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Thermal convection in a rotating spherical gap is investigated using numerical simula-
tions and compared with results of the GeoFlow ISS experiment. To induce convection,
a radial buoyancy force field is established by using the dielectrophoretic effect from a
high-frequency alternating electric field. Two heating sources are implemented. One source
is a temperature difference across the gap and the other is the internal dielectric heating of
the working fluid. To distinguish both heating sources a heating parameter, λ, is introduced
that is varied together with the electric Rayleigh number, L, and Ekman number, Ek ≈10−3.
The governing thermoelectro hydrodynamic equations are analyzed via a linear stability
analysis and by three-dimensional numerical simulations. The results are compared with
experimental data of the GeoFlow experiment which show that the threshold of convection
and the occurrence of global columnar cells agreed with the theoretical predictions. In
addition the observed fluid flow showed non-Gaussian characteristics which are described
by the quasinormal approximation. The overall flow phenomena are based on polar plumes
and equatorial confined columnar cells and in addition are influenced by internal dielectric
heating.
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I. INTRODUCTION

Internal heating processes in rotating spherical gaps are of great interest for geophysical and
astrophysical applications. Important sources of internal heating are thermonuclear reactions (e.g.,
in stars), tidal heating, and gravitational heating (e.g., in moons and gas giants) or radioactive decay
in terrestrial planets. Internal heating is an important component of hydrostatic equilibrium within
stars which establishes the radiative pressure and determines the evolution of the entire body. For
example, tidal heating is assumed to increase the heat flux of Jupiter’s moon Europa. This leads to
the possibility of fluid-filled basins and even of cryovulcanism [1]. The thermal energy release of
planets is a key feature which can also be observed in the core of the Earth [2] or Venus [3].

Theoretical and numerical analysis of internal heating in spherical gap geometries has been
intensively studied with particular focus on convection in the Earth’s mantle [4,5]. However, large
Prandtl numbers and large viscosity contrasts render it complicated to capture geophysically relevant
convection in laboratory experiments. To overcome these limitations, results are based mainly on
fluids with moderate Prandtl numbers (Pr < 200) and extrapolated to the geophysically relevant
regime of Pr → ∞ [6–8].

So far, only a few convection experiments have been performed under the influence of internal
heating. Limare et al. [9] studied highly viscous fluids over three orders of magnitudes of the
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Rayleigh-Roberts number, RaH , and over two orders of magnitudes of Pr. Their work provided the
first cross validation of convection with internal heating. Fourel et al. [10] improved this experiment
by introducing a compositional gradient to study heterogeneities assumed to be in the Earth’s lower
mantle [11]. The interaction between the two internally heated layers provide a vast variety of
convective patterns. Internal heating is not only interesting from an academic point of view, it is
also used in several industrial applications such as microwave ovens, mixed convection devices for
cooking, to melt glass, process food or even to dry items.

Internal heating-induced convection in the spherical gap geometry has been studied by
Zaussinger et al. [12] using numerical simulations and experimentally measured data from the
GeoFlow IIc experiment [13]. Experimental and numerical interferograms of GeoFlow provided
information to test properties of the electrohydrodynamical (EHD) model. They also observed a
thermal plumelike distribution and a parabolic mean temperature profile in the radial direction.
However, an analysis of rotational effects and a temperature difference between the inner and
outer shell were not included in the study. Nonetheless, both of these properties are important for
convection in stellar interiors [14] and in planets [15]. An extension to the cylindrical geometry was
performed by Travis and Olson [16] that studied a temperature difference across the annulus in the
presence of a dielectric internal heating source. A large parameter regime was investigated focusing
on fluid flow that was characterized by RaH . A scaling law in planar geometry for mixed heating was
studied by Vilella and Deschamps [17]. However, these results cannot be directly transferred to the
EHD model where the sign of the temperature gradient may change the direction of the buoyancy
term.

Thermo-EHD establishes a force field with the dielectrophoretic acceleration as consequence.
This acceleration can be used to drive and control fluid motion. The pioneering work on the EHD
model in a rectangular cavity was published by Roberts [18] and Turnbull [19] in the late 1960s.
Both investigated the stability of the conductive state even in the absence of buoyancy which is an
important limitation for space applications. Since then, this theoretical work has been extended and
tested by laboratory experiments, see Refs. [20–22]. Heat transfer in a planar EHD system under
microgravity conditions was investigated by Yoshikawa et al. [23] and Fogaing et al. [24]. They
compared the heat flux of Rayleigh-Bénard (RB) convection with EHD convection for a large range
of Prandtl numbers and explained that differences are due to thermal perturbations induced by the
electric field. EHD convection in a spherical capacitor was studied without rotation [12,25] and
finally, in the AtmoFlow experiment, with rotation [26]. The GeoFlow experiment was performed
over eight years (from 2008 to 2016) on the ISS. The first mission, GeoFlow I, used a silicon oil,
M5, to investigate the dynamics of an idealized Earth’s core [27]. The second mission, GeoFlow
II, operated on the ISS from 2011 to 2018 and studied mantellike dynamics of an idealized Earth
with 1-Nonanol as a working fluid. It operated over three scientific campaigns: GeoFlows IIa, IIb,
and IIc. However, only the GeoFlow IIc campaign operated with a frame rate of 10 Hz. All other
campaigns used 1 Hz or less.

The analogy between the EHD model instability and the RB model instability is violated by
two processes: first, the thermoelectric feedback, which generates perturbation components in the
electric gravity [28]. This feedback is a result of the Gauss equation which couples the temperature-
dependent permittivity and the electric field. The second process is dielectric heating, a result of the
rotation of molecules under a quickly alternating electric field. While dielectric heating occurs in
many working fluids, it has not yet been investigated in detail in the EHD models. Dielectric heating
is not yet fully controllable and can lead to unpredictable hot spots and damage [29,30].

The main objective of this work is the investigation of convection due to the dielectrophoretic
force in a rotating spherical gap with the focus on the influence of dielectric heating. This paper is
an extension of the authors’ previous work presented by Zaussinger et al. [12] which investigated
the nonrotating case. For this purpose, the higher statistical moments of numerical simulations are
analyzed to reveal the influence of rotation and internal heating. The findings are then compared
with the experimental data of the GeoFlow II mission.
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FIG. 1. Schematic cross section of the GeoFlow experimental setup showing a numerically calculated
temperature distribution over the gap.

