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We analyze the dynamic behavior of viscoelastic fluids in elastic tubes subject to
pulsatile pressure gradients. In particular, we study the dynamic permeability, a response
function that relates linearly flow and pressure gradient in frequency domain. We have
found resonances that can be associated to the elasticity of the tube and resonances that
can be associated to the elasticity of the fluid. There is a rich phenomenology that includes
cooperation and competition of both elasticities. Tuning of the system parameters allows
for the excitation of the different modes in the system, sometimes giving responses that are
larger than the ones of the corresponding systems with elasticity in only one of its elements.
This behavior is similar to the one of two coupled oscillators. Our results are relevant for
small confining geometries with low Young moduli. For example, for a microtube with
a radius of a few hundred microns with the elasticity of polydimethylsiloxane (PDMS),
in which a viscoelastic fluid, with the rheological parameters of blood, is driven by a
pulsatile pressure gradient, resonance frequencies on the sound range are predicted. In
a wide frequency range, the dynamic permeability is much lower than the one of the same
fluid flowing in a poly(methyl methacrilate) (PMMA) tube. Our results are potentially
useful for tailoring composite laboratory-on-a-chip devices, where introducing materials
with different parameters in a device would induce an increase or decrease of the amplitude
of the longitudinally averaged flow. We demonstrate that the magnitude of the dynamic
permeability for a composite tube, at a given frequency of the driving pressure drop,
determines the amplitude of the average flow along the composite tube.

DOI: 10.1103/PhysRevFluids.5.063303

I. INTRODUCTION

The dynamic permeability is the frequency-dependent fluid response to a dynamic pressure
gradient. It relates pressure drop and flow and has information about which frequencies of the
pressure drop could maximize or minimize the flow magnitude [1–6].
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Knowledge of the dynamic permeability of viscoelastic fluids might be relevant for biofluids,
since these ones are generally viscoelastic, like blood, mucus, milk, and lymph [7,8]. Studying them
in elastic confining media is important, since in natural systems biofluids are generally confined in
elastic tubes, such as blood vessels, bronchia, milk ducts, or lymphatic vessels.

The study of the dynamics of viscoelastic fluids flowing in elastic media could also be relevant
for laboratory-on-a-chip systems that test biofluids in elastomeric microdevices [9–11].

We have recently analyzed the dynamic behavior of Newtonian fluids in elastic tubes subject
to pulsatile pressure gradients and showed that a resonant behavior at frequencies in the range of
ultrasound emerges for fluids confined in elastomeric materials at microscales [12].

The effect that the elasticity of both the fluid and the confining media has on the dynamic
permeability has only been considered to include the effect of longitudinally oscillating tubes
in Maxwell fluids [13]. Other studies that have not considered the dynamic permeability have
addressed the problem of flow induced by a wave traveling on the tube’s wall for Maxwellian
fluids [14,15].

In this paper, we consider a Maxwellian fluid, which is the most common model of viscoelastic-
ity. We analyze the dynamic behavior of this fluid, subject to a pulsatile pressure gradient, flowing
through an elastic tube that can have both axial and radial displacements of the wall. We show that
the interplay between the elasticities of the fluid and the wall gives rise to resonances that could be
roughly attributed to either the fluid or the wall. By moving the system parameters, one might tune
one or the other to be the most relevant resonance of the system. These resonances are meaningful
for small confining geometries with low Young moduli. For example, for a microtube of 200 mμ in
diameter with the elasticity of polydimethylsiloxane (PDMS), in which a Maxwellian fluid with the
rheological parameters of blood is driven by a pulsatile pressure gradient, resonance frequencies on
the sound range are predicted. Our results are potentially useful for tailoring laboratory-on-a-chip
devices, where changing the elasticity of different parts of a device, by the introduction of different
materials, would change the dynamic permeability of the system. As a proof of concept, we analyze
flow in a composite theoretical device made of two different materials, with the elastic properties of
PDMS and poly(methyl methacrilate) (PMMA), and demonstrate that the magnitude of the dynamic
permeability for a composite tube, which clearly differs from the one of a tube made of a single
material, determines the amplitude of the longitudinally averaged flow along the composite tube.

