
PHYSICAL REVIEW FLUIDS 5, 063602 (2020)

Shape evolution of compound droplet in combined presence
of electric field and extensional flow

Somnath Santra,1 Devi Prasad Panigrahi ,2 Sayan Das ,1 and Suman Chakraborty1,*

1Department of Mechanical Engineering, Indian Institute of Technology Kharagpur,
West Bengal 721302, India

2Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India

(Received 19 January 2020; accepted 9 April 2020; published 1 June 2020)

Studies on compound droplet are of emerging importance in biology and engineering.
Here, we bring out unique morphodynamics of a compound droplet as a consequence
of interplay between an imposed electric field and an extensional flow. As compared
to the deformation characteristics of compound droplet reported in the sole presence of
extensional flow [Stone and Leal, J. Fluid Mech. 211, 123 (1990)], our results implicate
several nonintuitive findings on the dynamical evolution of the droplet. These exclusive
new features include the interconversion of shape-evolution patterns of the compound
droplet system contingent on the strength of background flow, electric field strength,
electrophysical properties, and hitherto-unveiled post-breakup dynamics. Depending on
these key parameters, in addition to three steady-state configurations, two new modes of
droplet pinch-off are observed: Mode I: polar pinch-off; Mode II: equatorial pinch-off.
Interestingly, the pinch-off time is found to vary nonmonotonically with the strength of
the electric field. In sharp contrast to the extensional viscosity of a compound droplet in
absence of other external fields [Stone and Leal, J. Fluid Mech. 211, 123 (1990)], we
show that the additional presence of electric field brings in an intricate dependence on the
electrical properties of the inner droplet; a paradigm that is not prevalent in pure extensional
flow.

DOI: 10.1103/PhysRevFluids.5.063602

I. INTRODUCTION

Electrohydrodynamics (EHD) of droplets currently holds the attention of the scientific and
industrial community because of its wide gamut of applications from natural to modern-day
microfluidic processes [1–6]. While there are several appearances of single-phase droplets in flow
processes, compound droplets also show significant importance in a growing number of novel
applications. A compound droplet, which is also referred to as a double emulsion, has a unique
nested structure, where an inner droplet is enclosed in a shell of an immiscible fluid. As the
innermost droplet is not making any contact with the carrier phase, it has ubiquitous appearances
in different applications including materials, pharmaceuticals, and microfluidics engineering. Some
specific emerging applications include: microencapsulation of active ingredients [7,8], controlled
release of drugs, vaccines and antigens [8,9], control over release of peptides, hormones like
insulin [10], and removal of toxic material [11]. In recent times, compound droplets have also
been used in distortion and recovery of white blood cells in the presence of background flow,
where the compound droplet has been used to mimic the dynamics of a leukocyte. In such types
of applications, the core (inner droplet) and the shell (outer droplet) denote the cell nucleolus and
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cytoplasm, respectively [12–14]. In such scenarios, electric field can be used in controlling the
dynamic evolution of the compound droplet system.

The deformation dynamics of a compound droplet in the sole presence of background flow
has been well studied [15–20]. When such a double emulsion is subjected to a linear extensional
flow, the two most important forces acting on the inner and outer interfaces are (i) viscous force
which results in the deformation of the droplet and may ultimately lead to pinch-off of the droplet
and (ii) restoring capillary force that helps the droplet in retaining its spherical configuration. The
relative strength of the viscous force over the capillary force is denoted by capillary number (Ca).
Lower values of Ca result in smaller deformation of the droplet, whereas higher values of it lead to
higher deformation of the droplet. In a seminal study, Stone and Leal [15] have shown that, for a
uniaxial extensional flow, the external fluid flow takes place from equators (directed along the axis
of symmetry) to poles. This flow tries to deform the outer droplet into a prolate (the major axis of the
ellipsoidal droplet align along the flow direction) configuration. At the same time, a biaxial flow is
generated at the neighboring region of the inner droplet that deforms the inner droplet into an oblate
(the major axis of the ellipsoidal droplet align perpendicular to the flow direction) configuration.
Furthermore, their study also reveals that beyond a certain value of Ca (critical capillary number),
the compound droplet system undergoes pinch-off. Later on, Qu and Yang [21] suggested that an
increase in the size of the inner droplet also leads to the pinch-off of the compound droplet system.

With the advent of technology, the electric field can be used as an effective means of controlling
the deformation dynamic of compound droplets. A wide gamut of literature is available where
the electrohydrodynamics of a compound droplet is studied in the sole presence of a uniform
electric field [22–26]. In brief, the application of electric field generates electrical stresses at the
droplet interface that causes the deformation of the interface. The key parameters that regulate
the sense and degree of deformation of the droplets via controlling the electrical stresses are the
conductivity ratios, R12 = σ1/σ2, R23 = σ2/σ3 and the permittivity ratios, S12 = ε1/ε2, S23 = ε2/ε3

of the system [27,28], where σ and ε denote the conductivity and permittivity of the system and
subscript 1, 2 and 3 symbolize the inner phase, outer phase and the suspending phase, respectively.
In a related study, Behjatian and Esmaeeli [27] demonstrated that depending on conductivity and
permittivity ratios, the outer-inner droplet of leaky dielectric double emulsion (having small but
finite electrical conductivity) can show four different modes of deformation; i.e. prolate-prolate,
prolate-oblate, oblate-oblate and oblate-prolate. In prolate and oblate configurations, the droplets
are elongated along the direction of electric field and perpendicular to the direction of the electric
field, respectively [27,28]. The presence of electric field also creates four different patterns of fluid
motion in terms of external flow direction (pole to equator versus equator to pole), depending on the
electrophysical properties of the system. In a recent study, Abbasi et al. [29] reported that, at higher
electric field strength, the oblate-prolate (inner-outer interfaces) deformation undergoes pinch-off at
the equator, whereas the prolate-oblate deformation of the interface cracks at the poles. In another
study, Abbasi et al. [30] addressed the multimodal breakup of the compound droplet system for
different electrophysical properties and volume fractions of the core liquid of the composite system.

From the above discussion, it is apparent that the interplay of electric field and extensional flow
on the dynamics of a compound droplet has not been investigated by far. This situation, however, is
not far from being involved and complicated, resulting in a paradigm that does not merely follow
from a simple linear superposition of the EHD of the droplet in the uniform electric field and the
hydrodynamics of the droplet in background extensional flow. The consequent nonlinearity and
nontriviality essentially stem from the fact that toward obtaining a dynamical evolution of the droplet
shape, electrical and hydrodynamic stresses at the droplet interface are mandated. However, for
determining the distribution of electric potential and flow field, the knowledge of droplet shape is
warranted. This triggers an interesting nonlinear coupling in the interfacial boundary conditions
mediated by an unknown shape of the droplet during its dynamical evolution.

In addition to morphodynamic evolution, the understanding of the extensional rheology of a dou-
ble emulsion is of significant importance in materials processing [31]. In several material processing
systems including fiber spinning, extrusion and molding, a fluid element experiences extensional or
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SHAPE EVOLUTION OF COMPOUND DROPLET …

FIG. 1. Schematic representation of the compound droplet subjected to combined presence of uniform
electric field and linear uniaxial extensional flow. The radius of the inner droplet and outer droplets are ā1

and ā2.

elongation flow [32,33]. Furthermore, the rheological study provides useful information regarding
the stability and internal microstructure of double emulsions. While the underlying consequences in
the absence of electric field have been reported [15], the same cannot be straight-forward extended
in presence of electric field, where the phenomenon is more complex and nontrivial.

