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Suspensions of fluid particles with complex interfacial architecture (for instance,
capsules, vesicles, polymersomes, lipid bilayers, and emulsions embedded with certain
surface-active agents and surfactants) find an immense number of applications in the
field of engineering and bioscience. Interfacial rheology plays an important role in the
dynamics of many of these systems, yet little is understood about how these effects
alter droplet deformation and breakup. In this study, we develop a theoretical model
that explores the deformation and breakup of a single droplet with a viscous surface
modulus suspended in an unbounded immiscible fluid under a general linear flow field.
The viscous interface is modeled as a two-dimensional surface having a surface shear
viscosity ημ, surface compression/dilational viscosity ηκ , and a constant surface tension
over the interface, using a Boussinesq-Scriven constitutive relationship. We present the
droplet breakup analysis in Stokes flow in the limit of small droplet deformation using a
turning point analysis similar to that of Barthes-Biesel and Acrivos [J. Fluid Mech. 61, 1
(1973)]. In particular, we examine how the critical capillary number for breakup depends
on the interfacial viscosity for different viscosity contrasts between the inner and outer
fluid and different flow types. For all the flows considered, we observe that ηκ is found
to have a destabilizing impact on droplet breakup, whereas ημ has a stabilizing effect. We
explore the physical picture behind these observations in this work.

DOI: 10.1103/PhysRevFluids.5.063601

I. INTRODUCTION

In recent years, understanding the dynamics of complex interfacial architectures between two
immiscible fluids has gained the attention of many researchers. Membrane modifiers (for instance,
surface-active agents or surfactants) are often added to emulsions to tailor them for applications in
industry and bioscience. Polymer blends, vesicles, capsules, and lipid bilayers are some examples
of fluid particles with complex interfaces, i.e., interfaces whose mechanics cannot be described
solely by surface tension. From the modeling point of view, these complex fluid particles can
be viewed as liquid droplets with a viscoelastic membrane of an adsorbed layer of surfactants,
polymers, and proteins, to capture the mechanics of the system. Vesicles with membrane modifiers
result in thin-shelled capsules [1–3]. These modified capsules are more robust and have greater
colloidal stability, tunable membrane properties, and the ability to integrate a broad range of drugs
and molecules. Polymersomes, another example of artificial vesicles, have been used to create
controlled release drug delivery systems and have applications in medical imaging, electronics, and
nanoreactors [1,3]. Given the diverse areas where one can find droplets with complex interfaces, it
is important to understand how the rheology of such surfaces alters fundamental processes like
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deformation, breakup, coalescence, and coarsening. By understanding the detailed dynamics of
simpler processes (breakup, coalescence, deformation), one can develop quantitative guidelines on
how to process multiphase fluids with a wide range of complicated, surface-active species. For
example, the knowledge of deformation of an individual droplet can be employed to derive the
effective stress of a dilute emulsion [4–6], and the knowledge of droplet breakup can help predict
their dispersion performance in static mixers [7]. The correlations between single- and multiple-
droplet phenomena (such as droplet breakup, coalescence, rising velocity, and axial dispersion) with
droplet size and shape under different flow conditions can be used to develop kernels for population
balance models [8–10].

In this paper, we will discuss droplet deformation and breakup. A single droplet placed in a
viscous flow deforms as the external shear rate increases. For a sufficiently high shear rate, the
viscous stresses on the surface are large enough to overcome the interfacial tension, and the droplet
keeps deforming and ultimately breaks apart. Thus, there exists a maximum shear rate beyond which
no stable droplet shape exists. Quantification of this breakup point can help predict the stability of
emulsions as well as guide the design of multiphase flows in applications like printing, spraying,
and blending.

There is extensive literature available on the deformation and breakup of a single clean droplet
(with no surface-active agents on the interface) suspended in an immiscible fluid under an external
flow. Barthes-Biesel and Acrivos [11] developed perturbation theories for predicting the conditions
for the breakup of a droplet under a general linear flow field for small deformations. For large
deformations, Hinch and Acrivos [12] analyzed long slender droplets in two-dimensional straining
motion. Bentley and Leal [13] experimentally investigated the deformation of a droplet in a general
flow field for both small and large deformations. Rallison [14] developed a numerical scheme to
study the time-dependent deformation of a single viscous droplet in shear flow. Grace [7] predicted
the dispersion performance of droplets in a static mixer with a high continuous phase viscosity
through correlations of single-droplet deformation and breakup in extensional and shear flow fields.
The diverse practical applications of droplet deformation and breakup in industry and bioscience
were the motivation behind many of these earlier research problems. A wide range of prior work
done on droplet deformation and burst is reviewed by Stone [15].

When surface-active agents are added to droplets, three primary effects occur: (1) lowering
of surface tension, (2) inhomogeneous surfactant distribution on the droplet surface [16], and (3)
change in interfacial rheology due to viscoelasticity of the membrane. The first two effects have
been widely studied for simple surfactants in the context of droplet breakup [4,16–20]. The third
effect, i.e., the impact of surface viscoelasticity, is less explored. For emulsions with more exotic
surface-active and polymeric agents, the interface cannot be represented solely by surface tension
effects, and interfacial viscosity and elasticity become essential. Surface shear and compressional
viscosity and surface elasticity are the important parameters that control the interfacial behavior
by introducing additional resistance to deformation from shearing and compression of the surface.
These effects play an essential role in the stability of foams and emulsions [21]. There have been
many experimental studies that measure the interfacial rheology of fluid-fluid surfaces using various
types of instruments [22–24]. In the context of droplets, the studies on surface rheology focused on
the deformation of a droplet with a purely elastic membrane. The deformation of elastic capsules in
simple shear flow is reviewed in Barthès-Biesel [25]. Prior boundary element simulations of such
systems are found in Li et al. [26] and experiments in Chang and Olbricht [27]. Little work has
focused on purely viscous membranes or membranes with viscoelastic responses.