II. MODEL EQUATIONS

We consider a tube whose radius, a, is much smaller than its length, l . We define x as the flow
direction along the tube and r as the radial direction. We consider that the pressure in the radial
direction adjust instantaneously at a given point along the flow direction, i.e., ∂ p

∂r = 0. So the system
is subjected to a nonstationary pressure gradient which is a function of the direction along the flow
and time, that is, ∇p(x, t ) = ∂ p(x,t )

∂x ı̂.
We consider conservation of mass and momentum for a linear Maxwellian incompressible fluid

with density ρ, viscosity μ, and relaxation time tr , for which convective terms are negligible. These
equations are as follows:

∂u

∂x
+ 1

r

∂ (rv)

∂r
= 0, (1)

tr ρ
∂2u

∂t2
+ ρ

∂u

∂t
= −tr

∂

∂t

(
∂ p

∂x

)
− ∂ p

∂x
+ μ

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
, (2)

where u(x, r, t ) and v(x, r, t ) are the axial and radial velocities of the fluid, respectively.
We consider equations for the elastic motion of a tube with a thin thickness h � a, wall density

ρw, Young modulus E , and Poisson ratio ν. Our equations allow for radial and axial displacements,
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η(x, t ) and ξ (x, t ) [16,17],

ρw h
∂2η

∂t2
= σrr − E h

1 − ν2

(
η

a2
+ ν

a

∂ξ

∂x

)
, (3)

ρw h
∂2ξ

∂t2
= −σrx + E h

1 − ν2

(
∂2ξ

∂x2
+ ν

a

∂η

∂x

)
. (4)

The boundary conditions for stresses between the wall and the fluid imply that σrr = p and tr
∂σrx
∂t +

σrx = μ ∂u
∂r |a, where the right-hand side of this equation has been considered at the mean position

of the fluid-solid interface.
The continuity of velocities, in both the radial and axial directions between the fluid and the

tube wall, approximated at the mean wall position, r = a, where the tube is neither expanded nor
compressed, are given by

∂η

∂t
= v

∣∣∣∣a;
∂ξ

∂t
= u

∣∣∣∣
a

. (5)

The approximation of boundary conditions, evaluated at r = a, substitutes a free boundary value
problem by fixed boundary conditions, and is valid when the tube deformations, η and ξ , are much
smaller than the average radius of the tube. It allows for an analytical treatment of the problem.

Solutions of Eqs. (1)–(5) are obtained using the methodology presented in Ref. [12]. We have
considered the general form of stationary waves, i.e., waves that can be expressed as the product
of a term dependent on the direction of propagation and a time-dependent term for pressure, fluid
velocities, and wall displacements. Since stationary waves are characterized by having a dynamics
with fixed values at certain points in space (nodes), this assumption allows us to impose fixed
values of certain parameters at the system boundaries, for example, a constant value for pressure
at the end of a finite tube (which is an experimental boundary condition commonly used in
microfluidics). Solution of Eqs. (1)–(5), gives two equations for pressure and pressure gradient,
in frequency domain, whose coefficients give a dispersion relation that relates the wave number of
the propagating modes in terms of the frequency of the applied pressure gradient. Such equations
are harmonic, that is,

∂2 p̂(x, ω)

∂x2
= −k2

a (A(ω)) p̂(x, ω) (6)

and

∂3 p̂(x, ω)

∂x3
= −k2

b (A(ω))
∂ p̂(x, ω)

∂x
. (7)

Consistency requires that k2
a = k2

b = κ2. This gives a quadratic equation for A(ω) that is needed
in order to know the solution of u(x, r, t ), v(x, r, t ), η(x, t ), and ξ (x, t ) in the frequency domain
[18]. It is important to note that the wave number, κ (ω), gives the inverse of a characteristic length.
Such characteristic length should be much larger than the tube radius for our solution to be valid.
Since the analytical expression for κ , which is very complicated, involves all the system parameters,
in practice, this condition has to be evaluated for the particular choice of fluid, confining elastic
material, and geometrical confinement properties, that characterize our system.

The local axial velocity in frequency domain, û(x, r, ω), in terms of the pressure gradient in
frequency domain, ∂ p̂(x,ω)

∂x = g(x)Ĝ(ω), is given by

û(x, r, ω) = − 1

μ
K̂L(r, ω) g(x)Ĝ, (8)

where

K̂L(r, ω) =
[
μ A(ω) J0(δr) − 1

β2

]
, (9)
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δ =
√

ρ

μ
(tr ω2 + i ω), and β =

√
i ω ρ

μ
. J0 is the Bessel function of order zero, and A(ω) is the

solution of a quadratic equation, given by A(ω) = −b±√
b2−4ac

2a , where

a = 2hρ2ω2ρwJ0(δa) F1

+ 2δμρ2ωJ1(δa) F1

ωtr + i
,

b = iaωρ{2Eρ[νJ1(δa) − δaJ0(δa)] + hδρwJ0(δa)F2}

+ ρ J1(δa)[iaμδ2 + 2ωhρw(iωtr − 1)]F3

ωtr + i

− 2Eνaδρ [iδμJ1(δa) + ωhρwJ0(δa)(iωtr − 1)]

ωtr + i

and

c = −Ea2δρ(ν − 2) + iaδhρw(iωtr − 1)F2

ωtr + i
.