Here, we bring out various aspects of morphodynamics and emulsion rheology, emerging from
the combined consequence of uniform electric field and linear extensional flow, acting in tandem
on a compound droplet. In sharp contrast to the reported results on extensional flow or electric
field-driven flow alone, the present study unravels a plethora of unique nonintuitive findings, as
a consequence of the deeply convoluted nonlinear coupling mediated of the respective driving
influences, mediated by the dynamical evolution of the droplet shape mentioned as earlier. For
instance, in the presence of electric field, we have obtained different shape-evolution patterns of
the compound droplet system across electric capillary number-conductivity ratio spaces and electric
capillary number-capillary number spaces; a paradigm hitherto being unveiled. We designate these
patterns as: steady state I: Outer droplet is oblate shaped and inner droplet is prolate shaped; steady
state II: Both the droplets are prolate shaped; steady state III: Outer droplet is prolate shaped
and the inner droplet is oblate shaped. Besides that, two different modes of droplet pinch-off are
also observed: Mode I: polar pinch-off; Mode II: equatorial pinch-off. The pinch-off time is also
found to be a strong function of electric field strength, with exclusive monotonic or nonmonotonic
dependences on the electric field. Further, contrary to the sole effect of uniaxial extensional flow,
after pinch-off, the interface of the outer shell again gets reunited in the presence of electric field and
forms a cylindrical inner droplet. As time evolves, this inner droplet undergoes midpoint pinch-off
creating two spherical inner daughter droplets, leading to unique post pinch-off dynamics. The size
of the daughter droplet reduces as the strength of the electric field increases. Finally, in presence of
the electric field, the extensional viscosity of the droplet turns out to be strongly dependent on the
electrophysical properties of the inner droplet, in addition to the radius ratio and the viscosity ratio,
with variations in a nontrivial pattern.

II. PROBLEM FORMULATION

Figure 1 illustrates the physical setup, where a dielectric neutrally buoyant compound droplet
is suspended in another dielectric and immiscible fluid. The fluids are Newtonian in nature. The
system experiences the combined presence of the uniform electric field, Ē∞ = Ē∞ez (here, Ē∞ is
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the magnitude of electric field and ez is the unit vector along the z axis) and linear extensional flow,
ū∞ = �̄∞ · x̄, where x̄ symbolizes the position vector and �̄∞ denotes the far-field strain rate tensor,
read as

�̄∞ = ṠR

2

⎡
⎣−1 0 0

0 −1 0
0 0 2

⎤
⎦, (1)

where ṠR is the shear rate. The radii of the undeformed inner and outer droplets are ā1 and ā2,
respectively. We have used subscripts 1, 2, and 3 for inner droplet (inner phase), outer droplet (outer
phase), and suspending phase (ambient fluid), respectively. The viscosity, electrical conductivity and
electrical permittivity of the ith fluids (i = 1, 2, 3) are μi, σi, and εi, respectively. However, subscript
“i j” has been used to denote the interface between ith and jth fluid. The interfacial tension between
the ith and jth fluids is symbolized by γi j . Under the integrated influence of extensional flow and
uniform electric field, both the inner and outer droplets deform into the ellipsoidal configuration,
that can be expressed in the form r̄s(θ ) = ā[1 + f̄ (θ )], where the deviation in the droplet shape
from a perfect sphere (having undeformed radius ā) is denoted by f̄ (θ ). Determining f̄ (θ ) is one
of our primary goals. Another important aspect of our study is to find out the effective extensional
viscosity (μext ) of a dilute double emulsion. For the current investigation, we have taken a spherical
polar coordinate system (r̄, θ ) anchored at the centroid of the outer droplet. Here, dimensional and
nondimensional quantities are introduced with and without bars, respectively. In every stage of our
analysis, we have expressed all the quantities in their nondimensional form, unless stated otherwise.

For the purpose of nondimensionalization, we have chosen the following scales: length ∼ ā2,
velocity ∼ṠRā2, electric field ∼Ē∞, viscous stress ∼μ3ṠR, and electric stress ∼ε3Ē2

∞. Using the
present nondimensional scheme, we have identified some dimensionless numbers and property
ratios: electric capillary number, CaE = ε3Ē2

∞ā2/γ23 (which symbolizes the relative strength of

electric stress in comparison to the capillary stress), Reynolds number, Re = ρ3ṠRā2
2/μ3(which

stands for the relative strength of inertia force over viscous force), capillary number, Ca =
μ3ṠRā2/γ23(which symbolizes the ratio of viscous stress and capillary stress), Mason number,
M = CaE/Ca (which denotes the strength of the electric stress relative to the viscous stress), radius
ratio, K = ā1/ā2, viscosity ratio, λ12 = μ1/μ2 and λ23 = μ2/μ3, conductivity ratio, R12 = σ1/σ2

and R23 = σ2/σ3, and permittivity ratio, S12 = ε1/ε2 and S23 = ε2/ε3.

A. Assumptions

The assumptions made for the simplification of the present problem are as follows: (i) the
viscous and pressure forces are dominating over the inertia forces. Hence the value of Re (Re =
ρ3ṠRā2

2/μ3) can be assumed to be very low (Re ∼ 0), (ii) the system is considered to be neutrally
buoyant that means the density of the three phases are the same (ρ1 = ρ2 = ρ3), (iii) the effect
of charge convection has been neglected which indicates that the value of the electric Reynolds
number (ReE = ε3ṠR/σ3) is very small (ReE � 1). An example of such a droplet-based fluidic
system is a composite system, where the inner and outer radii are 2 and 4 mm, respectively.
The composite system is suspended in another dielectric medium under an electric field having
a strength of 1 × 105 V/m, where the inner droplet and ambient fluid are silicon oil and the
outer droplet is made of oxidized castor oil. The properties of the inner droplet (or the ambient
fluid) are: permittivity (ε) = 2.44 × 10−11 F/m, conductivity (σ ) = 3.33 × 10−11 S/m, viscosity
(μ) = 12 Pa s, and density (ρ) = 980 kg/m3, whereas the properties of outer fluid phases are
ε = 10−9 F/m, σ = 5.57 × 10−11S/m, μ = 6.5 Pa s and ρ = 980 kg/m3. The surface tension of
the fluid-fluid interface is 5.5 mN/m at a room temperature of 32°C. These fluid properties are
reported in the experimental study of Torza et al. [34]. Based on the reported fluid properties, the
obtained nondimensional numbers are ReE ∼ O(10−2) and Re ∼ O(10−4).
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B. Governing equations and boundary conditions

According to the leaky dielectric theory proposed by Taylor [35], we have assumed that the
free charges instantaneously move to the interface and the bulk remains free of charge. Under this
assumption, the electrostatic problem is governed by the Laplace equation and the solution of this
provides us the distribution of electric potential for the ith (i = 1, 2, 3) fluid. The equation is read
as [36]

∇2φi = 0 , (2)

where φ1, φ2, and φ3 denote the electric potential for the inner, annular, and ambient fluid,
respectively.

At the center of the inner droplet, the electric potential is finite and bounded. Far away from the
outer interface, the electric potential becomes identical to the externally imposed potential,

φ3 = −E∞ · r as r → ∞. (3)

At the two deformed interfaces, the electric potential is continuous and can be read as

[φi]
i j
= [φe]
i j

at r = r
i j (θ, t ). (4)

Here, ∇r = r
i j (θ ) denotes the radial position of the deformed interfaces and θ is the cylindrical
polar angle. 
i j symbolizes the interface of the fluids i and j and [ ]
i j refers to the evaluation of
the bracketed quantity at the interface 
i j . In addition, at the interface 
i j , the electric potential
satisfies the following boundary condition

[Ri j∇φi · ni j]
i j − [∇φ j · ni j]
i j = ReE∇s · (qsus) at r = r
i j (θ ) , (5)

where ni j symbolizes the outward normal unit vector at the deformed interfaces of the droplets
and is given by ni j = ∇(r − r
i j )/|∇(r − r
i j )|. The left-hand side of Eq. (5) denotes the Ohmic
conduction and the right side symbolizes the convection of free charges. us and ∇s denote the surface
velocity and surface gradient operator, respectively. ∇s is expressed as ∇s = ∇i j − ni j (ni j · ∇i j ).
qs is the surface charge density which is computed as qs = (Si j∇ϕi − ∇ϕ j ) · ni j [36,37]. In our
present analysis, we have assumed that the value ReE is very small (ReE � 1) (refer to Sec. I of the
Supplemental Material [38] for justification of the assumption). Therefore, Eq. (5) is reduced to

[Ri j∇φi · ni j]
i j − [∇φ j · ni j]
i j = 0 at r = r
i j (θ ) . (6)

Under creeping flow condition (Re ∼ 0), the continuity and the Stokes equations govern the fluid
flow problem and these equations are read as

∇ · ui = 0, ∇pi − λi j∇2ui = 0, (7)

where u and p represent the velocity field and pressure field, respectively. Due to the symmetric
nature of the flow field and electric field about the z-axis, we have used the stream function approach
to simplify our theoretical analysis. In terms of stream function (ω), the Stokes equation for ith
(i = 1, 2, and 3) phase is written as

2(2ωi ) = 0, (8)

where 2 denotes the second-order linear operator, expressed as 2 = ∂2

∂r2 + [ (1−η2 )
r2 ] ∂

∂η2 . Here, η =
cos(ϑ ) symbolizes the transformed polar co-ordinate.