The presence of a concentrated monolayer of low-molecular-weight insoluble surfactants or
polymers on the surface of a droplet can lead to a large degree of viscous dissipation on the
interface due to high surface viscosity. This high surface viscosity is a result of the in-plane friction
that arises when the molecular components on the interface slide past each other. Eicosanol (a
fatty alcohol), hexadecanol (a low-molecular-weight surfactant), and the protein β-casein are some
examples that form a predominantly viscous interface showing weak elastic behavior [24,28–30]. In
an experimental study by Gunning et al. [30], the interface of β-casein-coated oil droplets showed
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FIG. 1. Problem setup: dimensional quantities.

a fluidlike behavior when subjected to shear deformations. Erni [31] provides a review of the role
that interfacial viscosity plays in the shear and dilational modes of deformation of complex fluid
particles.

To our best knowledge, there is currently no analytical theory that quantifies the breakup of a
surfactant-covered droplet with dominant surface viscous effects under a general linear flow field.
Flumerfelt [32] adapted the previous perturbation analysis of Cox [33] on clean droplet deformation
to include the effect of surface viscosities and examined the deformation and orientation of drops
in shear and extensional flow fields. The limitation of this first-order perturbation analysis is that
it cannot capture nonlinear rheology or breakup of droplets in shear flow. Recently Gounley et al.
[34] developed numerical simulations to study the effect of surface viscosities on the deformation
and stability of a single droplet suspended in an unbound shear flow. In this study, we will develop
a theoretical model to understand the effect of interfacial viscosities on the stability of the droplet.
The analytical model can capture droplet breakup behavior for a broad range of shear and dilational
viscosities, under a wide range of flow types and viscosity ratios. We note that interfacial viscosity
can significantly alter droplet deformation and breakup, which is consistent with observations by
Phillips et al. [35].

II. METHOD OF ANALYSIS

A. Problem setup, goals, and underlying assumptions

Figure 1 shows a single droplet of radius R is suspended in an immiscible, unbound fluid. The
viscosity of the fluid interior to the droplet is λη and exterior to the droplet is η. The droplet interface
is embedded with a viscous insoluble monolayer of a surfactant or surface-active agent. This viscous
monolayer is treated as a homogenous fluid obeying the Boussinesq-Scriven constitutive law [36,37]
and has the following properties:

(1) A constant surface shear viscosity ημ

(2) A constant surface dilational viscosity ηκ

(3) Homogeneous surface tension, σ , and surfactant distribution over the surface.
The goal of this study is to examine how the presence of surface viscosities ημ and ηκ impacts

droplet breakup. The proposed theory neglects the inhomogeneity in surfactant concentration
and surface tension, as well as interface elasticity. Surface concentration inhomogeneities can be
neglected when either one of the following holds:

(1) Surface diffusion of surfactant is much stronger than surface convection (i.e., Pes =
UR
Ds

� 1, where U is the velocity magnitude and Ds is the surface diffusivity of the species.)

(2) Adsorption is stronger than surface convection and desorption, i.e., Das = kacR
U � 1 and

kac
kd

� 1, where ka and kd are the kinetic constants for adsorption and desorption between the
surface and bulk, and c is the concentration in the bulk.
When one of these conditions holds, Marangoni stresses can be incorporated into a modified

surface dilational viscosity [38]. The effect of interfacial viscosities dominates over Marangoni
effects when MaPes

Bq = �σR2

ηsDs
� 1. In this expression, Ma is the Marangoni number, Bq is the shear

or dilational Boussinesq number for surface viscosity ηs, Pes is the surface Péclet number, and
�σ is the change in surface tension across the droplet. In reality, the above assumptions will hold
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TABLE I. Dimensionless parameters.

Parameter Description Formula Typical range

λ Viscosity ratio
Inner fluid viscosity

Outer fluid viscosity
λ ∼ O(1)–O(10)

Ca Capillary number
ηγ̇ R

σ
Ca � 1 (0–0.25)

Bqμ Boussinesq parameter for surface shear viscosity Bqμ = ημ

Rη
Bqμ ∼ O(0.1)–O(10)

Bqκ Boussinesq parameter for surface dilational viscosity Bqκ = ηκ

Rη
Bqκ ∼ O(0.1)–O(10)

for very small droplets (i.e., for nano- and micro-emulsions) or very strongly adsorbed surfactants
[38,39]. When these assumptions do not hold, previous studies have shown that surface viscosities
may vary strongly with surface pressure [29,40,41]. For now, we will isolate the effect that surface
viscosities can play in droplet breakup and neglect the Marangoni contributions. We note that there
is some experimental evidence that suggests that interfacial shear and dilational viscosity can have a
significant impact on droplet deformation [35]. Another experimental study by Williams and Prins
[42] discusses how interfacial shear and dilational rheology can impact breakup stability of droplets
in the presence of a protein emulsifier (β-lactoglobulin and β-casein).

The droplet is subject to a general linear flow field expressed as ũ∞
i = 	̃i j x̃ j , where 	̃i j is the

far-field velocity gradient. γ̇ = |	̃i j | represents the characteristic magnitude of the far-field velocity
gradient. We examine the problem in the zero Reynolds number limit (Re = ργ̇ R2/η, where ρ is
the outer fluid density). Thus the fluid motion inside and outside the droplet is governed by Stokes
flow. We solve the Stokes flow inside and outside the droplet, subject to (a) continuity of velocity
across the interface and (b) force balance at the interface. The latter condition corresponds to the
tractions from surface tension and interfacial viscosities balancing the tractions from the external
flow. The analysis presented is valid for small droplet deformation from its initial spherical shape,
which is ensured by assuming a weak flow.

The Boussinesq-Scriven constitutive relationship and the associated boundary conditions for the
problem setup are given in the Appendix.