In these expressions, F1, F2, and F3 are given by

F1 = [a2ω2ρw(ν2 − 1) + E ]J1(δa) − EνδaJ0(δa),

F2 = a2ω2ρw(ν2 − 1) − 2Eν + E ,

F3 = a2ω2ρw(ν2 − 1) + E .

Equation (8) can be averaged over the cross sectional area to give

〈û(x, ω)〉r = − 1

μ
K̂ (ω) g(x) Ĝ, (10)

where K̂ (ω) is a dynamic permeability of the form

K̂ (ω) =
[
μ A(ω)

2 J1(δ a)

δ a
− 1

β2

]
. (11)

Here J1 is the Bessel function of order one. Equation (10) is a generalized Darcy’s law for
Maxwellian fluids flowing in elastic tubes. It relates locally—at each point, x, along the flow
direction—the radially averaged velocity and the pressure gradient in the frequency domain. In
the time domain, it relates locally the magnitude of the radially averaged velocity and the pressure
gradient. In the limit of rigid vessels, it reduces to the dynamic permeability reported in Refs. [2,3].

We approximate the fluid flow along the flow direction, Q(x, t ), as the product of the average
cross-sectional area of the tube, A = πa2, times the radially averaged axial velocity, i.e., Q(x, t ) ≈
A 〈u(x, t )〉r . Using Eq. (10), we can write flow in frequency domain as

Q̂(x, ω) = −A K̂ (ω)

μ

∂ p̂

∂x
(x, ω), (12)

where ∂ p̂
∂x (x, ω) is obtained from the solution of harmonic Eqs. (6) and (7) and is written in terms of

the inlet pressure, p̂i, the outlet pressure, p̂o, and the tube’s length, l , i.e.,

∂ p̂

∂x
(x, ω) = −κ p̂i sin (κ x) + κ

p̂o − p̂i cos (κ l )

sin (κ l )
cos (κ x). (13)

Since the pressure gradient is different for different points along the flow direction, in practice
Eq. (12) is of little use, since experimentally, one would, in general, not know the pressure gradient
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at each point of the system. However, if one averages Eq. (12) along the flow direction, one obtains
an interesting result, namely

〈Q̂(ω)〉x ≡ −A K̂ (ω)

μ

〈
∂ p̂

∂x
(ω)

〉
x

= −A K̂ (ω)

μ

 p̂

l
. (14)

This expression, for elastic tubes, conserves mathematically the same form than a generalized
Darcy’s law in frequency domain for rigid tubes, except that now flow means averaged flow along the
flow direction, and the averaged pressure gradient is nothing else than the total pressure drop along
the tube, namely, pressure at the outlet minus pressure at the inlet, divided by the tube’s length. The
dynamic permeability, K̂ (ω), conserves its meaning; namely, it is a measurement of the resistance
to flow for each of the modes involved in the total pressure drop. When known as a function of
frequency, it will tell us at which frequencies the amplitude of the longitudinally averaged flow is
maximized (or minimized) [19].

In order to use Eq. (14), we first need to know p in time domain; this one can have any
desired form, containing many modes, including a steady component. We then should transform
it to frequency domain, to obtain p̂, that can be used in Eq. (14), to obtain flow in frequency
domain, 〈Q̂(ω)〉x. Finally, we have to inverse Fourier transform this one to obtain flow in time
domain, 〈Q(t )〉x. For instance, for a single-mode pressure drop, p(t ) = −p0 cos(ω0t ), we can
obtain the flow as a function of time (averaged along the x direction), i.e.,

〈Q(t )〉x = A

μ
|K̂ (ω0)|cos(φ(ω0) − ω0t )

p0

l
, (15)

where |K̂ (ω0)| and φ(ω0) are the magnitude and phase of the dynamic permeability at the frequency
imposed by the pressure drop. Note that φ(ω0) determines also the phase difference between
flow and pressure drop [20]. From this equation, it becomes evident that the magnitude of the
permeability is linearly related to the maximum amplitude of the longitudinally averaged flow.

III. RELEVANT CHARACTERISTIC FREQUENCIES

There are several characteristic frequencies in our system: On the one hand, we have the
frequency characteristic of the viscous fluid, ωμ,

ωμ = 2π
μ

ρ a2
. (16)

We then have the frequencies characteristic of the elastic wall, namely ωe and ωw, given by

ωe = 2π
1

a

√
E

(1 − ν2)ρw

(17)

and

ωw = 2π
μ

ρw h a
. (18)

The viscoelasticity of the fluid involves another characteristic frequency,

ωtr = 2π

tr
. (19)