The velocity field must be bounded in the interior of the inner droplet. Far away from the
compound droplet system, the velocity field must be similar to the undisturbed imposed flow field.
This far-field condition can be expressed as

r → ∞, u3 → ū∞ . (9)
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At the deformed interfaces, the velocity field fulfills the no penetration and no-slip boundary
conditions which can be expressed as

[ui]
i j = [u j]
i j at r = r
i j (θ )
[ui · ni j]
i j = [u j · ni j]
i j at r = r
i j (θ )

}
. (10)

Furthermore, the pressure and velocity fields also satisfy the interfacial stress balance equation
which consists of electric stress, hydrodynamic stress and capillary stress. This equation is
represented in the following form:

[(
τH

j + MτE
j

) · ni j
]

Si j
− [(

τH
i + MτE

i

) · ni j
]

Si j
= 1

Ca
(∇ · ni j )ni j at r = rSi j (θ ). (11)

Here τH and τE symbolize the hydrodynamic and electric stress tensors, respectively.

C. Small-deformation perturbation analysis

From the above mathematical formulation, it becomes evident that the governing equations
along with its boundary conditions are highly coupled and nonlinear in nature. The source of
nonlinearities arising in the present problem is due to the deformation of the fluid-fluid interfaces.
A close inspection into Eq. (5) reveals the fact that the electric potential distribution is dependent
on the shape-deformation of the interface. However, on analyzing Eq. (11), it becomes clear that the
deformed shape of the droplet depends on the electric stresses which are dictated by the distribution
of the electric potential. Therefore, the electrodynamics of the problem is highly coupled with the
shape deformation. This limits our analytical solution to the case when the interfacial deformation
is small. We have employed the method of regular perturbation where we have taken Ca to be the
perturbation parameter [39–41]. Keeping this in mind, we have used the following expansion for a
generic field variable χ [39,42].

χ = χ (0) + Caχ (Ca) + Ca2χ (Ca2 ) + O(Ca3). (12)

Here, χ (0) symbolizes the leading-order term of χ (when shape deformation is absent) and χ (Ca)

stands for the first-order correction arising due to shape deformation. In the present analytical
solution, we have considered droplet shape corrected up to O(Ca2) and performed comparisons
of the same with numerically obtained solutions.

III. ASYMPTOTIC SOLUTION FOR SMALL SHAPE DEFORMATION

A. Droplet shape

The O(Ca) correction to the shape of the inner and outer droplets are given by

f (Ca)
12 = L(Ca)

12 P2[cos (θ )]; f (Ca)
23 = L(Ca)

23 P2[cos(θ )]. (13)

Here, f (Ca)
12 and f (Ca)

23 represent the leading order deviations in the shape of the inner and outer
droplets, respectively. The coefficients L(Ca)

12 and L(Ca)
23 are expressed as

L(Ca)
12 = �1(Ri j, Si j, λi j, M, K ); L(Ca)

23 = �2(Ri j, Si j, λi j, M, K ); (i j) ∈ {12, 23}. (14)

The O(Ca2) correction to the droplet shapes are obtained as

f (Ca2)
12 = L(Ca2)

12 P2[cos (θ )] + L(Ca2)
14 P4[cos (θ )]

f (Ca2 )
23 = L(Ca2)

22 P2[cos (θ )] + L(Ca2)
24 P4[cos (θ )]

⎫⎬
⎭, (15)
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where

L(Ca2 )
12 = �3(Ri j, Si j, λi j, M, K ); L(Ca2 )

14 = �4(Ri j, Si j, λi j, M, K )
}
; (i j) ∈ {12, 23}, (16)

L(Ca2 )
22 = �5(Ri j, Si j, λi j, M, K ); L(Ca2 )

24 = �6(Ri j, Si j, λi j, M, K )
}
; (i j) ∈ {12, 23}. (17)

The functions �1, φ2, etc … appearing in Eqs. (14), (16), and (17) have very lengthy algebraic
expressions. Thus, we have not written the detailed expressions here. MAPLE files containing these
expressions would be made available upon request.

Therefore, the deformed shape of the inner droplet can be expressed as

r12 = K
[
1 + Ca f (Ca)

12 + Ca2
(
α1 + f (Ca2 )

12

)]
. (18)

The term α1 appearing in Eq. (18) is introduced to conserve the total volume of the inner droplet,

α1 = − (L(Ca)
12 )

2

5 . Similarly, the deformed shape of the outer droplet is given by

r23 = [
1 + Ca f (Ca)

23 + Ca2
(
α2 + f (Ca2 )

23

)]
, (19)

where α2 = − (L(Ca2 )
23 )

2

5 is introduced for the purpose of volume conservation of the outer droplet.

Finally, the deformation parameter Di j is defined as Di j = ri j (θ = 0) − ri j (θ = π/2)
ri j (θ = 0) + ri j (θ = π/2) . Throughout the

manuscript, D∞,i j[i j ∈ (12, 23)] has been used to denote the steady-state deformation of the
droplet., The results of the present study indicate that the deformation of a compound droplet cannot
be understood simply as a linear superposition of the deformation due to an external electric field
and an imposed extensional flow.

B. Extensional emulsion rheology

In this section, we are interested to derive the effective extensional viscosity of the double
emulsion under combined effect of electric field and background uniaxial extensional flow. The
presence of electric field alters the droplet shape and flow field. This perturbed flow field and droplet
shape, in turn, affect the rheological behavior of the double emulsion under uniaxial extensional
flow. The suspension stress of a double emulsion experiencing linear flow can be expressed as [43]

� = −pI + 2� + �(d ), (20)

where �(d ) is the stresslet tensor and it can be expressed in the following format [43]:

�(d ) = 3ν

4π

∫

23

[
1

2

{(
τH

3 · n
)
r + [(

τH
3 · n

)
r
]T − 2

3
I
(
τH

3 · n
) · r

}
− [u3n + (u3n)T ]

]
d
12, (21)

where ν denotes the volume fraction. Since we have considered dilute emulsion, the magnitude of ν

is much lesser than 1. For quantifying different effects, we have defined a dimensionless extensional
viscosity μext, expressed as

μext = �̄zz − �̄xx

ṠR
= �̄zz − �̄yy

ṠR
. (22)

In Eq. (22), the dimensional component of stress can be denoted as �̄i j = μeṠR�i j . After
substituting relevant terms, we have obtained the extensional viscosity ratio in the following form

ηext = μext

μe
= η

(0)
ext + Ca η

(Ca)
ext , (23)

where η
(0)
ext denotes the leading order extensional viscosity obtained by neglecting the effect of shape

deformation. However, the term η
(Ca)
ext is obtained by considering the effect of shape deformation.
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The terms η
(0)
ext and η

(Ca)
ext are read as

η
(0)
ext = �7(Ri j, Si j, λi j, M, K ), η

(Ca)
ext = �8(Ri j, Si j, λi j, M, K ), (i j) ∈ (12, 23). (24)

Because of very lengthy and complicated algebraic expressions of φ7 and φ8 appearing in
Eq. (24), we have not explicitly stated the detailed expressions here. MAPLE files containing these
expressions of functions φ7 and φ8 appearing in Eq. (24) would be made available upon request.