B. Nondimensionalized parameters

All lengths are nondimensionalized by radius R of the initial spherical droplet, time by the
capillary time scale tc = Rη/σ , viscosities by the outer fluid viscosity η, velocities by Rγ̇ , stresses
by ηγ̇ , and surface stresses by Rηγ̇ . Nondimensionalization of the problem leads to four critical
dimensionless parameters. The dimensionless parameters are listed in Table I along with typical
values explored in this study. The Bqμ and Bqκ range in Table I represents the practical values of
these numbers found in some experimental studies [27,31,43,44]. For instance, for aqueous emul-
sion droplets embedded with different concentrations of PDMS-EO diblock copolymer surfactant,
Bqμ values are found to be very small (Bqμ = 0.28–0.45) as reported in an experimental study by
Erk et al. [43]. Erni et al. [44] presented interfacial shear measurements for protein adsorbed onto
oil-water and air-water droplet interfaces.

C. Droplet shape

In the limit of small deformation (Ca � 1), one can perform a regular perturbation expansion
in capillary number Ca to solve for the flow field around the droplet to O(Ca) and droplet shape to
O(Ca2). Based on the symmetries of the droplet shape, the radius rs of the deformed droplet is as
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follows [45]:

rs = 1 + Ca
1

r2
Di jxix j + Ca2

[
− 2

15
Di jDi j + 1

r4
Di jkl xix jxkxl

]
+ O(Ca3), (1)

where r = (xlxl )
1
2 and xi is the position vector on the droplet surface. All the position co-ordinates

have been nondimensionalized by the radius R of the initial spherical drop. The first term in
Eq. (1), i.e., rs = 1, represents the equation of the surface of an undeformed drop. The second
term is the O(Ca) ellipsoidal correction to droplet deformation. The third term gives the O(Ca2)
correction that contains second and fourth-order harmonics. In Eq. (1), Dlm and Dlmpq are shape
deformation tensors. As shown by Narsimhan [45], the differential equations for these tensors
are

∂Di j

∂t
+ Ca(Dik�k j − �ikDk j )

= aE Ei j + aDDi j + Ca aDE Sd2[DikEk j] + Ca aDDSd2[DikDk j]

+ Ca2 aE (D:D)Ei j (DkmDkm) + Ca2 aD(D:E )Di j (DkmEkm)

+ Ca2 aD(D:D)Di j (DkmDkm) + Ca2 aEDDSd2[EikDkmDm j]

+ Ca2 aD4:E Di jkmEkm + Ca2 aD4:DDi jkmDkm + O(Ca3), (2)

∂Di jkl

∂t
= bDDi jkl + bDE Sd4[Di jEkl ] + bDDSd4[Di jDkl ] + O(Ca). (3)

In Eqs. (2) and (3), Ei j is the rate-of-strain tensor (symmetric part of velocity gradient) and �i j is
the vorticity tensor (antisymmetric part of velocity gradient):

	i j = Ei j + �i j, Ei j = 1
2 (	i j + 	 ji ), �i j = 1

2 (	i j − 	 ji ).

The coefficients [aE , aD, . . . ] and [bD, bDE , . . . ] in Eqs. (2) and (3) are functions of the viscosity
ratio λ and Bousinesq numbers Bqμ and Bqκ for the shear and dilational surface viscosities,
respectively. The values of the coefficients are found in Narsimhan [45]. The terms Sd2 and Sd4

represent the symmetric, traceless portion of the second- and fourth-order tensors as follows:

Sd2[Ai j] = 1
2

(
Ai j + Aji − 2

3 Akkδi j
)
,

Sd4[Ai jBkl ] = 1
6 (Ai jBkl + AikB jl + Ail B jk + AjkBil + Ajl Bik + Akl Bi j )

− 2
21 Sd2[ApmBmq](δi jδkpδql + δklδipδ jq + δikδ j pδlq + δ jlδipδkq + δilδ j pδkq + δ jkδipδlq)

− 2
45 AmpBmp(δi jδkl + δikδ jl + δilδ jk ).

An approach similar to Barthes-Biesel and Acrivos [11] and Vlahovska et al. [4] is adapted, and
Eqs. (1), (2), and (3) are assumed to represent the droplet shape valid for Ca � 1. The steady-state
solution to the droplet shape can be solved by setting the time derivatives to zero in Eqs. (2) and (3).
Subsequent substitution of the expression for the fourth-order tensor, Di jkl , from Eq. (3) into Eq. (2)
results in the following steady-state equation for the second-order tensor Di j :

−Ca(Dik�k j − �ikDk j ) + aE Ei j + aDDi j + Ca aDE Sd2[DikEk j] + Ca aDDSd2[DikDk j]

+ Ca2 aE (D:D)Ei j (DkmDkm) + Ca2 aD(D:E )Di j (DkmEkm) + Ca2 aD(D:D)Di j (DkmDkm)

+ Ca2 aEDDSd2[EikDkmDm j] − Ca2 b−1
D {(bDE Sd4[Di jEkm]

+ bDDSd4[Di jDkm])(aD4:E Ekm + aD4:DDkm)} = 0. (4)
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FIG. 2. Shape of a deformed droplet placed under uniaxial extensional flow.

D. Bifurcation analysis: O(Ca) and O(Ca2) theory

The steady-state equation (4) is cubic in Di j and results in multiple solutions for the deformed
droplet shape for a given set of external flow conditions and droplet material parameters. The steady-
state analysis often results in a turning point bifurcation in the shape deformation tensor Di j as the
capillary number Ca is increased. Among the multiple solutions, only one is typically found to have
a physically realistic droplet shape. In the O(Ca2) analysis presented here, we solve Eq. (4) up to
O(Ca2) terms. For the O(Ca) analysis, higher-order terms are neglected and Eq. (4) is truncated to
O(Ca) terms to provide the droplet shape solution.