This paper is outlined as follows: The general EHD model and governing equations for the
rotating spherical gap are presented in Sec. II, whereas the GeoFlow experiment and numerical
methods are described in Sec. III. Analytic results and a detailed statistical description of the
fluid flow in the rotating spherical gap are given in Secs. IV and V, respectively. This includes a
comparison between numerical simulations and experimental interferograms. A critical discussion
of the results and some concluding remarks are given at the end.

II. MODEL FORMULATION

A spherical capacitor with gap width d = Rout − Rin, with the same physical specifications
as the GeoFlow experiment is filled with a dielectric fluid. The temperature field is imposed
(a) with a temperature difference between the inner and outer shell with �T = Tin − T0 > 0 and
(b) by an internal heat source which includes dielectric heating. A cross-section schematic of the
experiment is shown in Fig. 1. We assume an electrically linear quasielectrostatic field acting on
an incompressible dielectric fluid such that the net force on each dipole is given by the Kelvin
polarization force density F = (ε − ε0)E · ∇E, where ε is the temperature dependent permittivity,
ε0 the vacuum permittivity, and E the electric field.

Thus, the electric Korteweg-Helmholtz force density describes the force acting on the fluid and is
valid for the given assumptions according to Refs. [12,28,31,32] and written as

FKH = ρ f E − 1

2
|E|2∇ε + ∇

(
1

2
ρ

∂ε

∂ρ
|E|2

)
. (1)

where ρ is the density. The first term on the right-hand side of the equation represents the Coulomb
force, the second term the dielectrophoretic force FDEP, and the last term the electrostrictive force
defining the electrostrictive pressure. A detailed description of the derivation of FKH is given in
Melcher [33].
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The fluid is considered to not carry free charges, so that ρ f = 0 and the Coulomb force
vanishes. The electrostrictive pressure will be combined with the hydrodynamic pressure in the
incompressible momentum equation.

An alternating electric field with potential �(t ) = 2Vrms cos(2 π f t ) is applied at one electrode
where f is the ac frequency and Vrms the root-mean-square capacitor voltage. This model of the
electrostatic equilibrium is justified for τ−1

e � f � d/c, where τe is the charge relaxation time and
c is the speed of light [18].

The dielectric loss is given by the power dissipation per unit mass, written as

H = 2π f ε tan δ|E|2
cpρ

, (2)

where tan δ is the ratio between the imaginary and the real part of the permittivity and called the
dielectric loss factor [34] and cp is the specific heat capacity at constant pressure.

A. Governing equations

The equations describing the fluid flow are based on the Oberbeck-Boussinesq approximation
(OBA). The OBA assumes low expansion rates with temperature α�T � 1, where α is the thermal
expansion coefficient with a low thermoelectric parameter e�T � 1, where e = − 1

ε
∂ε
∂T is the ther-

mal permittivity coefficient that decreases with increasing temperature [28]. Under these conditions,
the OBA is valid for density ρ = ρ0[1 − α(T − T0)] and permittivity ε = ε0εr[1 − e(T − T0)],
where εr is the relative permittivity at reference temperature T0.

The problem can now be described with the Navier-Stokes equation by considering the above
formulations as

∂u
∂t

+ (u · ∇)u = − 1

ρ0
∇p − 1

2ρ0
|E|2∇ε − 2� × u − ρ

ρ0
� × (� × r) + ν∇2u, (3)

where u is the velocity, p the pressure, � the rotation vector, r the position vector, and ν the
kinematic viscosity. The temperature equation is

∂T

∂t
+ (u · ∇)T = κT ∇2T + H, (4)

where T is the temperature and κT the thermal diffusivity. Mass conservation is given by the
continuity equation ∇ · u = 0. The nonuniform electric field and the thermoelectric feedback is
calculated via the Gauss equation [23],

∇ · (ε E) = 0. (5)

Following Eq. (5) above, the direction of the FDEP is toward the permittivity gradient and is therefore
collinear with the electrostatic energy stored in the fluid [28].

We now derive the dimensionless governing equations which are obtained by applying the scaling
length r = r∗ d , velocity u = u∗ κT /d , time t = t∗ d2/κT , electric field E = E∗ Vrms/d , temperature
difference T = T ∗ �T + T0, and pressure p = p∗ ρ0κ

2
T /d2, where the superscript ∗ denotes the

value as a dimensionless quantity. The fluid and electric properties are considered constant and
taken at the outer shell. Thus, we obtain the dimensionless Navier-Stokes equation,

Pr−1

[
∂u∗

∂t∗ + (u∗ · ∇)u∗
]

= −Pr−1∇p∗ + ∇2u∗ − 1

4
B · � · L · T ∗ · ∇|E∗|2

− Ek−1ez × u∗ + L · Fr · T ∗ r sin θ s, (6)

where Pr = ν/κT is the Prandtl number, B = e/α the ratio of both thermal expansion coefficients,
Ek = ν/(2�d2) the Ekman number, r the radial distance, θ the poloidal direction, s is the unit vector
in the equatorial plane, Fr = �2d/|ge,Rout | is the Froude number measuring the relative strength of
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TABLE I. Dimensionless parameter range of the GeoFlow
experiment. Parameters with asterisks are defined in the Appendix.

Dimensionless parameter Value

Ekman number (Ek) 2.64 × 10−3–7.62 × 10−3

Froude number (Fr) 5.1 × 10−2–2.66
Prandtl number (Pr) 1.24 × 102–1.75 × 102

Electric Rayleigh number (L) 3.73 × 102–1.59 × 105

Dielectric loss parameter (CT )∗ 9.06 × 103–2.27 × 106

Convective parameter (CE )∗ 2.02 × 10−7–3.54 × 10−6

Expansion ratio (B) 11.20–12.40
Heating parameter (λ) 0.16–60

the centrifugal and the electric gravity force [35], and

L = α�T |ge,Rout |d3/(νκT ) (7)

is the electric Rayleigh number given as a ratio of buoyancy to heat diffusion and viscous dissipation.
The expression of the electric gravity, ge, is suitable for substituting gravitational acceleration with
the assumption derived in Appendix by neglecting the fluctuation of E and the electric feedback
effect. Hence ge is defined as

ge(r) = −2V 2
rms

ε0εr

ρ0

R2
inR2

out

(Rout − Rin )2

1

r5
(8)

at r = Rout. Values of defined dimensionless parameters for the GeoFlow experiment are summa-
rized in Table I.