IV. NUMERICAL APPROACH

For arresting the important features of droplet dynamics beyond the small deformation limit, we
have performed numerical simulations. For simplification, we have considered a two-component
composite droplet system, where the inner droplet and the suspending fluid are identical. Thus, the
system reduces to a two-phase interfacial flow system. Typical examples of such types of systems
are water-oil-water and oil-water-oil compound droplets [44]. For numerical simulations, we have
exploited the phase field model for tracking the interface of the binary fluid system. Phase field
model is developed based on Cahn-Hilliard and Navier-Stokes equations. The former one is derived
based on the principle of energy minimization of a system that consists of two incompressible as
well as immiscible fluids and represented in the dimensionless form [45–48] as follows:

∂ψ

∂t
+ u · ∇ψ = 1

Pe
∇ · Mψ (∇G), where G = 1

Cn
(ψ3 − ψ ) − Cn∇2ψ. (25)

Here Mψ and G denote the phase field mobility parameter and chemical potential, respectively,
in their nondimensional forms. Another important parameter appearing in the expression of G is the
Cahn number (Cn). It stands for the order of the magnitude of the nondimensional thickness of the
diffusive interface and reads as Cn = ζ̄ /ā2 [46], where ζ̄ regulates the interfacial thickness and a2

is the radius of the outer droplet. ψ is termed as phase field parameter that is defined in the entire
domain and acquires specific values for the identification of different fluid elements. It acquires the
value of −1 in the inner droplet and +1 in the outer fluid domain. The electric potential satisfies the
Poisson’s equation in the following form

∇ · (ε∇φ) = qv, (26)

where qv is the volumetric charge density and it is obtained by solving the charge transport equation
in the following form

∇ · (ε∇φ) = −qs; ReE

(
∂qv

∂ t̄
+ ∇ · (qvu)

)
= ∇ · (σ∇φ), (27)

where σ and ε denote the conductivity and permittivity of the fluid, respectively. In terms of the
phase field parameter, these properties are expressed in the following form:

σ = (1 + ψ )

2
Ri j + (1 − ψ )

2
; ε = (1 + ψ )

2
Si j + (1 − ψ )

2

}
, where [i, j ∈ (1, 3)]. (28)

As we have considered that ReE is much smaller than unity (the justification of our assumption
is given in Sec. I of the Supplemental Material [38]), the governing equation for electric potential
reduces to

Leaky dielectric: ∇ · (σ∇φ) = 0. (29)

The distribution of velocity and pressure field is achieved by solving the continuity and Cahn-
Hilliard-Navier-Stokes equation. The phase field and electrohydrodynamics are coupled through the
latter equation. In dimensionless format, the continuity and Cahn-Hilliard-Navier-Stokes equation
are read as

∇ · u = 0, Re

(
∂u
∂t

+ ∇ · (uu)

)
= −∇p + ∇ · [{∇u + (∇u)T }] + 1

Ca
G∇ψ + MFE . (30)
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FIG. 2. Schematic representation of the problem set up. The computational domain is axisymmetric with
rectangular size L̄ × L̄. A cylindrical coordinate system (r̄c, z̄) is considered and attached to the droplet center.

The simulation is performed on a 2D axisymmetric domain in a cylindrical coordinate system
(rc, z). Figure 2 shows the relevant boundary conditions employed in the numerical investigation.
For neglecting the effect of channel confinement, we have considered a large value of L(L = 10).
Furthermore, to neglect the effect of fluid inertia, we have considered a small value of Re
(Re = 0.01) . For high deformation, the outer interface of the compound droplet ruptures, releasing
the inner droplet into the suspending fluid. This phenomenon is defined as pinch-off of a compound
droplet and the time of interfacial rupture is termed as pinch-off time. It is worth mentioning that,
in numerical modeling, the exact pinch-off time relies on the thickness of the interfacial regions
undergoing topological changes. For a droplet-based microfluidic system, which is of interest in the
present analysis, we resolve the interfaces down to a very small but finite thickness, comparable to
real interface [∼O(10−2μm)] . As the interfacial thickness imitates reality, we can conclude that
the pinch-off time is close to the real one. In the present study, we have denoted pinch-off time
by tpinch off . For ensuring that the findings of the numerical analysis do not depend on the size of
the grid element, a grid independence study has also been made (refer to Sec. II of Supplemental
Material [38]).

V. RESULTS AND DISCUSSIONS

A. Model validation study

1. Comparison between the present and existing results

First, for checking the applicability of the present model, we have carried out model validation
tests.

We have compared the results obtained from our numerical simulations and small deformation
asymptotic analysis with those reported in the classical work of Stone and Leal [15] as shown
in Fig. 3(a), where they have numerically investigated the deformation of a concentric compound
droplet which is exposed to an imposed linear flow. From Fig. 3(a), we have observed that the
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FIG. 3. (a) Alteration of D∞ (steady-state deformation) with Ca (capillary number) for compound droplet
when Re (Reynolds number) = 0.01, K (radius ratio) = 0.5 and λ12 (viscosity ratio) = λ32 (viscosity ratio) =
1. (b) Alteration of D∞ with CaE (electric capillary number) for a single droplet at Re = 0.01, R (conductivity
ratio) = 10, S (permittivity ratio) = 1.37, λ (viscosity ratio) = 0.874. (c) Variation of D∞ with CaE for a
single droplet having R = 2, S = 1, λ = 10, Re = 0.01. (d) Variation of effective extensional viscosity of
dilute emulsion of single droplets with λ for a droplet having Ca = 0.1. For single droplet λi j [(i j) ∈ {12, 23}]
is expressed as λ. 1, 2, and 3 are used to denote the inner fluid, the outer fluid, and the suspending fluid,
respectively.

variation of steady-state deformation with Ca for both the inner and outer droplets as obtained from
our analytical solution matches well with the results published by Stone and Leal [15] for lower
values of Ca. With the rise in the values of Ca, the analytical results under-predict the deformation
for both the inner and outer droplets. However, our numerical results predict the magnitude of
deformation very well, even in the regime of higher deformation. Furthermore, we have performed
yet another comparison of the steady-state deformation parameter of a single droplet subjected to
the uniform electric field with the experimental results of Ha and Yang [49] as depicted in Fig. 3(b).
Here, we have compared our numerical and analytical results with the experimental findings of Ha
and Yang [49] for the limiting case when the radius ratio of the compound droplet system tends to
zero (single droplet). Here also, we have obtained an acceptable agreement between our numerical
results and the results obtained from the experimental study of Ha and Yang [49]. However, the
analytical results show good agreement only at lower values of CaE (<0.15). In Fig. 3(c), we have
again compared our results with the analytical result of Taylor [35] on the deformation of the
single droplet in the presence of uniform electric field and we have found an excellent agreement
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FIG. 4. Alteration of D∞ (steady-state deformation) with Ca (capillary number) for (a) inner droplet
(b) outer droplet of a system with (S23, R23) = (2, 0.5) and (S12, R12) = (0.5, 2). Other used parameters
are Re (Reynolds number) = 0.01, λ12 (viscosity ratio) = λ32 (viscosity ratio) = 1, M (Mason number) =
1, K (radius ratio) = 0.5. Here, Ri j (conductivity ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j , and λi j

(viscosity ratio) = μi/μ j , where (i j) ∈ {12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid,
and suspending fluid, respectively. The viscosity, electrical conductivity, and electrical permittivity are denoted
by μ, σ , and ε, respectively.

between them. We have also performed another model validation study on the variation of effective
extensional viscosity of dilute emulsion of single droplet between our analytical result and the result
of Ramachandran and Leal [50] as shown in Fig. 3(d). Here λ denotes the ratio of viscosities of the
single droplet and the suspending fluid. This figure shows an exact matching between the results.
In the study of Ramachandran and Leal [50], the effect of slip has been considered. However, for
validation purposes, we have put the value of the slip factor as zero in the expression of extensional
viscosity as proposed by Ramachandran and Leal [50].