All these frequencies appear in the dimensionless form of the equations shown in the Appendix,
as dimensionless characteristic frequencies of the form ωμ/ωe, ωw/ωe, and ωμ/ωtr . For the case in
which ρw ≈ ρ, ωw is proportional to ωμ, and the first two dimensionless characteristic frequencies
are not independent. The third dimensionless characteristic frequency is the inverse of the Deborah
number, usually used for viscoelastic fluids.
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FIG. 1. Magnitude of the dynamic permeability as a function of frequency for three systems: viscoelastic
fluid in an elastic tube (blue [dark solid] line), Newtonian fluid in an elastic tube (pink [light dashed] line), and
viscoelastic fluid in a rigid tube (green [light solid] line). Parameters have been chosen to show the resonances
of the three systems on the same figure. For the elastic tube: E = 5 Pa, ρw = 5 × 104 kg/m3, ν = 0.5, and
h = 1 μm. For the fluid: ρ = 1050 kg/m3, μ = 4 × 10−3 kg/m s, tr = 1 × 10−3 s (in the viscoelastic case),
and tr = 0 s (in the Newtonian case). The radius was chosen as a = 6 × 10−5 m. Values of a∗ and ω∗, for the
parameters used in this figure, are 3.3 × 10−4 m and 220 rad/s, respectively.

In Ref. [12], we have found that Newtonian fluids flowing in elastic tubes have a resonance
frequency, ωN

res, whose behavior as a function of the tube’s radius follows the one of the slowest
mode among ωe and ωμ. When ωμ = ωe, we can define a crossover frequency

ω∗ = ρ

ρw

E

μ(1 − ν2)
.

This happens for a particular value of the radius a∗ = μ

ρ

√
(1−ν2 )ρw

E , which is an intrinsic length scale
of the system. We use these quantities to normalize the figures’ axes. Note that ω∗ implies the
particular value 1 of the dimensionless characteristic frequency ωμ/ωe.

On the other hand, there is an analytical expression [21] for Maxwellian fluids flowing in rigid
tubes that approximates reasonably well the resonance frequency of this system in a wide range of
tube radii, namely,

ωve
res = 2.4048

2π

[
ωμωtr

]1/2
. (20)

IV. AN INTERPLAY OF TWO ELASTICITIES

We study a system with elasticity both in the fluid and in the tube. We find a response function
that has two maxima at small frequencies, one around the resonance of a viscoelastic fluid in a rigid
tube and one around the resonance of a Newtonian fluid in an elastic tube, a behavior similar to the
behavior of coupled forced oscillators.

Figure 1 shows the dynamic permeability as a function of frequency for a viscoelastic fluid
flowing in an elastic tube (blue [dark solid] line). We also show the dynamic permeability of a
Newtonian fluid in an elastic tube (pink [light dashed] line) and the dynamic permeability of a
viscoelastic fluid in a rigid tube (green [light solid] line). These two are used as reference systems in
order to analyze our results. In the figure, we have chosen parameters that display two maxima with
similar values of the dynamic permeability, one close to the resonance frequency of a Newtonian
fluid in an elastic tube and another one close to the first resonance frequency of a Maxwellian fluid
in a rigid tube (viscoelastic fluids always have several resonances at high frequencies).

Figure 2 shows how these maxima change when the wall density varies. In these curves, it
becomes clear that, as the wall density increases, the first maximum coincides with the one of the
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(a)

(c) (d)

(b)

FIG. 2. Magnitude of the dynamic permeability as a function of frequency for different values of the wall
density and three different systems: viscoelastic fluid in an elastic tube (blue [dark solid] lines), Newtonian fluid
in an elastic tube (pink [light dashed] lines), and viscoelastic fluid in a rigid tube (green [light solid] lines). For
the elastic tube, E = 1.0 × 104 Pa, ν = 0.5, and h = 10 μm. For the fluid, ρ = 818 kg/m3, μ = 1 kg/m s, and
tr = 4 × 10−5 s (in the viscoelastic case) and tr = 0 s (in the Newtonian case). The radius was chosen as
a = 1 × 10−4 m. For the first three figures, wall densities correspond to realistic materials. For figure (d), the
density is too large to be realistic; it was chosen to illustrate how each of the maxima coincide with the ones
of elasticity in only one of the system’s elements. Values of a∗ and ω∗ for these figures are, respectively, (a)
3.3 × 10−4 m and 69431 rad/s; (b) 6.7 × 10−4 m and 17132 rad/s; (c) 1.1 × 10−3 m and 6853 rad/s; and (d)
3.3 × 10−3 m and 685 rad/s.

system that has elasticity only in the wall, while the second maximum coincides with the one of the
system that has elasticity only in the fluid. In the mathematical limit in which the wall density tends
to infinity, ρw → ∞, which does not correspond to any physical density, the dynamic permeability
of a Maxwell fluid in an elastic tube coincides exactly with the one of the Maxwell fluid in a rigid
tube.