The theory developed is valid for any general linear flow field. In this study, we analyze three
canonical flow types: uniaxial extensional flow, planar extensional flow, and simple shear flow.

III. RESULTS: UNIAXIAL EXTENSIONAL FLOW

For uniaxial extensional flow, the external flow field in dimensionless form is represented as

u∞
1 = −x1, u∞

2 = −x2, u∞
3 = 2x3.

As shown in Fig. 2, the droplet gets compressed along the x1-x2 plane and extended along the x3

axis. The nondimensional rate-of-strain and vorticity tensors are, respectively:

E11 = E22 = −1, E33 = 2 �i j = 0.

Due to the axisymmetry of the flow and the form of velocity gradient tensor, it can be demonstrated
that the solution to the steady-state shape deformation tensor Di j in Eq. (4) takes a form similar to
the velocity gradient:

D11 = D22 = D, D33 = −2D.

Upon simplification, the steady-state equation reduces to a cubic in unknown D. D is solved for
using the Newton-Raphson method in terms of Bqμ, Bqκ , Ca, and λ. A plot of D versus capillary
number results in a turning point bifurcation curve for both the O(Ca) and O(Ca2) analyses (see
Fig. 3). To navigate around the turning point, we start with the capillary number as the parameter in
Newton’s iterative solution method (i.e., we solve for D at a given Ca). Around the region where D
changes sharply, we change the parameter to D (i.e., we solve for Ca at a given D). This technique is
commonly used in the literature to analyze steady-state solutions around turning points [46–50]. One
particular case of the bifurcation curve for λ = 1, Bqμ = 0, and Bqκ = 0 is shown in Fig. 3. In this
plot, positive values of capillary number correspond to extension along the x3 axis and formation of

063601-6



DEFORMATION AND BURST OF A LIQUID DROPLET …
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FIG. 3. Droplet deformation versus Ca in uniaxial flow, from both the O(Ca) (blue line) and O(Ca2) (red
line) analyses (λ = 1, Bqμ = 0 and Bqκ = 0). The y axis is −D/3, where D is the x1 component of the shape
tensor Di j . Positive values of Ca correspond to extension along the x3 axis (prolate shape), and negative values
of Ca correspond to compression along the x3 axis (oblate shape). For this particular set of parameters, a droplet
with D < −2.2 forms a prolate shape, while a droplet with D > −2.2 forms an oblate shape. The stable and
unstable prolate droplet shapes at Ca = 0.05 are shown in the x1-x3 plane.

prolate droplet shapes. Negative values of the capillary number correspond to compression along the
x3 axis and formation of oblate droplet shapes. As one marches along increasing capillary number,
one goes from having one or two steady-state solutions to zero steady solutions. The capillary
number at the turning point represents the critical capillary number CaC . If the flow rate is increased
beyond CaC , the droplet will extend indefinitely and break apart, as there is no steady solution to
the droplet shape. The critical capillary number separates the curves into two parts: a lower stable
branch (bold lines) and an unstable upper branch (dashed lines that give unrealistic droplet shapes).
The same observation was reported by Barthes-Biesel and Acrivos [11] for the clean droplet case.
The O(Ca2) analysis of Barthes-Biesel and Acrivos [11] was found to be in better agreement with
experimental results of Bentley and Leal [13]. The critical capillary number plots reported in this
study make use of the O(Ca2) analysis unless otherwise noted.

A. Clean droplet

Figure 4 shows the dependence of the critical capillary number CaC on viscosity ratio λ for a
clean droplet. We are exactly able to match the results with earlier breakup theories by Barthes-
Biesel and Acrivos [11] and Vlahovska et al. [4]. The figure shows that the critical capillary number
CaC decreases as the viscosity ratio λ increases. This implies that lower viscosity ratio droplets
(for instance, air and vapor bubbles in water [λ ∼ (0–0.02)]) would attain stable shapes even at
elevated extension rates when compared to higher viscosity ratio drops like oil droplets in water
[λ ∼ (10–100)]. Small internal viscous resistance (i.e., λ � 1) seems to support highly elongated
stable droplet shapes under flow. The reason for this observation is as follows: when a droplet is
stretching under flow, a counterflow develops along the axis of stretching from the droplet pole
towards the droplet center. When the pressure drop from this counterflow is larger than the original
Laplace pressure of the droplet, i.e., �p > 2σ/R, the droplet destabilizes. Since λ � 1 drops have
small pressure gradients in the droplet interior, they are able to support larger droplet lengths before
breakup. Note: a scaling analysis from Taylor for λ � 1 droplets shows that CaC ∼ λ−1/6 [53]. We
note that the perturbation theory discussed in this paper fails to provide accurate predictions for
droplet deformation and breakup for λ � 1 as the droplet is too elongated, and hence is no longer
in the small deformation regime. The theory discussed here is valid for λ ∼ O(1).
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FIG. 4. CaC versus λ for a clean droplet in uniaxial extensional flow. The snapshots are deformed droplet
shapes at CaC . Note: for λ = 0.02, the shape from the perturbation analysis is not valid because the droplet is
highly deformed. Slender body droplet theories like in Refs. [12,51,52] are more valid in this regime (λ � 1).

In Secs. III B and III C we see how the presence of surface viscosities (dilational and shear) alters
the dependence of CaC on λ.