2. Comparison between present numerical and analytical results

In Fig. 4, we have shown a comparison between our analytical and numerical results. Figures 4(a)
and 4(b) depict the alteration of steady-state deformation with capillary number for the inner and
outer droplets of a concentric leaky dielectric system with (S23, R23) = (2, 0.5) and (S12, R12) =
(0.5, 2) . From the figure, it can be concluded that the numerical and the analytical results (both
the leading order linear theory and higher-order nonlinear theory) depict very good agreement with
each other for lower values of capillary number (Ca). However, at comparatively higher values of
Ca, the higher-order nonlinear theory depicts a better match with the numerical results as compared
to the leading order linear theory. However, as we increase the values of Ca, we observe that the
higher-order nonlinear theory also under-estimates the deformation both for inner and outer droplets.

Therefore, we have decided to use the higher-order asymptotic solution to study the deformation
characteristic and emulsion rheology of the system in a low deformation limit. Beyond the range
of the validity of the asymptotic solution, we have used numerical simulations to address large
deformation.

B. Deformation characteristics

1. Influence of electric field on the steady-state deformation of the droplet

Figure 5 depicts the variation of steady-state deformation parameter with Mason number (or
CaE as Ca is fixed) in low deformation limit for a pair of leaky dielectric systems. For studying
the deformation dynamics in low deformation limit, we have used the low-deformation asymptotic
solution. Figure 5(a) depicts that the inner droplet deforms into an oblate shape in the sole presence
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FIG. 5. Variation of D∞ (steady-state deformation) with M (Mason number) for (a) inner (b) outer
droplet of a leaky dielectric system when Ca (capillary number) = 0.1, Re (Reynolds number) = 0.01, λ12

(viscosity ratio) = λ32 (viscosity ratio) = 1, K (radius ratio) = 0.5, R12 (conductivity ratio) = (R23)−1, and
S12 (permittivity ratio) = (S23)−1. Here, Ri j = σi/σ j , Si j = εi/ε j , and λi j = μi/μ j , where (i j) ∈ {12, 23}.
1, 2, and 3 are used to denote the inner fluid, outer fluid, and suspending fluid, respectively. The viscosity,
electrical conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively.

of uniaxial extensional flow (M = 0). This was the study of Stone and Leal [15]. Thereafter, on
increasing the strength of the external electric field, the oblate deformation of the inner droplet
enhances for R12 > S12, whereas the magnitude of deformation decreases for R12 < S12. However,
Fig. 5(b) shows that prolate deformation of the outer droplet increases with M for R23 > S23,
whereas it decreases for R23 < S23. Now, we have given explanations of the observed phenomenon.
When a leaky dielectric system experiences the combined presence of background extensional
flow and uniform electric field, along with the background flow-induced viscous stress, the system
also experiences additional electric field-induced stresses: (i) normal electric stress and (ii) normal
hydrodynamic stresses.

For R23 > S23 and R12 < S12, the electric field-induced stresses act in the direction of background
flow-induced viscous stress and tries to deform the outer droplet (or inner droplet) into prolate (or
oblate) configuration. With the increase in Mason number, the combined strength of normal electric
stress and normal hydrodynamic stress increases that enhances the deformation of the outer and
inner droplets.

However, for R23 < S23 and R12 > S12, the electric field-induced stresses act opposite to the
viscous stress and tries to minimize its effect. With the rise in Mason number, the strength of the
electric field-induced normal stress increases and the net normal traction on the interface decreases
that reduces the magnitude of prolate deformation of the outer droplet and oblate deformation of the
inner droplet.

For studying the droplet deformation beyond the small deformation limit, we have employed
numerical simulation and shown the deformation of a leaky dielectric system for a vast range of
Mason numbers in Fig. 6. Figure 6(a) shows the variation of droplet deformation with Mason
number for a leaky dielectric system having S23 > R23 and S12 < R12. From Fig. 6(a), it is also
obtained that the outer and inner droplets deform into prolate and oblate configuration, respectively,
for lower values of M(M < 2) . However, with increase in the Mason number, the deformation of
both the droplets decreases and the sense of deformation is reversed at sufficiently higher values
of M. Further increase in M again enhances the oblate and prolate deformation of the outer and
inner droplets, respectively. Droplet shapes at different Mason numbers have been shown in the
inset of Fig. 6(a). It is also interesting to note that both the inner droplet and outer droplets deform
into prolate configuration at M = 2. The physical explanation of the above-observed behavior is
now provided. For the present leaky dielectric system, the applied electric field-induced stresses
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FIG. 6. Alteration of D∞ (steady-state deformation) with M (Mason number) for different leaky di-
electric systems having (a) (R23, S23) = (0.5, 2), (R12, S12) = (2, 0.5), where R23 < S23 and R12 > S12 and
(b) (R23, S23) = (2, 0.5), (R12, S12) = (0.5, 2), where R23 > S23 and R12 < S12. The droplet shapes for different
values of M are shown in the inset of Figs. 6(a) and 6(b). Important simulation parameters are capillary number
(Ca) = 0.05, Reynolds number (Re) = 0.01, radius ratio (K ) = 0.5, and viscosity ratio (λ12) = (λ32) = 1.
Here, Ri j (conductivity ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j and λi j (viscosity ratio) = μi/μ j , where
(i j) ∈ {12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid, and suspending fluid. The viscosity,
electrical conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively.

counteract the uniaxial extensional flow-induced droplet deformation. At lower values of M, the
background uniaxial extensional flow is dominating. Hence, the outer droplet deforms into prolate
and the inner droplet deforms into oblate configuration. However, at higher values of M, the electric
field-induced deformation is more, which results in oblate and prolate configurations of the outer
and inner droplets, respectively. One must acknowledge that there is a critical value of M, where the
deformation of the droplet is zero. At the critical value of M, the combined effect of normal electric
and hydrodynamic stresses is neutralized by uniaxial extensional flow-induced viscous stress.

Next, for showing the influence of an inner droplet on the deformation of the outer droplet for
the present leaky dielectric system, we have made a comparison of the same with an equivalent
single phase droplet in Fig. 6(a). From the figure, it is obtained that the deformation of the outer
droplet is higher as compared to a single phase droplet for lower values of M. However, beyond the
critical Mason number, the scenario is changed markedly where the deformation of the outer droplet
is small in presence of the occluded droplet than without its presence. This occurs because of the
fact that the presence of inner droplet increases the strength of fluid flow in the annular region.
Therefore, the strength of the viscous stresses acting on the outer droplet is more than the single
droplet. Because of that, the effect of electric field on the deformation of the outer droplet is less
pronounced than the single droplet.