The dimensionless equation for temperature is

∂T ∗

∂t∗ + (u∗ · ∇)T ∗ = ∇2T ∗ + CT

B � L
|E∗|2. (9)

We now introduce the heating parameter, λ, written as

λ = 1

2

CT

B�L
, (10)

which is used to quantify the heating source in the system. The heating parameter is in fact a result
of the energy balance in terms of Nusselt numbers, Nuin and Nuout, evaluated at the inner and outer
shells, respectively. Their relationship is written as

Nuin − Nuout + 2λ

∫
V

E2
0 dV = 0 for λ < 1, (11)

−Nuin − Nuout + 2λ

∫
V

E2
0 dV = 0 for λ > 1. (12)

The strength of the internal heating is measured by λ, where λ > 1 indicates strong internal
heating and λ < 1 indicates weak internal heating. For λ = 1 internal heating increases the fluid’s
temperature inside the spherical gap geometry until the heat flux through the surfaces is balanced
with the internal heating rate. When λ > 1, the temperature difference across the gap does not
contribute significantly to the global energy transport and results in a parabolic mean temperature
profile. Figure 2(a) provides an overview of different thermal profiles for various internal heating
parameters.

After introducing the internal heating parameter one need also to define a quantitative parameter
for the strength of convection. To investigate the flow we therefore define a further dimensionless
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FIG. 2. Analytic solutions for (a) radial temperature distribution, (b) dielectrophoretic acceleration, and
(c) Brunt-Väisälä frequency for varying λ in conductive and nonrotating case for η = 0.5. Red crosses (“x”)
present solutions for a three-dimensional numerical simulation with λ = 11. Values for λ are chosen according
to the GeoFlow experiment. (d) Sketch of convection in the spherical gap geometry when N2 < 0 in the
complete gap and λ < 1). (e) Sketch of layered convection in the spherical gap geometry where N2 � 0 at
the middle of the gap and N2 < 0 elsewhere with λ > 1.

quantity the dielectrophoretic acceleration, a∗
e , written as

a∗
e = − 1

2 |E|2∇ε/
[
d3

/(
V 2

rmsε0εr
)]

, (13)

which is used to provide an indication of how strong an infinitesimal fluid element is forced at a
certain location in the gap. In the next sections dimensionless parameters are used and the asterisk
are omitted.

III. METHODS

A. The GeoFlow experiment

The GeoFlow experiment on the ISS consists of a concentric spherical gap capacitor that is used
for the investigation of thermal convection. The experimental system has a gap width of 0.0135 m,
with an outer radius of Rout = 0.027 m resulting in an aspect ratio of η = 0.5 (� = 0.25). Figure 1
shows a numerically calculated temperature distribution over the spherical gap. Two external
temperature controlled fluid circuits established a temperature difference of 0.4 K � �T � 9.5 K
between both shells. To induce a dielectrophoretic forcing and hence a radial buoyancy force a fast
alternating electric field is applied. The strength of the force can be controlled by the applied thermal
forcing and the amplitude of the electric field. The electric field can be adjusted between 1273 V and
4596 V to study a variety of convection phenomena. To account for rotational forcing, the sphere is
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able to rotate with three different angular velocities, �, namely with � = 0.05, 5, or 10 rad/s. The
dielectric loss of the working fluid, 1-Nonanol, is caused by the high electric field frequency which
generates dielectric internal heating and is also investigated.

The GeoFlow experiment can simulate three different rotation rates, five voltages Vrms and eight
temperature differences, where two reference temperatures, T0, are measured at the outer shell.
These input properties define 240 experimental points (EP). The present study includes 160 EPs,
summarized in Table I, which presents the full parameter range. However, the weakly rotating
case of � = 0.05 rad/s with Ek ≈ 1 and Fr < 10−4 is excluded in this study. All numerical results
presented are based on EPs defined in the GeoFlow Experimental Scientific Requirements (ESR)
document. A set of eight temperature differences is called a “run” and can be set for a sequential
increase of voltages and rotation rates. Five runs are grouped into four clusters. An overview of the
each cluster is given in Figs. 4(a)–4(d).

The model formulation in Sec. II suggests that the electric Rayleigh number cannot be chosen
independently from CT as this would lead to inhomogeneous distributed sequences in the λ-L plane,
where the heating parameter λ [see Eq. (10)] more intuitively parametrizes the influence of internal
heating than CT . Hence, for the analysis of the dynamics, we group the EPs in such a way that
electric Rayleigh number varies only within a predicted dynamical range depending on the critical
electric Rayleigh number Lc, but the heating parameter λ remains as strong as possible.

The EPs were visualized by a Wollaston Shearing Interferometry (WSI) system which measures
the gradient of the refractive index [13,36]. While the refractive index gradient varies with the
thermal distribution within the spherical gap, certain fringe patterns can be observed where the
thermal gradient changes the (temperature-dependent) refractive index of the fluid. For example,
single convective cells appear as butterfly patterns and sheetlike flows appear as parallel lines [see
Fig. 5(c)]. Unfortunately, other visualizations of convective flow could not be performed for ISS
safety reasons. The recording plane of the camera of the WSI is mounted at a meridional angle of
θ = 30◦ with the North Pole located at θ = 0◦. Thus, the recorded interferograms cover a range
of 88◦, ranging from θ = −14◦ to θ = 74◦, see Fig. 1. From a series of images it is possible to
reconstruct the entire northern hemisphere. While the temporal resolution of the images enables a
satisfactory analysis for the laminar flow regime, it causes imprecise reconstructions in the transient
and turbulent regimes. To overcome these restrictions, only single interferograms are analyzed.

B. Numerical methods

The governing equations are studied using two methods: (a) a linear stability analysis which
provides the critical electric Rayleigh numbers Lc and threshold values of the convective onset and
(b) three-dimensional large eddy simulations (LES) and interferograms calculated with the software
package OpenFoam. The numerical simulations provide the temperature and electric field for the
statistical evaluation which are compared with interferograms. For the linear stability analysis, a
pseudospectral numerical method is used to solve the dimensionless governing equations [37]. Here
the velocity field is decomposed into poloidal and toroidal potentials ψ1 and ψ1,

u = ∇ × ∇ × (ψ1er ) + ∇ × (ψ2er ), (14)

obeying the continuity equation. By using the pseudospectral method and applying ∇ × ∇× and
∇× to Eq. (6) (which separates the potentials), one can solve the hydrodynamic equations with a
high accuracy in the spherical geometry. This results in a fourth-order equation for the potential
ψ1 and a second-order equation for the potential ψ2. The critical electric Rayleigh numbers, Lc,
are calculated using linearized equations [38]. The corresponding eigenvalue problem is solved by
direct numerical integration, where the spectrum is analyzed for growth rates σ = 0.