B. Effect of surface dilational viscosity: ηκ

The isolated effect of surface dilational viscosity on droplet stability can be examined through
tuning the dilational Boussinesq number Bqκ . Figure 5(a) shows the dependence of CaC on viscosity
ratio λ for different values of Bqκ . Upon increasing Bqκ , the CaC decreases and the droplet breaks
at a relatively lower capillary number compared to a clean droplet. This does not represent an
intuitive result as one would expect an increase in dilational resistance to make droplet breakup
more difficult. The reduced stability limit here can be attributed to the enhanced deformation of
the droplet when surface dilational resistance is present at a given capillary number and viscosity
ratio. Figure 5(b) shows a schematic of the mechanism. When a droplet stretches in flow, there is
dilation at the droplet’s equator and compression at the droplet’s pole. If dilational resistance is

FIG. 5. (a) CaC versus λ for different dilational Boussinesq numbers Bqκ in uniaxial extensional flow. The
shear Boussinesq number Bqμ = 0. The snapshots are at CaC . (b) Schematic of the mechanism behind reduced
stability. Black lines represent the existing circulation pattern, and purple lines are the induced counterflow
from interfacial effects.
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present, the compression pattern at the surface induces a counterflow that results in reduced fluid
circulation inside the droplet. This reduced circulation increases droplet deformation compared to a
clean droplet at the same capillary number and viscosity ratio.

Another way to think of the mechanism is to examine the Boussinesq-Scriven equation for
interfacial stresses [Eq. (5)]:

f = −2
H

Ca
n + Bqκ∇s · (�P). (5)

In the above equation, f is the traction on the surface in dimensionless form. n is the outward-
pointing normal vector, H is the mean curvature, and � is the surface rate of dilation. P is the
projection operator on the surface, and ∇s is the surface gradient. In regions where the dilation rate
is negative (e.g., compression occurs), the capillary forces counteract the compressional resistance
by increasing surface curvature. This outcome leads to enhanced elongation at the droplet poles,
which assists droplet stretching and lowers the critical capillary number.

We note that surface dilational viscosity appears to have a similar effect as surfactant convection
on droplet stability [19,54]. During surface convection, the surfactant is swept towards the droplet
pole, which reduces the surface tension at the pole. In order to balance the external viscous forces at
this location, the droplet elongates, leading to enhanced deformation and a lowering of CaC . Surface
convection also leads to a reduction in internal circulation like in Fig. 5(b).

We find that for viscosity ratios λ ∼ O(1), the dilational viscosity can have a significant impact on
droplet breakup (∼29% lowering of CaC when Bqκ goes from 0 to 6). However, when the viscosity
ratio becomes very large (λ � 1), a droplet with surface dilational viscosity essentially behaves the
same as a clean droplet, i.e., any further increase in surface dilational viscosity has no significant
impact on the critical capillary number. The reason for the observation is as follows. At large values
of the viscosity ratio, the viscous tractions from the flow field dominate the dilational tractions on
the droplet due to surface viscosity. When the fluid inside the droplet is highly viscous (λ > 10), the
viscous dissipation in the droplet interior does not lead to significant deformation upon increasing
Ca. All droplets with λ > 10 break roughly at the same CaC .

C. Effect of surface shear viscosity: ημ

Surface shear viscosity is found to have a stabilizing impact on droplet breakup. Upon increasing
the shear Boussinesq number Bqμ, the droplet breaks up at a larger capillary number compared
to a clean droplet at the same viscosity ratio λ [Fig. 6(a)]. The reason for the enhanced stability
limit of a droplet with surface shear viscosity can be attributed to its reduced deformation compared
to a clean droplet at a given capillary number and viscosity ratio [Fig. 6(b)]. Let us examine the
Boussinesq-Scriven equation for interfacial stresses [Eq. (6)]:

f = −2
H

Ca
n − Bqμ∇s · (�P − 2 es). (6)

In the above equation, es is the surface rate of the strain tensor.
There are two mechanisms that show the effect of surface shear viscosity on droplet deformation.

First, the formula shows that surface shear viscosity has the opposite effect on dilation rate compared
to surface dilational viscosity. Because of this effect, the curvature at the poles of the droplet will
decrease to counteract the compression in these regions. This outcome reduces droplet deformation
and increases the critical capillary number. The second mechanism involves the surface rate of the
strain tensor. The viscous dissipation on the surface due to surface shear viscosity can be related
to es using the formulation developed by Secomb and Skalak [55]. As the surface shear viscosity
increases, the viscous dissipation on the interface also increases. This viscous dissipation tends to
reduce the surface rate of deformation on the droplet and further stabilizes the droplet.

We note that surface shear viscosity appears to have a similar effect on droplet stability as
surfactant dilution, in that both increase the critical capillary number compared to a clean droplet.
During surfactant dilution, the dilation of a droplet surface under flow leads to the distribution of
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FIG. 6. (a) CaC versus λ for different shear Boussinesq numbers Bqμ in uniaxial extensional flow. The
dilational Boussinesq number Bqκ = 0. The snapshots are at CaC . (b) Schematic of the mechanism behind
enhanced stability. Black lines represent the existing circulation pattern, and purple lines are the induced flow
from interfacial effects.

surfactant across an increased interfacial area. The diluted surfactant concentration stabilizes the
droplet by increasing the surface tension of the interface compared to its value for the undeformed
shape. This effect leads to reduced deformation of the droplet when compared to a clean droplet at
the same flow rate and viscosity ratio [19,54].

For very high values of viscosity ratio (λ > 10), it can be noted that surface shear viscosity has
negligible impact on CaC [Fig. 6(a)].