Figure 3 shows the permeability for the same three systems described in Fig. 2 for differ-
ent tubes’ radii. As we can see, for the range of radii in which resonances appear, increas-
ing the tube radius enhances the effect of the wall’s elasticity. For very large radii though,
both resonances disappear [see Fig. 3(f)] but the resonance attributed to the fluid viscoelastic-
ity disappears at smaller radii than the resonance due to the wall elasticity [see Figs. 3(c)–
3(e)], where the second maxima has disappeared. As explained in Ref. [12], the resonance
due to the wall’s elasticity disappears because the steady-state permeability (for ω → 0) in-
creases more quickly, with increasing radius, than the permeability at resonance, in such a
way that it hinders the resonance. This feature makes this resonance typical of small elastic
systems.
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Magnitude of the dynamic permeability as a function of frequency for different radii and four
different systems: viscoelastic fluid in an elastic tube (blue [dark solid] lines), Newtonian fluid in an elastic
tube (pink [light dashed] lines), viscoelastic fluid in a rigid tube (green [light solid] lines), and Newtonian
fluid in a rigid tube (black dashed line). For the elastic tube, ρw = 987 kg/m3, E = 1.0 × 104 Pa, ν = 0.5, and
h = 10 μm. For the fluid, ρ = 818 kg/m3, μ = 1 kg/m s, tr = 4 × 10−5 s (in the viscoelastic case), and tr = 0
s (in the Newtonian case). Values of a∗ and ω∗, for the parameters used in this figure, are 3.3 × 10−4 m and
69431 rad/s, respectively.

Associating one maximum to the wall’s elasticity and another one to the fluid viscoelasticity is
only a convenient way of studying the system. Figure 3(c) shows that the maximum associated to
the fluid elasticity has disappeared and nevertheless the height of the first maximum is much larger
that the one of a Newtonian fluid in an elastic tube. We could therefore say that there are regimes in
which one of the elasticities dominate the system, while there are others in which both elasticities
cooperate to have a larger (or lower) response than they would have if only one of them were present.
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FIG. 4. Two resonance frequencies for viscoelastic fluid in an elastic tube, obtained from blue line in Fig. 3.
The low resonance frequency, ωres 1, associated to the elasticity of the tube, is marked by crosses. The high
resonance frequency, ωres 2, associated to the viscoelasticity of the fluid, is marked by circles. Red (dark dashed),
green (light solid), and black (dark solid) lines, used as reference, indicate the characteristic frequencies of the
system, given by Eqs. (16), (17), and (20), respectively.

For instance, the low-frequency range between 0 and 0.35, in the normalized frequency scale of
Fig. 3(c), shows that the system has a larger response than the two reference systems in which only
one of the elasticities is present. As a counter example, Fig. 1 shows a normalized frequency range
between 6.3 and 9.8, in which the system permeability is smaller than the one of the Newtonian fluid
in an elastic tube and much smaller than the one of a viscoelastic fluid in a rigid tube. A different
situation is illustrated in Figs. 2(a)–2(d), where the dynamic permeability is between the ones of the
systems in which only one of the elasticities is present, around the frequency range in which the
second maximum occurs.

It is important to note that a system with elasticity in the fluid, in the tube, or in both has always a
larger (or equal) permeability than a system in which no elasticity is present. This can be appreciated
in Fig. 3 by noticing that any of the colored (dark solid, light dashed, and light solid) curves that have
elasticity are above (or at) the black dashed line that corresponds to the permeability of a Newtonian
fluid in a rigid tube.

It is also important to note that at large radii, once all the resonances have disappeared, the
dynamic permeability of fluids (either Newtonian or viscoelastic) in elastic tubes is larger than the
one of the same fluids confined in rigid tubes. This can be appreciated in Fig. 3(f).

Figure 4 displays the first two resonances of the system together with the characteristic frequen-
cies given in Eqs. (16), (17), and (20). The low resonance frequency, ωres 1, roughly associated to the
tube, follows, as expected, the exponent of the elastic wall characteristic frequency [Eq. (17)] for
small radii, and the exponent of the viscous characteristic frequency [Eq. (16)] for large radii. The
high resonance frequency, ωres 2, roughly associated to the fluid, follows, as expected, the exponent
of the viscoelastic frequency given by Eq. (20).