Figure 6(b) shows a similar study for a leaky dielectric system having R23 > S23 and R12 <

S12. Figure 6(b) shows that the prolate (or oblate) deformation of outer droplet (or inner droplet)
increases with increase in the Mason number. This can be explained by considering the fact that, for
the present leaky dielectric system, the electric stress and viscous stress act along the same direction
for both the inner and outer droplets. Therefore, the electric field aids the deformation of the inner
and outer droplets due to extensional flow. Another important fact to note is that the enhancement
of deformation of the outer droplet with Mason number is less than an equivalent single phase
droplet. As R12 < 1, the induced surface charge at the interface is less and it produces a weak
fluid flow circulation in the annular region. Since the fluid flow circulation in the annular region of
the compound droplet due to the electric field is weak as compared to the equivalent single phase
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FIG. 7. Regime plot shows different patterns of droplet shape for different values of Ca (capillary number)
and CaE (electric capillary number). Mode I: polar pinch-off; Mode II: equatorial pinch-off; Steady state I:
Outer droplet is oblate shaped and inner droplet is prolate shaped; Steady state II: Both the droplets are prolate
shape. Others parameters are (R23, S23) = (0.5, 2), (R12, S12) = (2, 0.5), K (radius ratio) = 0.5, Re (Reynolds
number) = 0.01 and λ12 (viscosity ratio) = λ32 (viscosity ratio) = 1. Here, Ri j (conductivity ratio) = σi/σ j , Si j

(permittivity ratio) = εi/ε j , and λi j (viscosity ratio) = μi/μ j , where (i j) ∈ {12, 23}. The viscosity, electrical
conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively. 1, 2, and 3 are used to denote
the inner fluid, outer fluid, and suspending fluid, respectively.

droplet, the enhancement of deformation because of electric field is also less for the outer interface
of the compound droplet.

2. Electric field-modulated alteration in droplet morphology

This section is devoted toward understanding the combined influence of externally imposed
electric field and extensional flow on the pinch-off dynamics of a compound droplet. Toward this, we
investigate the role of two key parameters, namely Ca and CaE on the dynamics of the droplet. While
Ca represents the relative strength of the imposed flow, the nondimensional parameter representing
electric field strength is CaE . In sole presence of uniaxial extensional flow, the prolate (or oblate)
deformation of the outer (or inner) droplet enhances with increase in the value of Ca (or shear rate)
and beyond a critical value of it, the compound droplet undergoes pinch-off nucleating a hole at the
equator (here, it is termed as “equatorial pinch-off”). This was the study of Stone and Leal (1990).
Here, we have shown that the addition of the electric field alters this phenomenon markedly, where
we have obtained four different patterns of droplet-shape-evolution across Ca − CaE parameter
space as discussed in the following paragraphs.

In contrast to the droplet configuration at lower values of Ca (<0.2) reported in the study of Stone
and Leal (1990), Fig. 7 shows that the presence of electric field creates the steady-state prolate (or
oblate) deformation of the inner (or outer) droplet (steady state I) for moderate and higher values of
CaE (0.2 � CaE < 0.5). However, if we further increase the value of CaE , beyond a critical value
of it (CaE ≈ 0.55), then the compound droplet undergoes pinch-off nucleating a hole at the pole,
termed as “polar pinch-off” (mode I).

This phenomenon occurs due to the dominating nature of the electric field-induced stresses over
the flow-induced viscous stress. In Fig. 8(a), we have shown the variation of E2 with CaE . From the
figure, it is evident that the magnitude of E2 is higher at the poles for comparatively lower values
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FIG. 8. Variation (a) E 2 (electric field squared) at Ca (capillary number) = 0.1 and (b) ṠR (shear rate) along
a probe drawn from the center of the droplet to the upper electrode. Other parameters are (R23, S23) = (0.5, 2),
(R12, S12) = (2, 0.5), K (radius ratio) = 0.5, Re (Reynolds number) = 0.01, and λ12 (viscosity ratio) = λ32 = 1.
Here, Ri js (conductivity ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j , and λi j (viscosity ratio) = μi/μ j , where
(i j) ∈ {12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid, and suspending fluid, respectively.
The viscosity, electrical conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively.

of CaE , which necessarily means that the magnitude electric field-induced stress (∼E2) is also high
that creates the steady state I configuration of the droplets. Now as we increase the value of CaE , the
strength of the electric field-induced stress also increases which leads to the pinch-off of the droplet.

If we raise the magnitude of Ca, at the moderate value of Ca(=0.3) and CaE (=0.2), we have
found that the droplet attains a different steady-state configuration (steady state II), where both the
droplets deform into prolate shape. This phenomenon happens due to the fact that the magnitude of
viscous stress increases with the enhancement of Ca as shown in Fig. 8(b), where we have depicted
the variation of shear rate with the capillary number. From the figure, it is obtained that the shear
rate at the droplet’s tip enhances with the rise in the value of Ca that necessarily means that the
viscous stress also increases and it attempts to reduce the effect electric field-induced stresses. Now,
the effect of viscous stress is more significant in the case of outer droplet due to higher curvature.
Thus, it reverses the pattern of deformation of the outer droplet. However, the electric field-induced
stresses are still dominating for the inner droplet and creates the prolate deformation of the droplet.
Here, one point needs to mention that the study of Stone and Leal [15] showed the equatorial pinch-
off of the droplet for the same value of Ca in absence of electric field. Thus, we can say that the
presence of electric field increases the critical capillary number which is of utmost importance in
the design of emulsifier.

Keeping the value of Ca fixed, for the further enhancement in the values of CaE (0.4 � CaE �
0.6), we have observed that the compound droplet system achieves steady state I configuration,
where the outer droplet deforms into oblate configuration and the inner droplet deforms into prolate
configuration. The reason behind this phenomenon is that the magnitude of electric field-induced
stresses increases with the enhancement in the values of CaE that nullifies the effect of viscous stress
due to background flow and creates the oblate deformation of the outer droplet. The additional
increase in the value of CaE (>0.6) leads to the polar pinch-off of the system (mode I). The
significant enhancement of the electric field-induced stress at very higher values CaE is responsible
for the polar pinch-off of the compound droplet system.

If we again raise the value of Ca to a great extent, at a very higher value of Ca(=0.6) and
moderate value of CaE (=0.3), we observe equatorial pinch-off of the compound droplet system.
This is due to the significantly higher strength of the flow-induced viscous stress. Under this
condition, for additional raise in the values of CaE (>0.8), we have obtained that the equatorial
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FIG. 9. (a) Regime plot shows different patterns of droplet breakup for different values of CaE (electric
capillary number) and R (conductivity ratio). Mode I: polar pinch-off; Mode II: equatorial pinch-off; Steady
state I: Outer droplet is oblate shaped and inner droplet is prolate shaped; Steady state II: Both the droplets
are prolate shape; Steady state III: Outer droplet is prolate shaped and the inner droplet is oblate shaped. (b)
Variation E 2 (electric field squared) along a probe drawn from the center of the droplet to the upper electrode.
Others parameters are S23 (permittivity ratio) = 2, Ca (capillary number) = 0.35, λ (viscosity ratio) = 1, CaE

(electric capillary number) = 0.15, K (radius ratio) = 0.5, Re (Reynolds number) = 0.01, (R) = R23 = (R12)−1

and S23 = (S12)−1. Here, Ri j (conductivity ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j and λi j (viscosity
ratio) = μi/μ j , where (i j) ∈ {12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid, and suspending
fluid, respectively. The viscosity, electrical conductivity, and electrical permittivity are denoted by μ, σ , and ε,
respectively.

pinch-off phenomenon has been suppressed and the compound droplet system achieves steady-state
configuration. This happens because of the fact that the strength of the electric field-induced
normal electric and hydrodynamic stresses increase, so as to suppress the pinch-off phenomenon
by minimizing the effect of background flow-induced viscous stress.

3. Effect of electrophysical properties on the alteration of droplet morphology

This section is devoted to study the effect of electrophysical property variations (electrical
conductivity, R) on the morphological characteristic of the compound droplet system as shown in
Fig. 9(a). In the numerical analysis, the inner phase and the suspending fluid phase are considered
to be the same. Hence, for convenience, we have chosen symbol R in the plots to represent the
conductivity ratio of the system, where R = R23 = 1/R12. For this analysis, we have considered
a leaky dielectric system having higher values of Ca and we have performed large numbers of
simulations to understand how droplet morphology alters across R-CaE space and we have discussed
the characteristics in the following paragraphs.