D. Effect of equal surface viscosity: Bqμ = Bqκ = Bq

The theory developed here can be used to predict CaC for any general combinations of Bqμ,
Bqκ , and λ. Figure 7 shows one particular case where the interface has equal surface shear and

FIG. 7. CaC versus λ at different values of Bqμ = Bqκ = Bq under uniaxial flow. Bq = 0 corresponds to a
clean droplet.
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FIG. 8. Combination of Boussinesq numbers that have a CaC identical to that of a clean droplet under
uniaxial flow at λ = 5. “Less stable” (“more stable”) implies that the droplet has its critical point at a lower
(higher) CaC than a clean droplet at the same viscosity ratio.

dilational viscosities, for viscosity ratio λ � 2. From the plot, it can be noted that the overall impact
of equal surface viscosities is to increase CaC from that of clean droplet even for small values of
Bq = Bqμ = Bqκ . For a droplet with equal surface viscosities, the Boussinesq-Scriven equation for
interfacial stresses reduces to Eq. (7):

f = −2
H

Ca
n + Bq∇s · 2es. (7)

From Eq. (7) we see that the rate of dilation does not appear in the interfacial stress balance and
only the Bq∇s · 2es term exists. This leads to viscous dissipation on the interface, which increases
upon increasing Bq. The viscous dissipation due to the presence of finite Bq reduces the surface rate
of the deformation of the droplet and stabilizes the droplet. Similar observations have been reported
in previous studies examining the effect of equal surface viscosities [34,56].

For some combinations of Bqμ and Bqκ (represented by the curve in Fig. 8 for one particular
case of λ = 5), the critical capillary values are found to be the identical as that of a clean droplet at
the same viscosity ratio. In Fig. 8 all the combinations of Bqκ and Bqμ below the curve would break
at a larger CaC than a clean droplet, and all combinations above the curve would break at a lower
CaC than a clean droplet.

IV. RESULTS: HYPERBOLIC FLOW

For a planar hyperbolic flow, the undisturbed external flow field in dimensionless form is

u∞
1 = x1, u∞

2 = −x2, u∞
3 = 0.

The nondimensional rate-of-strain and vorticity tensors are

E11 = −E22 = 1, �i j = 0.

Figure 9 shows that x1 is the axis along which the droplet gets extended, and x2 is the axis of
compression. Again, from the symmetry of the external flow field, the steady-state solution of the
shape tensor Di j in Eq. (4) will be of the form

D11 = D1, D22 = D2, D33 = −(D1 + D2).

Upon simplification, the steady-state equation reduces to two coupled nonlinear equations in
unknowns D1 and D2. The system of equations for D1 and D2 can be solved using the Newton-
Raphson method for a given value of viscosity ratio λ and Boussinesq surface viscosity parameters
Bqμ and Bqκ . The plot of either component of the shape deformation tensor (D1 or D2) versus
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x2

x1

FIG. 9. Deformed droplet shape in planar hyperbolic flow.

capillary number results in a turning point bifurcation curve for both the O(Ca) and O(Ca2) analyses.
One particular case of λ = 1, Bqμ = 2, and Bqκ = 2 is shown in Fig. 10. The capillary number at
the turning point is the critical value CaC beyond which there exists no stable solution to the droplet
shape. In the following sections, we will discuss the dependence of this critical capillary number
CaC on the viscosity ratio for a clean droplet and a droplet with surface viscosity.

A. Clean droplet

Similar to uniaxial extensional flow, the critical capillary number CaC decreases with an increase
in viscosity ratio λ for a droplet with no surfactant on the surface. The lower viscosity ratio droplets
are found to be more elongated around the critical point compared to droplets with a higher viscosity
ratio. The dependence of CaC on viscosity ratio is plotted in Fig. 11 along with experimental results
from Bentley and Leal [13]. The CaC values reported are from the O(Ca2) analysis. As can be
seen from Fig. 11, the theoretical results match well with the experimental results for all viscosity
ratios except very low λ (λ < 0.2). For λ � 1, there is a discrepancy between the two results. The
theory fails in this region as the droplet forms highly elongated shapes, and the small deformation
assumption is no longer valid.

B. Effect of surface shear viscosity ημ and surface dilational viscosity ηκ

The isolated effect of surface shear viscosity and dilational viscosity on droplet breakup is similar
to what was observed for uniaxial extensional flow. Figures 12 and 13 show the dependence of CaC

on viscosity ratio for different surface shear and dilational Boussinesq numbers. We observe that

0 0.02 0.04 0.06 0.08 0.1 0.12
Ca

1.5

2

2.5

3

3.5
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4.5

5

D
1

Stable branch

Unstable branch

FIG. 10. D1 (x1 component of shape tensor) versus Ca from both O(Ca) (blue lines) and O(Ca2) (red lines)
analyses for planar hyperbolic flow. Lower branches (bold lines) represent stable solutions, and the upper
branches represent unstable states.
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FIG. 11. Comparison between theoretical and experimental values of CaC , for a clean droplet (Bqμ =
Bqκ = 0) in planar hyperbolic flow. Experimental results are from Bentley and Leal [13]. The theory does
not provide accurate predictions for λ � 1 (demarcated by vertical dotted line), as deformations are large.

surface shear viscosity has a stabilizing effect on droplet breakup (i.e., it increases CaC compared
to a clean droplet at the same viscosity ratio), while surface dilational viscosity has a destabilizing
effect. The critical capillary numbers for planar extensional flow are higher than that for uniaxial
extensional flow. The mechanism behind enhanced and reduced stability for the two cases is similar
to what was discussed for uniaxial extensional flow.

V. RESULTS: SIMPLE SHEAR FLOW

For a simple shear flow, the undisturbed external flow field in the dimensionless form is

u∞
1 = 2x2.

This flow can be seen as a combination of extension and rotation (Fig. 14). The nondimensional
rate-of-strain and vorticity tensors are

E12 = E21 = 1, �12 = −�21 = 1.

Unlike extensional flow, a simple shear flow exhibits nonzero vorticity effects. Based on the form
of the external velocity gradient, the solution to the steady-state equation will be of the form

D11 = D1, D22 = D2, D33 = −(D1 + D2), D12 = D3.

FIG. 12. CaC versus λ at different values of Bqμ in planar hyperbolic flow. The dilational Boussinesq
number is Bqκ = 0. The snapshots are at CaC .
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FIG. 13. CaC versus λ at different values of Bqκ in planar hyperbolic flow. The shear Boussinesq number
is Bqμ = 0. The snapshots are at CaC .