Even though our paper emphasizes the cooperation and competition of both elasticities, we could
ask what would happen if one changed the viscoelasticity of the fluid in an elastic tube. We would
expect results to give similar tendencies as the ones obtained for viscoelastic fluids in rigid tubes.
For instance, if we were to increase the viscoelasticity of the fluid, by increasing the fluid relaxation
time, we would expect the maximum “due to the fluid” to move to smaller frequencies and the
corresponding value of the dynamic permeability to be higher than at smaller relaxation times, as it
happens in the rigid case. Figure 5 shows, for example, the equivalent of Fig. 2(b), for which dashed
lines have been used for the larger relaxation time, confirming that the maximum “due to the fluid”
behaves qualitatively as it does in the rigid case.
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FIG. 5. Effect of different relaxation times in the dynamic permeability. Magnitude of the dynamic
permeability as a function of frequency for two different fluid systems with different relaxation times:
viscoelastic fluid with t1

r in an elastic tube (blue [dark] solid line), viscoelastic fluid with t1
r in a rigid tube (green

[light] solid line), viscoelastic fluid with t2
r > t1

r in an elastic tube (blue [dark] dashed line), and viscoelastic
fluid with t2

r > t1
r in a rigid tube (green [light] dashed line). The two values of the relaxation time used

were t1
r = 4 × 10−5 s (solid lines) and t2

r = 5 × 10−5 s (dashed lines), corresponding to ωtr /ωμ = 0.20 and
ωtr /ωμ = 0.16; and trω

∗ = 0.69 and trω
∗ = 0.86, respectively. The rest of the parameters are as in Fig. 2(b).

V. PROOF OF CONCEPT

Our results are potentially useful for tailoring composite laboratory-on-a-chip devices, where
changing the elasticity of different parts of a device, by the introduction of different materials,
would induce an increase or decrease of the amplitude of the longitudinally averaged flow at a given
frequency. As a proof of concept, we analyze flow in a theoretical composite device made of two
different materials and show that the magnitude of the dynamic permeability for a composite tube,
at the driving frequency, determines the amplitude of the longitudinally averaged flow.

We now consider a tube of constant cross-sectional area, A, composed of two different materials.
For simplicity, we talk about the first part of the tube as “tube 1”, that has length l1, and the second
part of the tube as “tube 2”, that has length l2. Flow conservation at the junction implies that outflow
of tube 1 is equal to the inflow of tube 2, that is, q̂1(x = l1) = q̂2(x = 0), where q̂1 is the flow in
tube 1 and q̂2 is the flow in tube 2. For tube 1, the inlet pressure is the inlet pressure of the system,
p̂in, and the pressure at the exit is an unknown pressure at the junction, p̂J . For tube 2, the pressure
at the entrance is the pressure at the junction, p̂J , and the pressure at the outlet is the output pressure
of the system, p̂out. Using Eq. (12), for each of the tube’s parts, in the equation for flow conservation
at the junction, we can write an expression for the pressure at the junction, p̂J , as

p̂J = K2κ2 sin(κ1l1) p̂out + K1κ1 sin(κ2l2) p̂in

K1κ1sin(κ2l2)cos(κ1l1) + K2κ2sin(κ1l1)cos(κ2l2)
, (21)

where Ki and κi for i = 1, 2 are the dynamic permeability and the constant κ , appearing after Eq. (7),
for each of the tube’s parts, respectively.

On the other hand, the average flow along the composite tube is

〈Q̂composite〉x = l1〈q̂1〉x + l2〈q̂2〉x

l1 + l2
, (22)

which, using Eq. (14) to write 〈q̂1〉x and 〈q̂2〉x, can be written as

〈Q̂composite〉x = −A
(K2 p̂out − K1 p̂in )

μ(l1 + l2)
− A

(K1 − K2)

μ(l1 + l2)
p̂J , (23)

with p̂J given by Eq. (21).
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(a) (b)

FIG. 6. (a) Orange (light dashed) line is the magnitude of the dynamic permeability of a composite tube of
total length of 2 cm in which the first third of the tube has the elastic properties of PDMS and the rest of the tube
has the elastic properties of PMMA. As reference, the permeabilities of a tube made solely of PDMS and a tube
made solely of PMMA are shown in blue (dark solid) and green (light solid) lines, respectively. (b) Average
flow, along the flow direction, as a function of time for the three systems, with the same color coding used in
panel (a), when the fluid is driven with an oscillatory pressure drop p(t ) = −p0 cos(ω0t ), with ω0 = 2800
rad/s and p0 = 20 Pa. Fluid parameters were chosen as ρ = 1050 kg/m3, μ = 4 × 10−3 kg/m s, and tr =
1 × 10−3 s, which gives a Deborah number ωtr

ωμ
= 2.6. For the driving frequency, ω0, the Womersley number

is
√

ω0
ωμ

= 1.1. Elastic parameters of the first part of the composite tube were chosen as those of PDMS, ρw =
987 kg/m3, E = 3.6 × 105 Pa, and ν = 0.5, and those of the second part of the composite tube were chosen as
those of PMMA, ρw = 1200 kg/m3, E = 3.8 × 109 Pa, and ν = 0.36. Radius and tube wall thickness were
chosen as a = 1 × 10−4 m and h = 1 × 10−5 m. We have verified that the value of κa < 5 × 10−2 for PDMS
and κa < 5 × 10−4 for PMMA in the frequency range of panel (a), showing that the example used in this proof
of concept is within the range of parameters in which our approximation is valid.