At lower values of CaE (=0.15), we have obtained four different configurations of the compound
droplet system depending on the values of R. At lower values of R(<0.1), we have obtained steady
state I configuration, where the outer droplet deforms into oblate configuration and the inner droplet
deforms into prolate configuration. Now, if we slightly increase the values of R(0.1 � R < 0.8), we
have found that the droplet characteristic gets changed markedly and the droplet achieves steady
state II configuration, where both the droplets deform into prolate configuration. Now if we further
raise the values of R(0.8 � R < 2), we have seen that the outer droplet still deforms into prolate
configuration but the inner droplet deforms into oblate configuration. Finally, the compound droplet
undergoes equatorial pinch-off for increase in the values of R to a large extent (R � 2). This
phenomenon can be explained from Fig. 8(b), where we have shown the variation of E2 with R.
From the figure, it is evident that the magnitude of E2 is higher at the poles for lower values of R,
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FIG. 10. Influence of electric field on the pinch-off time of the droplet. Others parameters are
R23 (conductivity ratio) = (R12)−1 and S23 (permittivity ratio) = (S12)−1, λ12 (viscosity ratio) = λ32 = 1, K
(radius ratio) = 0.5, Ca (capillary number) = 0.35, and Re (Reynolds number) = 0.01. Here, Ri j = σi/σ j ,
Si j = εi/ε j , and λi j = μi/μ j , where (i j) ∈ {12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid,
and suspending fluid. The viscosity, electrical conductivity, and electrical permittivity are denoted by μ, σ , and
ε, respectively.

which necessarily means that the magnitude electric field-induced stress (∼E2) is also high. In this
regime, the electric field-induced stresses become dominating over the background flow-induced
viscous stress and cause the oblate (or prolate) deformation of the outer (or inner) droplets. If we
again increase the values of R, Fig. 9(b) shows that the strength of E2 reduces. Therefore, the
strength of electric stress also decreases and the viscous stress tries to dominate. The effect of
viscous stress is more prominent for the outer droplet due to higher curvature and it creates prolate
deformation of the outer droplet. However, the inner droplet still deforms into prolate configuration.
If we further increase the values of R, we will find that the magnitude of E2 becomes very small.
In this regime, the flow-induced viscous stress governs the deformation characteristic and creates
prolate (or oblate) deformation of the outer (or inner) droplet. For further enhancement of the values
of R, we see that the magnitude of electric field-induced stresses increases. But in this regime, they
act in the direction of viscous stress and create drastic elongation of the droplet, which finally leads
to equatorial pinch-off.

Next, we slightly increase the value of CaE . At moderate values of CaE (=0.30) and lower values
of R (<0.1), a polar pinch-off is also obtained in addition to the configurations observed when
the values of CaE and R are low. This happens due to the fact that the magnitude of E2 increases
with CaE and its magnitude is quite high at moderate values of CaE as we discussed in Fig. 8(a).
Therefore, the strength of the electric field-induced stresses is also more which causes the additional
polar pinch-off of the droplet.

For very higher values of CaE (=0.45), it is interesting to note that the steady state II configuration
of the compound droplet system vanishes and the configuration of the droplet is directly converted
from steady state I to steady state III with increase in the values of R. Higher strength of electric
stress at higher values of CaE is responsible for this behavior.

Next, we have investigated how the pinch-off time changes with Mason number (or CaE as
the Ca is fixed) for different electrophysical properties. Figure 10 shows that the pinch-off time
decreases with increase in the Mason number for the leaky dielectric system having R23 > S23 and
R12 < S12. For this leaky dielectric system, the electric field-induced stresses act in the direction
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FIG. 11. Influence of electric field on the post pinch-off behavior of the droplet. Others parameters
are (R23, S23) = (0.1, 2), (R12, S12) = (10, 0.5), Ca (capillary number) = 0.35, K (radius ratio) = 0.5, Re
(Reynolds number) = 0.01, and viscosity ratio (λ12) = λ32 = 1 . CaE is the electric capillary number. Here,
Ri j (conductivity ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j , and λi j (viscosity ratio) = μi/μ j , where
(i j) ∈ {12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid, and suspending fluid. The viscosity,
electrical conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively.

of viscous stress and their combined strength determines the pinch-off instances. With increase in
M, the strength of electric field-induced stresses increases that causes the faster pinch-off of the
system. However, for leaky dielectric system having R23 < S23 and R12 > S12, we have obtained
three regimes: (i) in regime A having M < 1, the pinch-off time increases with increase in the
values of M, (ii) in regime B having M > 1.2, the pinch-off time decreases with increase in the
Mason number and (iii) regime C, where no pinch-off is observed. For the present leaky dielectric
system, the electric field-induced stresses act in the opposite direction of the viscous stress and try
to reduce its effect. In regime A, at very lower values of M, the pinch-off dynamics of the compound
droplet system occurs due to the dominating natures of the background flow-induced viscous stress.
As we increase the values of M, the strength of electric field-induced stresses increases that reduces
the effect of viscous stress and delays the pinch-off phenomenon. In this regime, the maximum
pinch-off time is obtained at M = 0.95 .

However, in regime B, the pinch-off phenomenon is governed by the strength of electric field-
induced stresses. Now in this regime, if we increase the values of M, the strength of the electric field
induces stresses also increases that create faster pinch-off the droplets.

4. Effect of electric field on the post pinch-off behavior of the droplet

In Fig. 11, we show the effect of electric field on post pinch-off dynamics of the compound
droplet system subjected to uniaxial extensional flow. From the figure, we can see that, in absence
of electric field, after equatorial pinch-off, the daughter droplets move away from each other and
try to achieve spherical configuration. However, the scenario changes completely in the presence of
electric field. In the presence of electric field, after polar pinch-off, the interfaces of the outer shell
at the poles again merge and form an elongated inner droplet. As time passes, the inner droplet tries
to relax and undergoes midpoint break-up forming two spherical shaped daughter droplets. Further,
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FIG. 12. Distribution of (a) uniaxial extensional flow at CaE (electric capillary number) = 0, (b) EHD flow
at CaE = 0.4, (c) electric force distribution at CaE = 0.4. The arrow size denotes the strength of the respective
variable. Other parameters are (R23, S23) = (0.1, 2), (R12, S12) = (10, 0.5), Ca (capillary number) = 0.35, K
(radius ratio) = 0.5, Re (Reynolds number) = 0.01, and λ12 (viscosity ratio) = λ32 = 1. Here, Ri j (conductivity
ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j , and λi j (viscosity ratio) = μi/μ j , where (i j) ∈ {12, 23}. The
viscosity, electrical conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively. 1, 2, and
3 are used to denote the inner fluid, the outer fluid, and the suspending fluid.

if we increase the strength of electric field, then the post pinch-off behavior of the droplet remains
the same; however, the size of the daughter droplet decreases.

We now provide a detailed explanation of the observed behavior. In sole presence of uniaxial
extensional flow (CaE = 0 ), the equatorial pinch-off phenomenon is governed by the flow-induced
viscous stress that drags the daughter droplets in the direction of flow as shown in Fig. 12(a).
However, the polar pinch-off occurs as a result of the normal electric and hydrodynamic stresses
induced by a strong electric field. After polar pinch-off, the outer shell is again reorganized due
to the background viscous drag and electric field-induced flow and it entraps certain volume of
suspending fluid in it. Initially, the inner fluid remains as elongated droplet and the electric stresses
acting on its poles are tensile in nature. These stresses try to elongate the droplet in the direction of
electric field. However, these electric stresses are compressive in nature at the equator and attempt to
reduce the radius of the circular cross-section as shown in Fig. 12(b). However, the capillary stress
again tries to convert the elongated droplet shape into spherical configuration

As the strength of the electric field-induced stresses is more (due to higher value of CaE ), it first
creates a neck at the equator which finally leads to mid-point break-up of the inner droplet forming
two equal-sized daughter droplet. At a comparatively higher value of CaE , after pinch-off, the oblate
deformation of the outer shell increases (elongated in the direction perpendicular to electric field)
that decreases the volume of the entrapped fluid. Therefore, the size of the daughter droplet also
reduces.