Upon simplification, the steady-state equation reduces to three coupled nonlinear equations for
unknowns D1, D2, and D3. The system of equations is solved using the Newton-Raphson method.

In the O(Ca) analysis for simple shear flow, where the O(Ca2) terms in the steady-state equation
[Eq. (4)] are neglected, no bifurcation curves are observed. Stable droplet shapes are instead found
for all small perturbations, which is not observed experimentally for clean droplets. Therefore, no
breakup information can be obtained using the O(Ca) analysis in case of shear flow. We will discuss
results for the O(Ca2) analysis below.

A. Clean droplet

In shear flow, the dependence of CaC on viscosity ratio λ is quite different from what was
observed in uniaxial extensional flow and planar hyperbolic flow. Results are shown in Fig. 15 along
with experimental data from Torza et al. [57]. Unlike hyperbolic flow, the experimental results for
shear flow do not match the theory particularly well. This is generally the case for perturbation
theories since the critical capillary numbers for experiments in shear flow (Ca > 0.25) are often
larger than the values in which the theories are strictly valid (i.e., Ca � 1). Nevertheless, the theories
capture the qualitative trends in droplet breakup reasonably well.

In shear flow, our theory observes only stable shapes, and hence no critical capillary number, for
droplets at a low-viscosity ratio (λ < 0.14) and high-viscosity ratio (λ > 2.8). This result is con-
sistent with Barthes-Biesel and Acrivos [11]. In actuality, a critical CaC does exist experimentally
in these regions, but they are very large (CaC � 1) and hence fall outside the range of validity of
our theory. For intermediate viscosity ratios (0.14 < λ < 2.8), our theory predicts a critical capillary
number CaC of O(1) or below. The reason why low-viscosity ratio (λ � 1) droplets have a very large
CaC is the same as discussed earlier for extensional flow—steady high elongation of the droplet is
achievable when the droplet interior has small viscous resistance. For very high-viscosity ratios
(λ � 1), the droplet rotates towards the flow axis due to nonzero vorticity. It does not deform much
on increasing the flow rate, essentially behaving as a rigid body. Figure 15 shows images from

FIG. 14. Droplet placed under simple shear flow.
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Low viscosity ratio  - long elongated drop shapes

High viscosity ratio - vorticity inhhibits breakup

Increasing Ca

Increasing Ca

FIG. 15. CaC versus λ for a clean droplet (i.e., Bqμ = Bqκ = 0) in shear flow along with experimental
results from Torza et al. [57]. Experimental images on the right are from Rumscheidt and Mason [58]. These
images represent how a droplet’s shape will change as Ca increases for a low-viscosity ratio droplet (λ =
2 × 10−4) and a high-viscosity ratio droplet (λ = 6). At large Ca, a low-viscosity ratio droplet forms pointed
ends from which small droplets eject (as depicted by the dashed lines emanating from the droplet tips).

an experimental study on clean droplet breakup by Rumscheidt and Mason [58]. These images
represent how a droplet’s shape will change as the capillary number increases for a low-viscosity
ratio droplet (λ = 2 × 10−4) and a high-viscosity ratio droplet (λ = 6).

B. Effect of surface shear viscosity ημ and surface dilational viscosity ηκ

Just like in uniaxial extensional flow and planar hyperbolic flow, we observe surface shear
viscosity to be stabilizing—in other words, a droplet with finite Bqμ has a higher CaC than a
clean droplet at the same viscosity ratio. The effect of surface dilational viscosity has the opposite
effect—it lowers CaC compared to a clean droplet. The mechanisms behind the enhanced and
reduced stability limits are similar to what we discussed previously.

Figures 16 and 17 show the dependence of CaC on viscosity ratio in shear flow for increasing
values of Bqμ and Bqκ . Upon increasing the surface dilational viscosity, the range of λ for which
CaC is observed becomes larger, while upon increasing surface shear viscosity, the range gets
smaller. The figures also show some snapshots of droplet deformation at the critical point. We note
that some droplet shapes in shear flow have bumps in the equator region (Fig. 16), which was also
observed in other perturbation theories by Barthes-Biesel and Acrivos [11] and Vlahovska et al. [4].

FIG. 16. CaC versus λ at different values of Bqμ in shear flow. The dilational Boussinesq number is
Bqκ = 0. The snapshots are shown at CaC .
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FIG. 17. CaC versus λ at different values of Bqκ in shear flow. The shear Boussinesq number is Bqμ = 0.
The snapshots are shown at CaC .

As discussed by Barthes-Biesel and Acrivos [11], these bumps will not be observed experimentally
but can be likely resolved through higher order perturbation theories.

One interesting observation from our theories is that not only does dilational viscosity reduce the
CaC of a droplet at a given viscosity ratio, but it appears to reduce the deformation at breakup as
well. This point is evident in Fig. 17, where a clean droplet at λ � 1 is known to be highly elongated
at its critical point, but appears to be a mildly deformed spheroid at its critical point when Bqκ = 5.
Although this observation will have to be verified by experiments or simulations, it suggests that
small deformation theories may be reasonable in predicting droplet shapes near critical points for
bubbles with large values of Bqκ , where such theories would otherwise fail for clean droplets. We
note that increasing Bqκ to a sufficiently high value (Bqκ � 0.4) results in the breakup of very low-
and very high-viscosity ratio droplets, which otherwise would have been stable in clean droplets
under small perturbations (Fig. 17).