For a zero pressure at the system’s outlet, p̂ = p̂out − p̂in = −p̂in, and the average flow for the
composite tube can be written as

〈Q̂composite〉x = −AKcomposite

μ(l1 + l2)
p̂, (24)

with

Kcomposite = K1 − (K1 − K2)
p̂J

p̂in
, (25)

where

p̂J

p̂in
= K1κ1 sin(κ2l2)

K1κ1sin(κ2l2)cos(κ1l1)+K2κ2sin(κ1l1)cos(κ2l2)
. (26)

For this example, the response function, Kcomposite, is explicitly independent from the pressure at
the inlet; this can been seen in the right-hand side of Eq. (26) that should be substituted in Eq. (25)
and that does not depend on p̂in. It is straightforward to prove that for constant pout (t ), Kcomposite is
also independent of the pressure drop.

Figure 6(a) shows (in orange [light] dashed line) the dynamic permeability for the fluid in a
composite tube consisting of two different materials, in which the first third of the tube has the
elastic properties of PDMS and the last two thirds of the tube have the elastic properties of PMMA.
We have chosen a fluid with the rheological characteristics of blood approximated as a Maxwell
fluid. As reference, we also show the permeabilities of the same fluid in both a PDMS tube (in
blue [dark] solid line) and a PMMA tube (in green [light] solid line). We have chosen zero pressure
at the outlet. Figure 6(b) shows the longitudinally averaged flow, as a function of time, for the
three systems of Fig. 6(a) (with the same color coding) when the fluids are driven with a pressure
drop p(t ) = −p0 cos(ω0t ), with ω0 = 2800 rad/s and p0 = 20 Pa. The two figures clearly
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show what Eq. (24) implies, namely, the magnitude of the dynamic permeability at the driving
frequency determines the amplitude of the average flow. That is, by looking at the value of the
dynamic permeability of the three systems in Fig. 6(a), at the driving frequency, ω0, in increasing
value (PDMS, composite, and PMMA), we can know that the amplitude of flow will increase in the
same order, as illustrated in Fig. 6(b). It is worth noticing that other frequencies will give different
results. Driving the same fluid in the same three tubes at ω0 = 5000 rad

s , with all the other parameters
as in Fig. 6(b), will cause the amplitude of flow in the composite tube to be the smallest one of the
three systems.

Figure 6(a) for the dynamic permeability shows that the zero-frequency response is almost
identical for the three systems presented in the graphs. We can therefore know that if we wanted to
drive the systems adding a constant pressure drop to the one-mode pressure drop, with frequency ω0

of the previous example, the steady component of the flow would only translate upward [Fig. 6(b)]
by a constant amount, proportional to the dynamic permeability at zero frequency and the constant
pressure drop. In this case, flow as a function of time will oscillate around a nonzero mean flow.

VI. CONCLUSIONS AND DISCUSSION

We have analyzed the dynamic permeability of viscoelastic fluids flowing in elastic tubes
subject to pulsatile forcing. The dynamic permeability is a frequency-dependent response function
characteristic of the fluid-confining-media system. For a given pressure gradient, this response
function is linearly related to the amplitude of the average flow along the moving direction. Elasticity
on both the fluid and the tube causes the system to have a behavior similar to the one of two
coupled oscillators. We have found resonances that can roughly be associated to the elasticity of
the tube and resonances that can roughly be associated to the elasticity of the fluid. There is a rich
phenomenology that includes cooperation and competition of both elasticities. Tuning the system
parameters allows for excitation of the different modes in the system, sometimes giving responses
that are larger than the ones of the reference systems with elasticity in only one of its elements,
namely the fluid or the confining media, and sometimes permeabilities that are smaller than in those
reference systems or intermediate between them.

At very large radii, all resonances are lost, just as has been observed in viscoelastic fluids in
rigid tubes [3,5] and in Newtonian fluids in elastomeric tubes [12]. This is because the steady-state
permeability grows quadratically with system size and hinders all resonances for large radii.

We also observe that the permeability of a system with elasticity in one of its elements or in both,
is always larger (or equal) than the dynamic permeability of a Newtonian fluid in a rigid tube.

The Maxwell model is the simplest model for fluid viscoelasticity. It is almost exact for some
systems, like wormlike micelles. Nevertheless, since it involves only one relaxation time, it is often
used as an approximation in the literature for many other fluids. However, there are many models
for fluid viscoelasticity with different number of relaxation times involved, according to the degree
of complexity necessary to describe a particular system. For all models of linear viscoelasticity,
resonances exist for viscoelastic fluids in rigid tubes (or cells). See, for example, Ref. [22]. So, we
expect our results for Maxwellian fluids in elastic tubes to qualitatively hold for other viscoelastic
fluids, since, as we are reporting, the resonance “due to the fluid viscoelasticity” (originally found in
rigid systems) is present when the confining media is elastic. This, in principle, should not change
qualitatively if the resonances due to the fluid viscoelasticity coming from another model for the
fluid.