For the three-dimensional numerical simulations an incompressible, second-order finite volume,
transient buoyancy solver of OpenFoam 4.1 is used which is expanded to include the nonuniform
electric field as derived in Appendix. In addition, the solver includes the source terms for the
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dielectric heating, H , in the temperature equations and the volumetric body force, FDEP, in
momentum equation.

The boundary condition for velocity is no-slip, in a moving reference frame, and Dirichlet
for temperature. To mimic the GeoFlow experiment in all aspects, the experimental time scales
are set consistent with Zaussinger et al. [12]. This included the heating-up periods and the idle
periods between each EP. The electric field is defined as a negative gradient of the electric potential
and is calculated via the Gauss equation, ∇ · (ε∇�) = 0, by taking the electrical fluctuations and
thermoelectric feedback effect into account. The boundary condition of the electric potential is set
at the outer shell with � = Vrms and � = 0V at the inner shell.

The mesh of the spherical gap is generated by radially extruding a spherical two-dimensional
(2D) surface grid with 40.950 faces to 1.843.290 honeycomb shaped cells in 3D with a radial
resolution of 45 cells. The dimensionless wall distance y+ is smaller than 0.2 and corresponds
to a mesh resolution of at least five cells in the viscous boundary layer. The OpenFoam “Pimple”
algorithm solves subsequently the LES model with top-hat filtered versions of Eqs. (3)–(5). The
filter width is the cube root volume of each cell. VanDriest damping in distance to the boundary
layer ensures that the “dynamic k” turbulence model is applied only in the bulk flow [39].

C. Statistical evaluation

The statistical interpretation is based on snapshots of temperature and dielectrophoretic force.
These snapshots are averaged over shells (θ, φ) of equidistant radii and over 30 time stamps
providing 300 s of the fully developed flow. Hence, the calculated profiles of the first four statistical
moments are functions of the radius.

Turbulence and intermittency lead to rare, but intense peaks in the temperature field. As a result,
in such intermittent systems especially the higher-order moments depart significantly from the
Gaussian distribution. In particular, the evaluation of the third and the fourth statistical moments
provide information of rarely occurring events. For convective processes these events are commonly
related to thermal plumes.

The first statistical moment, 〈T 〉, is the mean thermal distribution. Temperature fluctuations are
described by the variance which is the second statistical moment 〈T ′2〉.

An asymmetry of the temperature distribution around the mean value 〈T 〉 is parametrized by
the temperature skewness 〈S〉 = 〈T ′3〉/(〈T ′2〉)3/2. Large positive values of S characterize locally
higher values of T which cover a smaller surface area. Hence, the values deviate further from the
mean value than locally lower values. The same holds for large negative values of S for cold areas
embedded in a hot surrounding [40]. In particular, for S > 0 the fluid flow is dominated by strong
uprising thermals and for S < 0 by strong downdrafts, respectively.

Intermittency is evaluated by the kurtosis (flatness) 〈K〉 = 〈T ′4〉/(〈T ′2〉)2. The kurtosis provides
a scale of a certain “tailedness” and describes rarely occurring and very spiky events in intermittent
systems [41]. For the present study, high values of the kurtosis indicate localized regions with
plumes of large magnitude, and large areas with slow ascending and descending flow. However,
the direction of the fluid flow in the plumes is given by the sign of the skewness.

The higher statistical moments are very sensitive to rare events. They are indicating in this
particular case thermal structures with steep gradients.

IV. BASE FLOW AND THRESHOLD OF CONVECTION

We assume that the toroidal and poloidal components of E1(r, θ, φ) in the conductive case
have only small contributions to the initial electric field E0(r). This justifies the assumption of a
one-dimensional electric field E(r). The Gauss equation and the temperature equation are solved
analytically for a constant permittivity with the electric field equation presented in Eq. (A6) and the
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FIG. 3. (a) experimental interferogram for Ek = 5.2 × 10−3 and λ = 1 for the conductive case. The base
flow structures are outlined in yellow, with a sinusoidal distortion around the North Pole labeled with a
green dot. The equator is in the lower part of the interferogram. (b) Numerical interferograms with the same
parameters evaluated by a three-dimensional simulation. (c) Vertical plane of the temperature distribution
through both poles.

temperature condition imposed in the form of

T (r) = − η

1 − η
+ η

(1 − η)2

1

r
− λ

[
η

(1 − η)2
− η(1 + η)

(1 − η)3

1

r
+ η2

(1 − η)4

1

r2

]
. (15)

This solution is the sum of the base temperature profile, − η

1−η
+ η

(1−η)2
1
r , and the contribution

from the dielectric heating whose amplitude is λ.

1. Thermal profile

To investigate the base state of the experiment the conductive reference case of run “C20” (λ =
11) of the GeoFlow experiment is studied. This includes a range of values for the heating parameter,
λ, to study the transition state (λ = 1) where internal and external heating is balanced, where
internal heating is absent (λ = 0), and the smallest achievable value of the GeoFlow experiment
(λ = 0.16). The analytical solutions of the temperature fields are shown in Fig. 2(a) together with
the 3D numerical simulation for λ = 11 indicated by red crosses which present good agreement
with the corresponding analytic solution. In the case where λ < 1, the internal heating is negligible
and convection is triggered by �T . For λ > 1, the temperature field reaches a maximum at the inner
shell at rmax = 4λ/(1 + 3λ). In this case, the stability of the system depends on the interaction of
the signs of the dielectrophoretic acceleration that is influenced by the temperature gradient. In the
limiting case of λ � 1, the temperature converged to the maximum at approximately rmax = 4/3.
For λ � 1, the maximum is always found at the inner shell with rmax = 1 and radius ratio η = 0.5.
In the absence of rotation (Fr = 0) the isothermal surfaces take the form of concentric spheroids
with radially dependent temperature distributions. However, for small voltages (Vrms � 2121 V), the
Fr exceeds 0.5 and influences the thermal stratification [42].