Figure 18 plots the combinations of Boussinesq numbers that yield the same critical capillary
number as that of a clean droplet at viscosity ratio λ = 1. Boussinesq numbers above the curve imply
that breakup will happen at a CaC lower than that of a clean droplet (coined “less stable”), while
data below the curve imply that breakup will happen at a CaC higher than that of a clean droplet
(coined “more stable”). As can be noted from Fig. 18, at each point on the curve for Bqμ > 0.5,

FIG. 18. Combination of Boussinesq numbers that have a CaC identical to that of a clean droplet under
shear flow at λ = 1. “Less stable” (“more stable”) implies that the droplet has its critical point at a lower
(higher) CaC than a clean droplet at the same viscosity ratio.
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Bqκ/Bqμ � 1. This suggests that the stabilizing effect of surface shear viscosity dominates the
destabilizing effect of surface dilational viscosity, just like in uniaxial and planar hyperbolic flows.

For λ = 0.5, increasing Bqμ from 0 to 1 results in roughly a 26% increase in the critical capillary
number (Fig. 16). For the same viscosity ratio, increasing Bqκ from 0 to 1 drops the critical capillary
number by roughly 27% (Fig. 17). From the above, it appears that surface viscosities could have a
significant impact on droplet stability.

VI. CONCLUSION

In this study, we present conditions for the breakup of a droplet with viscous surface moduli,
under the assumption of weak flow and negligible Marangoni forces. The viscous droplet interface
is modeled by the linear Boussinesq-Scriven constitutive relationship. Using the small deformation
perturbation theories developed by Narsimhan [45], we analyze the critical conditions leading to the
breakup of the droplet under different flow types. For the three flows presented (uniaxial extensional,
planar hyperbolic, and simple shear flow), we observed that surface shear viscosity ημ increases
the critical capillary number at a given viscosity ratio (i.e., stabilizes the droplet), while dilational
surface viscosity ηκ lowers the critical capillary number at a given viscosity ratio (i.e., destabilizes
the droplet).

For the clean droplet results presented here, we are able to precisely match the critical capillary
number with earlier small deformation theories (Barthes-Biesel and Acrivos [11] and Vlahovska
et al. [4]). The validity of the small deformation theories with numerical studies in shear and
extensional flow is reviewed in Acrivos [59] and Rallison [60]. In general, the numerical results of
Rallison and Acrivos [61] and Rallison [14] are found to be in good qualitative agreement with the
small deformation theories for a wide range of viscosity ratios, except when λ � 1 where slender
body theories work well [12,51,52]. The critical capillary numbers from analytic theories are found
to be within 15% of the numerical results for extensional flow and within 20% for shear flow. For
example, at viscosity ratio λ = 1, the critical capillary number in shear flow from analytic theories
is Cac = 0.34, whereas results from several numerical studies lie in the range 0.34 < Cac < 0.43.
[5,14,34,62–65]. For a clean droplet, the O(Ca2) analyses of earlier small perturbation theories [11]
are found to be in better agreement with experiments [13].

When surface viscosity is present on a droplet, the dependence of CaC on λ is qualita-
tively similar to that of a clean droplet. At a given viscosity ratio, the isolated impact of
surface shear viscosity is to increase the CaC , while dilational viscosity is to decrease the CaC .
The destabilizing effect of surface dilational viscosity appears similar to surfactant convection
effects, while the stabilizing impact of surface shear viscosity appears similar to surfactant
dilution. One particularly intriguing observation in the case of extensional flows is that in-
creasing the surface viscosities after a specific value of viscosity ratio (λ ≈ 20) has no signif-
icant impact on CaC . The surfactant-covered droplet essentially behaves the same as a clean
droplet.

Validation of the deformation and breakup theories presented here will require an experimental
investigation of the deformation of a single, small droplet with viscous interfacial rheology or
numerical simulations that investigate similar phenomena. In particular, it would be useful to know
the accuracy of the O(Ca) or O(Ca2) analyses presented here. We note that some surface-active
species that can show predominantly viscous behavior include eicosanol (a fatty alcohol), hexade-
canol (a low-molecular-weight surfactant), or the protein β-casein [24,28–30]. In this analysis, we
neglect the inhomogeneous distribution of surfactant and interfacial elasticity effects. Even with
these assumptions relaxed, we believe that the qualitative trends of surface viscosity will remain the
same, i.e., ηκ is destabilizing whereas ημ is stabilizing, as similar observations have been reported
in a recent numerical study by Luo et al. [62] that examines the effect of equal surface viscosities
on surfactant transport. They report that the surface shear viscosity inhibits local convection, while
the surface dilational viscosity inhibits local dilution.
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APPENDIX: GOVERNING EQUATIONS

For a droplet subject to a linear flow field, the fluid motion inside and outside the droplet is
governed by the Stokes equations. In dimensionless form, these equations are

λ∇2uin = ∇pin, ∇ · uin = 0,

∇2uout = ∇pout, ∇ · uout = 0.

The boundary conditions are the following:
(1) Continuity of velocity at the interface

uin = uout

(2) Force balance at interface

(σ in − σout ) · n = f

(3) Kinematic boundary condition

D

Dt
[r − rs(θ, φ, t )] = 0.

In the force-balance, the traction f due to interfacial stresses is

f = −2
H

Ca
n + (

Bqκ − Bqμ

)∇s · (�P) + Bqμ∇s · (
2 es

)
,

where n is the outward-pointing normal vector, H = 1
2 (∇s · n) is the mean curvature, Bqμ is the

Boussinesq number for surface shear viscosity, Bqκ is the Boussinesq number for surface dilational
viscosity, � is the surface rate of dilation, and es is the surface rate of strain tensor. P = I − nn is
projection operator on the surface, and ∇s = P · ∇ is the surface gradient. The following are the
definitions for the surface rate of strain tensor es and the surface rate of dilation �:

es = 1
2 P · [∇s us + (∇s us)T ] · P, � = P : ∇s us.

In the above expression, us is the velocity at the droplet surface. In the kinematic boundary
condition, rs(θ, φ, t ) is the shape of the droplet described by Eq. (1) in the limit Ca � 1. D

Dt =
( 1

Ca
∂
∂t + ui

∂
∂xi

) is the substantial derivative in nondimensional form.
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