C. Effective viscosity of the dilute double emulsion

1. Effect of shape deformation: The role of electrophysical properties of the inner droplet

In this section, we analytically show how the electrical properties of the inner droplet affect the
bulk rheology of the double emulsion in the combined presence of uniaxial extensional flow and
uniform electric field. The effective extensional viscosity of a fluid characterizes the response of the
fluid to externally applied tensile or elongational stress. According to the study of Stone and Leal
(1990), the effective extensional viscosity of a compound droplet can be expressed as a function of
radius ratio (K) and viscosity ratio (λ12 and λ23) in absence of electric field. However, when electric
field is applied, the electrophysical properties of the inner droplet plays a prime role in the alteration
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FIG. 13. Variation of extensional viscosity with viscosity ratio for leaky dielectric having Ca (capillary
number) = 0.1. (b) Deformation of the outer interface (D∞,23) vs. viscosity ratio (λ) for the leaky dielectric
system at M (Mason number) = 3. Other parameters are (R23, S23) = (0.1, 2), K (radius ratio) = 0.5, Ca
(capillary number) = 0.1, and Re (Reynolds number) = 0.01, λ (viscosity ratio) = λ12 = λ23. Here, Ri j

(conductivity ratio) = σi/σ j , Si j (permittivity ratio) = εi/ε j , and λi j (viscosity ratio) = μi/μ j , where (i j) ∈
{12, 23}. 1, 2, and 3 are used to denote the inner fluid, outer fluid, and suspending fluid. The viscosity, electrical
conductivity, and electrical permittivity are denoted by μ, σ , and ε, respectively.

of the effective viscosity of the emulsion through the control of (i) the EHD flow that interacts with
the flow created by the background extensional flow and (ii) the deformation of the outer droplets.

As our main focus is to study the impact of the electrical properties of the inner droplet, we
have drawn the plots for different values of R12 and S12 keeping R23 and S23 constant. We have
also assumed that the ratio of the viscosity of inner to annular phase is identical with the viscosity
ratio between the annular and carrier phases (λ = λ12 = λ23). Figure 13(a) shows that, in absence
of external electric field, the magnitude of ηext increases with increase in the value of λ. The reason
is that highly viscous inner and annular fluid reduces the strength of fluid flow in and around the
outer interface significantly that enhances the rate of dissipation in flow. However, the situation gets
changed in the presence of electric field that is discussed in the following paragraphs.

For a leaky dielectric system having R12 > S12, at lower values of λ(�0.1), the effective
extensional viscosity of the emulsion becomes quite large in presence of electric field (as compared
to M = 0 case) and it decreases steadily as the magnitude of λ increases. This can be explained
by the fact that, for the present system, the direction of the EHD flow is such that it opposes the
externally imposed flow [27] and tries to create a very high magnitude of ηext at lower values of λ.
However, Fig. 13(b) shows that the oblate deformation of the outer droplet is small at lower values of
λ for the considered electrical properties of the inner droplet (R12 > S12). Hence, the contribution of
shape deformation toward increasing ηext can well be neglected. Therefore, the effect of EHD flow is
most prominent toward dictating the extensional viscosity for a double emulsion at lower values of
viscosity ratio. Another important fact is that the magnitude of ηext increases on enhancing the value
of M at lower values of λ, however, the scenario gets changed for higher values of λ(>1), where
magnitude of ηext decreases with increase in the values of M. At lower values of λ, the strength of
the EHD flow increases with increase in the values of M, resulting in a greater opposition to the
incipient flow, thereby leading to a greater extensional viscosity. At higher values of λ, the EHD
flow is suppressed, therefore the variation in ηext occurs primarily due to the dominating effect of
shape deformation. Because of the fact that the deformation of the droplets decreases with increase
in the values of M, the magnitude of ηext also reduces in the regime of higher values of λ.

For leaky dielectric system with R12 < S12, at lower values of the λ(�0.1), we find that the
effective viscosity of the system decreases with slight increase in the values of M(=3) . Further
increase in the values of M(=5) again increases the values of ηext. This happens due to the intricate
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interplay of the shape deformation and EHD flow on the bulk rheology. For R12 < S12, the EHD flow
in the region exterior to the outer interface takes place from the equator to poles, thereby aiding the
uniaxial extensional flow [27]. However, at the same time we can note [from Fig. 13(b)] that, for
low values of the viscosity ratio, the outer droplet deforms by a large amount. Hence the effects
of EHD flow and shape deformation counteract each other and the end result is that the effective
viscosity first decreases and then increases with increase in the electric field strength. Figure 13(a)
also reveals that the effective viscosity increases with increase in λ and attains a peak value when
all three fluid media have almost the same viscosity (λ ≈ 1). For further increase in viscosity ratio
(λ > 1), the extensional viscosity decreases and attains a steady value. This happens due to the fact
that, as the value of λ increases, the strength of the EHD flow is reduced, which is expected to
increase the value of ηext (as the EHD flow aids the incipient flow). However, Fig. 13(b) illustrated
that, as λ increases, the magnitude of deformation of the outer droplet reduces which results in less
opposition to the imposed flow thereby serving to decrease the value of ηext. Hence when R12 < S12,
as λ is increased the EHD flow tries to increase ηext, whereas shape deformation tries to reduce the
value of ηext. The effect of EHD flow dominates when the viscosity ratio is less than unity and we
observe a steady increase in the value of ηext. However, at λ ≈ 1, the shape deformation of the outer
droplet decreases sharply leading to a sharp change in the behavior of the extensional viscosity.
Thereafter, on increasing the value of the viscosity ratio, the extensional viscosity of the double
emulsion decreases and attains a steady value for large values of the viscosity ratio.

VI. CONCLUSIONS

In summary, we have revealed several nontrivial features related to shape evolution of the com-
pound droplet in the combined presence of electric field and uniaxial extensional flow. These results
may found importance in a multitude of engineering applications, ranging from manufacturing
to microfluidics [51–60]. Furthermore, we have also made an attempt to explore the effect of
the electrophysical properties of the inner droplet on the emulsion rheology of the dilute double
emulsion. To accomplish this, we have developed an analytical solution for the deformation of the
compound droplet as well as the emulsion rheology of the system valid within low deformation
limit. To address some unexplored nonintuitive features related to the large distortion of the droplet,
we have performed numerical simulations. Major findings of the present analysis are given below,

(i) In uniaxial extensional flow, the inner droplet deforms into oblate and the outer droplet
deforms into prolate configuration. However, in the presence of electric field, we have obtained
different shape-evolution patterns of the compound droplet system across CaE -R23 and CaE -Ca
spaces. The patterns are: steady state I: Outer droplet is oblate shaped and inner droplet is prolate
shaped; steady state II: Both the droplets are prolate shaped; steady state III: Outer droplet is prolate
shaped and the inner droplet is oblate shaped. Besides that, two different modes of droplet pinch-off
are also observed: Mode I: polar pinch-off; Mode II: equatorial pinch-off.

(ii) The pinch-off time is also found to be a strong function of electric field strength. For R23 >

S23 and R12 < S12, the pinch-off time decreases monotonically with the strength of electric field.
However, it shows the nonmonotonic variation with electric field strength for R23 < S23 and R12 >

S12.
(iii) The presence of electric field also drastically alters the post pinch-off behavior of the droplet.

On contrary to the sole effect of uniaxial extensional flow, after pinch-off, the interface of the
outer shell again reunited in presence of electric field and formed a cylindrical inner droplet. As
time passes, this inner droplet undergoes midpoint break-up creating two spherical inner daughter
droplets. The size of the daughter droplet reduces as the strength of the electric field increases.

(iv) In presence of electric field, the effective extensional viscosity of the dilute double emulsion
is altered with the electrophysical properties of the inner droplet in a nontrivial manner.

Because of very lengthy and complicated algebraic expressions of �i j appearing in the analytical
solution, we have not explicitly mentioned the detailed expressions here. The Maple program files
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(.mw files) containing expressions of functions �i j would be made available upon request to the
corresponding author.
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