In the presence of rotation a two-dimensional axisymmetric and equatorially symmetric steady
base flow appears (ur, uθ , 0). Warm fluid is displaced radially outward at the poles whereas cold
fluid is transported inward close to the equatorial plane. When the observed flow exhibits such
complex motion it cannot be solved analytically and has to be calculated numerically. A meridional
flow is observed in a two-cell structure at Ek, Fr ∼10−3 where the temperature maximum is found in
the gap for internal heating. However, at the poles there is a radial shift of the temperature maxima
toward the outer shell [see Fig. 3(c)]. The base flow of the GeoFlow experiment shows a plumelike
structure at the North Pole and wave distortions in the conductive steady state case. Figure 3(a)
shows these structures with yellow lines. Numerical simulations and the corresponding numerically
evaluated interferograms agreed well with the experimental observation, see Figs. 3(b) and 3(c).
However, the numerical reconstruction of the interferograms shows a more pronounced fringe
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pattern in the polar region. This, however, is a result of the differently calibrated interferometry
unit that is used for the calculation.

2. Dielectrophoretic acceleration and buoyancy

In the conductive case the electric field follows the solution of E0 ∼ r−2 [see Eq. (A6)] where
E0 is independent of λ. However, the dielectrophoretic acceleration ae [obtained from Eq. (A2)]
depends on λ and is strictly negative for λ � 1 [see Fig. 2(b)]. The dielectrophoretic acceleration
can be calculated by the analytic solution of the temperature by using the OBA for the permittivity
and the scaling relation β = e �T εr the radial component of the dielectrophoretic acceleration is
written as

ae(r) = −1

2
|E0|2 d ε

d r
= −1

2

(
1

�

1

r2

)2

β

[
2

r2
+ λ

(
6

r2
− 8

r3

)]
(16)

for η = 0.5. Figure 2(b) depicts the radial component of the dielectrophoretic acceleration ae(r) for
four different values of λ. For ae(r) < 0, the sign of dielectrophoretic acceleration is negative and
points radially inward toward the center of the spherical gap. This generates an induced force field
comparable to the gravitational force field. However, for λ > 1, the dielectrophoretic acceleration
changes its sign at rmax and can separate the spherical gap into two layers. A deeper insight into the
stability of the thermal stratification is given by the Brunt-Väisälä (BV) frequency written as

N2 = −ae

T

d T

d r
. (17)

An unstable fluid column is observed at λ > 1 where N2 < 0, except at a region around the
temperature maximum where N2 = 0. The absence of buoyancy indicates two convectively unstable
layers separated by a stable conductive interface, see Fig. 2(e). While the strong forcing of the
dielectrophoretic acceleration is present in the lower shell, a long-time separation is unlikely and a
fully mixed spherical gap is expected. When λ < 1 the entire fluid column is unstable and presents
convective patterns reminiscent of an RB cell see Fig. 2(d).

In the rotating case the threshold of the convective onset is characterized by the destabilization
of the base flow which is observed by the interferometry unit when the fringe pattern is distorted.
For all four clusters [see Figs. 4(a)–4(d)] the onset of convection is observed within a margin of
±177 V. However, for L ∼ Lc, ambiguous interferograms are recorded in which a clear distinction
between the base flow and the convective flow was not possible.

V. THREE-DIMENSIONAL SIMULATIONS AND COMPARISON
WITH THE GEOFLOW EXPERIMENT

The Geoflow experiment provides only interferograms which show the radially averaged
temperature distribution of the gap and not the flow. Thus, we use three-dimensional simulations to
reconstruct the flow field and temperature. Numerical results are used to explain the interferograms
and to evaluate how significantly the dielectric heating parameter, λ, influences the flow and
temperature distribution.

Of 160 analyzed EPs we find 22 (14%) with λ < 1 and 138 (86%) with λ � 1 with a mean value
of λ = 5.6 and median of λ = 2.1. The minimum value is λ = 0.16 at Vrms = 1273 V with temper-
ature difference of �T = 9.5 K. The maximum value of λ = 60 is found for the highest available
voltage Vrms = 4596 V and the lowest temperature difference �T = 0.4 K. All cases with λ < 1 are
found at low voltage (Vrms = 1273 V) in combination with high temperature differences �T > 3 K.
All 160 EPs of the GeoFlow experiment are grouped into four clusters with respect to four Ekman
numbers and two Prandtl numbers, (Ek = 7.6 × 10−3, Pr = 176), (Ek = 5.2 × 10−3, Pr = 125),
(Ek = 3.8 × 10−3, Pr = 176), and (Ek = 2.6 × 10−3, Pr = 125). Figures 4(a)–4(d) visualize these
clusters. To provide an adequate overview, the experimentally recorded interferograms are analyzed
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FIG. 4. Experimental points (EP) of the GeoFlow experiment in the λ-L plane for (a) Ek = 7.6 × 10−3,
Pr = 175; (b) Ek = 3.8 × 10−3, Pr = 175; (c) Ek = 5.2 × 10−3, Pr = 125; and (d) Ek = 2.6 × 10−3, Pr =
125. Dark gray dots represent the conductive cases, red dots the columnar flows, blue dots the transition and
green dots the turbulent cases. Black lines with � symbols mark the onset of convection, and with � symbols
the transition to the turbulent regime.

and categorized into several separate cases where the conductive states are colored in dark gray,
columnar flows in red, transitional cases with remnants of columnar cells in blue and turbulent cases
in green. The black line with � symbols represents the result of linear stability analysis with the
critical Rayleigh number Lc, whereas the black line with � symbols separates the weakly nonlinear
regime from the transitional regime. The vertical dashed line represents the transition between
convection where the temperature difference across the gap dominates the energy transport (λ < 1)
and the internal heating dominates convection (λ > 1). In the subsequent section, the dynamics of
rotating convection are investigated in more detail, regarding the influence of the heating parameter,
λ, the electric Rayleigh number, L. The Prandtl number, Pr, and the Ekman number, Ek, vary only
little in the experiment which makes it difficult to deduce meaningful influences on the fluid flow.