Our results are potentially useful for tailoring composite laboratory-on-a-chip devices, where
changing the elasticity of different parts of a device, by the introduction of different materials,
would induce an increase or decrease of the amplitude of the longitudinally averaged flow, at a
given frequency, relative to the ones of the tubes made of a single material. As a proof of concept,
we analyze flow in a theoretical composite device made of PDMS and PMMA and show that
the magnitude of the dynamic permeability for a composite tube, determines the amplitude of the
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longitudinally averaged flow. Furthermore, depending on the driving frequency, flow can be larger
or smaller than in the homogeneous tubes for an identical amplitude of the driving force.
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APPENDIX: DIMENSIONLESS EQUATIONS

In order to identify characteristic frequencies of the system, we write Eqs. (1)–(5) in a
nondimensional form using the following dimensionless quantities:

x̄ = x

a
, r̄ = r

a
, t̄ = ωμ t,

ū = u

a ωμ

, v̄ = v

a ωμ

, p̄ = p

μωμ

,

η̄ = η

a
, and ξ̄ = ξ

a
.

where ωμ = 2π
μ

ρ a2 is the viscous frequency, characteristic of the viscous fluid.
For the continuity equation, we have

∂ ū

∂ x̄
+ 1

r̄

∂ (r̄v̄)

∂ r̄
= 0. (A1)

The momentum conservation equation is given by

ωμ

ωtr

∂2ū

∂ t̄2
+ ∂ ū

∂ t̄
= −ωμ

ωtr

∂

∂ t̄

∂ p̄

∂ x̄
− ∂ p̄

∂ x̄
+

(
∂2ū

∂ r̄2
+ 1

r̄

∂ ū

∂ r̄

)
, (A2)

where ωtr = 2π 1
tr

is given by the inverse relaxation time of the viscoelastic fluid. Note that the
dimensionless ratio ωμ

ωtr
is the inverse Deborah number, α, usually defined for viscoelastic fluids.

When the relaxation time is zero, α−1 = 0, the conservation momentum equation of Navier-Stokes
is recovered.

For the radial and axial displacements, we have

ω2
μ

ω2
e

∂2η̄

∂ t̄2
= ωw ωμ

ω2
e

p̄ −
(

η̄ + ν
∂ξ̄

∂ x̄

)
(A3)

and

ω3
μ

ωtr ω
2
e

∂3ξ̄

∂ t̄3
+ ω2

μ

ω2
e

∂2ξ̄

∂ t̄2
= −ωw ωμ

ω2
e

∂ ū

∂ r̄

∣∣∣∣
a

+ ωμ

ωtr

(
∂3ξ̄

∂ t̄∂ x̄2
+ ν

∂2η̄

∂ t̄∂ x̄

)
+

(
∂2ξ̄

∂ x̄2
+ ν

∂η̄

∂ x̄

)
, (A4)

where ωe = 2π 1
a

√
E

(1−ν2 )ρw
and ωw = 2π

μ

ρw h a . These are two other characteristic frequencies of

the system: a characteristic frequency of the elastic wall, ωe, and a viscous frequency coupled to
the tube geometry through the wall thickness and the density of the wall, ωw. There are two terms
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containing the ratio ωμ

ωtr
, which come from the viscoelastic nature of the fluid. When these terms are

zero, α−1 = 0 and the equation for the axial deformation of a Newtonian fluid is recovered.
The dimensionless boundary conditions are given by

∂η̄

∂ t̄
= v̄

∣∣∣∣a;
∂ξ̄

∂ t̄
= ū

∣∣∣∣
a

. (A5)

We solve these equations in Fourier domain following the same methodology presented in Appendix
A of Ref. [12] and described in the model equations section of this work.

From the average of the dimensionless axial velocity over the cross-sectional area, 〈 ˆ̄u(x̄, ω̄)〉, we
can obtain a generalized Darcy’s law in terms of the dimensionless pressure gradient in frequency
domain, ḡ′(x̄) ˆ̄G, namely

〈 ˆ̄u(x̄, ω̄)〉 = − ˆ̄K (ω̄) ḡ′(x̄) ˆ̄G, (A6)

where the frequency is rescaled by the viscous frequency as ω̄ = ω
ωμ

. We can define a dimensionless

dynamic permeability, ˆ̄K (ω̄),

ˆ̄K (ω̄) =
[

Ā
2 J1(δ̄)

δ̄
− 1

β̄2

]
, (A7)

where δ̄2 = α−1ω̄2 + iω̄ and β̄2 = iω̄.
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