (10) is satisfied when
ϕ2 = ϕ1 + m, which at the same time implies that R1 = R2. Additionally, Eq. (11) is maximized
when R1 is minimized. This can be easily derived from Eq. (8), showing that this is the case when
ϕ1 = −1/4 + k (where k is an integer). By substituting these expressions in Eq. (11), we obtain an
approximation that reveals the dependence of the pressure difference on the geometric parameters
of the system:


pmax = 2γAB

h0

2πA
λ√(

2πA
λ

)2 + 1
≈

{
2γAB

h0

2πA
λ

[
A
λ

� 1
]

2γAB

h0

[
A
λ

	 1
] . (12)

Hence, the pressure difference is inversely proportional to the mean channel height h0, and it is
proportional to the surface wave amplitude A for small A, whereas it is independent of A in the
limit of large A. Equation (12) also shows that the driving force scales linearly with the surface
tension γAB, so that fluid combinations (such as water-air) with higher surface tension increases the
maximum pressure that can be generated.

In order to transport a single slug, it is obviously required only to have wavelike protrusions
near the three-phase lines of the slug itself. However, the wave-type surface topography has some
advantages, especially when multiple slugs are put inside the channel at the correct spacing. By
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comparing the pressures from Fig. 4(a) and Fig. 2(b), we observe that the built-up pressure gradient
doubles when adding a second slug of fluid B, i.e., the pressure gradient scales linearly with the
number of slugs. When designed accordingly and the number of slugs is increased even further, the
slugs will work collectively as a pump to displace fluids throughout the whole system.

All in all, we have theoretically and numerically explored a microfluidic slug transport mech-
anism based on traveling-wave surface topographies. By exploiting the capillary properties of the
system, fluid velocities can be generated that are equal to the applied wave speed. The generated
speeds are an order of magnitude larger than the peristaltic flow speeds of single-phase fluids and
do not require fully wetting liquids. The slug transport efficiency was quantified by analyzing the
pressure build up in closed microchannels, and its dependence on the contact angle θY, the slug
length L, and the slug spacing S (relative to the wavelength λ) was fully captured in closed-form
expressions. We expect our approach of slug transport to lead to new applications based on
three-phase line manipulation by switchable surface topographies.
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