A. Weakly nonlinear regime

The weakly nonlinear regime is defined as the region where L � 6 Lc [43]. In this regime, the
dynamics follow approximately the Proudman-Taylor (PT) theorem with ∂u

∂z ≈ 0, where z denotes
any line parallel to the z axis of rotation. Within this regime, the pressure force is balanced by the
Coriolis force and leads to the formation of columnar cells which are aligned with the rotation axis
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FIG. 5. Columnar cells visualized by automatic pattern recognition, Zaussinger et al. [13]. The North Pole
is located in the center and the equator at the outline. The colors refer to angles of identified fringe lines.
(a) Spiraling columnar cells with m = 4 for L = 8849, Ek = 7.6 × 10−3, and λ = 0.16, (b) slightly spiraling
columnar cells with m = 5 for L = 7217, Ek = 5.2 × 10−3, and λ = 0.33, (c) almost straight cells with m = 6
for L = 12243, Ek = 5.2 × 10−3, and λ = 0.19. Animations of all three cases are available as Supplemental
Material files in Refs. [46–48]. (d) Sketch of columnar cells aligned with the rotation axis in the spherical shell.

and confined by the tangent to the inner sphere. Spirals occur for impermeable boundaries that tilt
the columnar cells. These spirals are well known to occur for moderate Prandtl numbers and are
visible in equatorial cuts of the corresponding numerical simulations (see Ref. [44]). The azimuthal
wave numbers of the columnar cells are estimated using m ∼ Ek−1/3 [43,45] which corresponds to
m ∼ 5–7 for the parameter range of the GeoFlow experiment. Deviations from the theoretical values
by one wave number can be explained by the influence of the supply shaft at the South Pole of the
experiment (Fig. 1) and by the nonuniform buoyancy force. The regime in which columnar cells
occur is delimited by the 6 Lc criterion, but does not depend on λ, Ek, or Pr.

Figure 5 shows columnar cells with a fourfold, fivefold, and sixfold symmetry. The correspond-
ing experimental points are labeled with wave numbers in Figs. 4(a)–4(d). The starlike structures
show steep thermal upwelling and large down-welling regions. Columnar cells can be identified as
butterfly patterns which are observed in the upper part of Fig. 5(c). Spiral structures are found for
cases as presented in Fig. 5(a) and 5(b).

1. Thermal profile

To analyze the fluid flow in the weakly nonlinear regime of GeoFlow we carried out numer-
ical simulations with the parameters of two representative runs, with L/Lc = 1.15 (“C17”) and
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L/Lc = 2.25 (“C20”). Both runs differ only in the high voltage and cover fairly wide ranges in
the heating parameter. Figure 4(a) shows these EPs, where L/Lc = 1.15 and λ = 10 is labeled as
“1,” L/Lc = 1.15 and λ = 0.5 is labeled as “2,” L/Lc = 2.25 and λ = 2.5 is labeled as “3,” and
L/Lc = 2.25 and λ = 0.16 is labeled as “4.” In all four cases the mean temperature profiles 〈T 〉 do
not show strong convective mixing in the bulk of the fluid [see Fig. 6(a)]. This is to be expected as
the onset of convection is close to the threshold. When convective mixing appears, the profiles in
the bulk flatten and the boundary layers compress toward the shell’s boundaries.

According to the PT theorem columnar cells are expected in the rotating case. Consistent to
this, our numerical simulations found columnar cells with wave numbers between m = 4 and
m = 8 which are visible for both heating scenarios, as shown in Figs. 6(g) and 6(h). When λ < 1,
the variance is significantly smaller and shows peaks in the vicinity of the boundaries caused by
homogeneously thermalized, rising and/or falling plumes, see Fig. 6(b). The maxima of the thermal
fluctuations is observed between 1.5 < r < 1.8 and coincides with the heating activities in the
interior of the polar plumes.

Figures 6(c) and 6(d) shows the averaged skewness and kurtosis in the radial direction. The
skewness has a flat profile with values |S| � √

2 and K � 3 for 1 < r < 1.3. This region can be
described by the quasinormal approximation where the realizability condition [49], K > 1 + S2,
provides an upper boundary for the skewness. Furthermore, the observed values of S and K are in
good agreement with the elevator model of convective cells which shows a similar sub-Gaussian
behavior (1 < K < 3). In the upper half of the gap (r > 1.5) we found |S| � √

2 and K > 3. The
positive sign of S and the increase in S and K originates from the centrifugal force. In GeoFlow, the
centrifugal force leads to the formation of two dominant up-flows in polar regions.

2. Stability and N2

The dielectrophoretic acceleration shows behavior similar to that of the conductive case (see
Fig. 2). For λ < 1, the dielectrophoretic acceleration is strictly negative due to the negative radial
temperature gradient. A change of sign in the dielectrophoretic acceleration is found for λ > 1.
However, this did not influence the global stability. The BV frequency N2 is always negative or
zero which indicates convective mixing over the entire gap [see Fig. 6(e) and 6(f)]. Far from
the boundaries a layering such as two convectively layers separated by a diffusive interface [see
Fig. 2(e)] was not observed.

B. Transitional regime for λ � 1

For L > 6 Lc the regular columnar cells disperse and the flow becomes more turbulent. Fig. 10(a)
shows a representative EP where the columnar cells are visible, but not regular any more.
Consequently, Gastine et al. [50] denoted this parameter regime as the “transitional regime.” A
set of five representative EPs were analyzed for L > 6 Lc and λ < 1 and are shown in Fig. 4(a) as
four blue circles and the red circle inside the region defined as “set 1.”

1. Thermal profile

The electric Rayleigh number L is in the range of 1.1 × 104 � L � 2.4 × 104 which corresponds
to values slightly above the weakly nonlinear regime with heating parameters between 0.16 �
λ � 1.01. The averaged temperature field 〈T 〉 and the corresponding variance 〈T ′2〉 are shown in
Figs. 7(a) and 7(b). For the entire parameter range, the mean temperature shows a well mixed bulk
between r = 1.1 and r = 1.7.

Just as in the weakly nonlinear regime, the centrifugal force leads to a non-Gaussian thermal
distribution for r > 1.5. Polar plumes are detached toward the upper boundary to form a cell
covering the entire gap. Columnar cells confined by the tangent cylinder are only weakly connected
to the outer shell. This results in a broad upper boundary layer, but an increase in S and K due to
polar plumes, see Fig. 7(c) and 7(d). The skewness is bounded by

√
2 for r < 1.75 due to columnar
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FIG. 6. Averaged thermal properties for simulations with L/Lc = 1.15 (black) and L/Lc = 2.25 (red), for
λ < 1 and λ > 1, respectively. (a) The mean temperature, (b) the temperature variance, (c) the skewness of
the temperature, (d) the kurtosis of temperature, (e) the dielectrophoretic acceleration, (f) the Brunt-Väisälä
frequency, (g) the a 3D simulation for L/Lc = 2.25 and λ = 2.5, and (h) a 3D simulation for L/Lc = 1.15 and
λ = 0.16.
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FIG. 7. Averaged (a) temperature, (b) temperature variance, (c) skewness of temperature, and (d) kurtosis
of temperature for λ � 1 and 1.4 × 104 < L < 2.4 × 104.

cells and this leads to a sub-Gaussian (K ∼ 2) distribution. In contrast to the weakly nonlinear
regime, this region is more strongly mixed due to higher convective fluxes.

2. Stability and N2

Figure 8(a) shows an additional effect of the centrifugal force. A steep gradient exhibits in the
dielectrophoretic acceleration, ae, at the equatorial region close to the inner shell with r < 1.1.
The steep gradients at the inner shell are caused by the boundary layers formed by the columnar
cells. As shown in Fig. 8(a), the dielectrophoretic acceleration as well as the BV frequency nearly
vanish for r > 1.1. The confinement of columnar cells by the tangent cylinder and the resulting
stable stratification above r = 1.6 reduce the thermal gradients and hence the dielectrophoretic
acceleration. In summary, the upper boundary regions of the midlatitudes are nearly adiabatically
stratified with N2 ∼ 0. In the polar regions, the dielectrophoretic acceleration and the BV frequency
are nonzero at the outer shell which agree with the results shown in Fig. 2(c). The mean
dielectrophoretic acceleration shows a small peak around r = 1.8 which is due to the boundary
layer. The horizontal components of ae does not contribute to the dynamics [see Fig. 8(b) and 8(c)].
The absolute values are two to three orders of magnitudes smaller than the radial component which
justifies the use of Eqs. (A8) and (A9) for the parameter range investigated.

C. Transitional regime for λ > 1

A set of seven representative EPs with 2.0 × 103 < L < 3.5 × 104 are analyzed for the parameter
regime λ > 1, Pr = 175, and Ek = 3.8 × 10−3. The heating parameters range between 1.2 < λ �
21 and are shown in Fig. 4(a) as four green circles and three blue circles labeled as “set 2.”
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FIG. 8. Averaged (a) radial component of dielectrophoretic acceleration, (b) meridional component of
dielectrophoretic acceleration, (c) azimuthal component of dielectrophoretic acceleration, and (d) Brunt-
Väisälä frequency for λ < 1 and 1.4 × 104 < L < 2.4 × 104.

1. Thermal profile

The maximum of the mean temperature is found in the middle of the gap [see Fig. 9(a)] and
shifted toward the outer shell located at r = 1.5 which represents a higher value than that of the
conductive case rmax = 4/3. This shift was also observed in Zaussinger et al. [12] and can be
explained by an “eroding” convective flow.

The observed thermal fluctuations [see Fig. 9(b)] in the outer gap region are higher than in the
case of λ < 1. This leads to statistical outliers and therefore high values in the kurtosis. This is
well observed for the case where −1 < S � 0 and 2 < K � 3 and is indicated in Fig. 9(c) and
9(d). In contrast to the cases with low internal heating, the skewness is negative in the lower gap
region, but showed a steeper ascent for r < 1.75. A closer look to the three-dimensional temperature
field reveals the negative sign of S and shows strong pointwise down-welling plumes. Four distinct
pointwise plumes are highlighted and occurred as double-eye structures as shown in Fig. 10(b)
where white rectangles highlight these structures. However, columnar cells are not observed for
L > 5 × 104 which is a result of the internal heating process. The columnar cells vanish by the
convective flux that reversed the sign of the dielectrophoretic acceleration.

2. Stability and N2

For λ � 5.0 the dielectrophoretic acceleration is positive between r = 1.1 and r = 1.4 [see
Fig. 11(a)]. However, near the outer boundary, the dielectrophoretic acceleration is small or zero.
The inversion of the sign of the dielectrophoretic acceleration would lead to a separation of the
flow into two unstable layers separated by a stable, diffusive interface. However, layering is not
observed in the numerical simulations. This can be explained by the buoyancy force in the gap.
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FIG. 9. Averaged (a) temperature, (b) temperature variance, (c) skewness of temperature, and (d) kurtosis
of temperature for λ � 1 and 2.0 × 103 < L < 3.5 × 104.

The dielectrophoretic acceleration is at least an order of magnitude higher at the inner shell than in
the bulk or in the upper shell. This destabilized the diffusive interface where the dielectrophoretic
acceleration changes sign and is able to form a convection cell which fills the entire gap. The

FIG. 10. Interferograms of the GeoFlow experiment with the North Pole at the center of the circle:
(a) Remnants of columnar cells for L = 2.4 × 104 and λ = 0.7. (b) Equatorial, pointwise plumes for L = 6000
and λ = 60 with highlighted structures after postprocessing.
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FIG. 11. Averaged (a) radial component of dielectrophoretic acceleration and (b) Brunt-Väisälä frequency
for λ � 1 and 2.0 × 103 < L < 3.5 × 104.

negative sign of the BV frequency over the entire gap confirms this and is shown in Fig. 11. The
horizontal components of the dielectrophoretic acceleration are of comparable magnitude to those
in the case of λ < 1 and do not contribute to the flow.

VI. DISCUSSION AND CONCLUDING REMARKS

In contrast to other spherical shell experiments (see Refs. [51,52]) the GeoFlow experiment
provides a platform for investigating convection triggered by the dielectrophoretic effect with
two heating sources; dielectric heating (λ > 1) caused by a fast alternating electric field and
a temperature difference across the gap (λ < 1). Furthermore, it is the first study of rotating
convection which includes both heating sources and a micro-gravity environment.

We predicted a separation of the flow into two layers in the absence of Earth’s gravity. However,
we were unable to find evidence of stable flow separation in the experiments or numerical
simulations. One reason might be the electric buoyancy force which supports rapid mixing over
the entire gap.

Internal heating in rotating RB systems was studied numerically, e.g., by Zhang and Busse [53].
They showed columnar convection for Pr > 10 and Ek < 10−3, a parameter regime that coincides
well with the above-presented results, although a temperature difference �T was not included
in their work. A direct comparison with their results was difficult as the underlying governing
equations differ in many aspects, e.g., the thermoelectric feedback or the centrifugal force term.
However, a valid expression of the Taylor-Proudman theorem for the EHD model and columnar
cells in the weakly nonlinear regime was found. The case of pure internal heating was analyzed
by, e.g., Simitev and Busse [54] and showed results consistent with those found in the GeoFlow
experiments in terms of spiral and overlapped columnar convection cells in the weakly nonlinear
regime. Deschamps et al. [55] investigated volumetrically heated spherical gap convection in the
nonrotating case. Numerical simulations showed steep down-welling thermal plumes and broad
upwelling regions which agree with the GeoFlow experiments for λ � 1 in the transient regime.

The statistical evaluation showed that the EHD convection in the spherical gap can be described
by the quasinormal approximation. Results provided good agreement to studies in the RB cell by
Emran and Schumacher [56] where the first four statistical moments showed the same behavior in
the plane geometry.

The most limiting feature of the GeoFlow experiment is its inaccessibility regarding visual
measurement techniques. Due to safety and weight reasons, it was not possible to use tracer particles
or larger adaption optics. Even though the interferograms showed only a projection of the thermal
structure it was possible to extract basic properties of the convective flow. The onset of convection
and generic convective patterns in the interferometry were compared with the linear stability
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analysis and the regimes as defined in Gastine et al. [43]. The pointwise plume regime for λ � 1
where internal heating dominates over the centrifugal force was a limiting case in Zaussinger et al.
[12]. In a first attempt, velocity and drift rates were determined by a machine learning algorithm.
However, numerical simulations and measured velocities differed by up to a factor of four. In the
future, it is planned to increase the number of measurement points to lower the statistical uncertainty.

Bifurcations and hysteresis effects in the rotating spherical gap were investigated by Feudel et al.
[57] and Feudel et al. [58], respectively. Unfortunately, these effects cannot be confirmed with the
experimental points of the GeoFlow IIc mission. The time scales of these experiments were only
in the range of a few minutes. However, the GeoFlow IIb mission provided several studies with
an experimental time of up to four hours. This data could be used in the future to investigate the
above-mentioned bifurcations and hysteresis effects.

The GeoFlow experiment was performed at two reference temperatures, namely 293 K and
303.5 K. This experimental setup resulted in two Prandtl numbers, four Ekman numbers and ten
Froude numbers. Each dimensionless value varied between its minimum and maximum by a factor
of 1.41, 2.88, and 53, respectively. Differences were mainly found in the onset of convection
and the wave numbers of the observed columnar cells. The wave numbers of the columnar cells
in the GeoFlow experiment coincide with RB results (see Refs. [43,59]). However, no structural
differences between the sets of four different Ekman numbers were found. The influence of the
Froude number was not investigated. The complex interaction of all forces made it difficult to focus
on this single influence. The weakly rotating case, Ek ∼ 1, was not included in this study and
will be used for future investigations. For the weakly rotating case, regular geometric structures
such as tetrahedrons and octahedrons are expected [25]. Unfortunately, the GeoFlow experimental
container was withdrawn from service aboard the ISS in December 2018 which makes a resumption
of experimental work impossible.

The launch of the follow-up experiment AtmoFlow is planned for 2024. This experiment is
designed to investigate atmospheric-like fluid flows [26].
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APPENDIX: DERIVATION OF DIMENSIONLESS THERMOEHD EQUATIONS

We use the OBA for permittivity ε and the identity ∇(ε|E|2) = ε∇|E|2 + |E|2∇ε, to rewrite the
dielectrophoretic force FDEP as

FDEP = − 1
2 |E|2∇ε = 1

2∇[|E|2εrε0e(T − T0)] − 1
2εrε0e(T − T0)∇|E|2, (A1)

where the first term on the far-right-hand side is a gradient force and is included in the pressure
gradient. The remaining term can be written as a electrical thermal buoyancy force, F = −ρ0α (T −
T0) ge with

ge = e

ρ0α
∇

(
ε0εr |E|2

2

)
. (A2)

This term is known as the electric gravity which represents a mean acceleration omitting spatial
variations in the permittivity. Hence, ge alone is not suitable for the analysis of buoyancy related
phenomena. In this study, the corresponding dielectrophoretic acceleration ae = FDEP/ρ0 is instead
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used which counts for all spatial variations of the permittivity and the temperature. This includes
the consideration of the sign change of the dielectrophoretic acceleration under certain conditions
which will also change the sign of the buoyancy term. A comparable approach is used by Mutabazi
et al. [28] where the electric gravity is split into a base state and a fluctuating part.

Since the electric field has to fulfill the Gauss equation ∇ · (εE) = 0 or rather the dimensionless
formulation Eq. (A3), it is split into two parts and calculated via the gradient of electric potential �,

∇ ·
[

(ε0εr − eT ∗�T )
Vrms

d
E∗

]
= 0, (A3)

E∗ = E∗
0(r∗) + E∗

1(r∗, θ, ϕ), (A4)

E∗
0(r∗) = −∇�∗

0(r∗), E∗
1(r∗, θ, ϕ) = −∇�∗

1(r∗, θ, ϕ). (A5)

where poloidal and toroidal angles are denoted by θ and ϕ, respectively. Thus, the field E∗
0(r∗)

satisfies ∇ · E∗
0(r∗) = 0 which can be calculated analytically

E∗
0(r∗) = 1√

�

1

r∗2
er∗ , (A6)

where � = (1 − η)4/η2 is a geometrical factor for the spherical shell and η = Rin/Rout is the radius
ratio. The electric potential is calculated via

��∗
1 = CE � L

1 − CE � L T ∗ ∇T ∗ · [∇�∗
0(r) + ∇�∗

1(r, θ, ϕ)], (A7)

with the dielectric loss parameter CT = 4π f eε2
0ε

2
r tan δV 4

rms/(cpρ
2νκ ) and the convective parameter

CE = ρνκ/(2ε0εrV 2
rms).

For |E∗
1| � |E∗

0| [cf. Figs. 8(a)–8(c) where the horizontal components of the dielectrophoretic
acceleration are three order of magnitudes smaller than the radial component] the Navier-Stokes
equation and the temperature equation read,

Pr−1

[
∂u∗

∂t∗ + (u∗ · ∇)u∗
]

= −Pr−1∇p∗ + ∇2u∗ + B · L · T ∗ · 1

r∗5 er − Ek−1ez × u∗

+ L · Fr · T ∗ r∗ sin θ s (A8)

and

∂T ∗

∂t∗ + (u∗ · ∇)T ∗ = ∇2T ∗ + CT

B �2 L

1

r∗4 , (A9)

respectively. Apart from the internal heating term and the geometrical aspects, this set of equations
is identical with the governing equations presented in Feudel et al. [25] [Eq.(1a)–(1c)] and for the
rotating case shown by Curbelo et al. [35] [Eqs. (1) and (2)]. This model is not suitable for describing
pure internal heating. For completeness, we refer to Travnikov et al. [60].
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