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Nonwetting droplet oscillation and displacement by viscoelastic fluids
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Many important applications in the food industry, biological systems, and recovery of
fluids from the subsurface involve multiphase flow dynamics where one of the phases is
a non-Newtonian, viscoelastic fluid. In this work, we investigate the role of viscoelas-
tic displacing fluids in recovering trapped nonwetting fluids. We perform the lattice
Boltzmann (LB) modeling of wetting viscoelastic fluids described by a Maxwell model
that displace nonwetting, trapped droplets in three different pore geometries. Results
show the oscillation of the trapped nonwetting droplets and subsequent release induced
by the viscoelasticity of the displacing fluid. The oscillation behaviors are in qualitative
agreement with recent experiments in microfluidic chips and micromodels. The disorder
of streamlines in viscoelastic fluids is reported in the presence of another phase, which
explains the observation of oscillations. In the geometry of a capillary tube that converges
to a smaller constriction/throat, a vortex downstream of the droplet is found to prevent
the droplet from entering the throat. In the geometry of a tube with an “x-shaped” solid
grain, we find that the oscillation strength and extraction capability of displacing fluids
monotonically increases with their elasticity. The results from the geometry of a tube with
a “dead-end” branch show a linear relationship between the average mean vorticity and the
square root of the Deborah number before the release of droplets.

DOI: 10.1103/PhysRevFluids.5.063301

I. INTRODUCTION

Viscoelastic fluids are non-Newtonian fluids that exhibit the properties of both viscous fluids
and elastic solids [1]. Silly Putty and jelly are commonly used examples of viscoelastic fluids.
Multiphase viscoelastic flow is of interest in many important fields such as the food industry [2] and
biological systems [3,4]. An important property of viscoelastic fluids is that they have a memory
of historical deformation. The complexity in rheology along with interfacial dynamics makes it
difficult to fully predict the mechanisms of multiphase viscoelastic flow.

In subsurface engineering problems, such as the recovery of hydrocarbons, viscoelastic polymer
solutions such as partially hydrolyzed polyacrylamide (HPAM) are commonly used in enhanced
oil recovery (EOR) [5,6]. The primary purpose of these polymers is to improve mobility control
(higher viscosity of displacing phase), but many studies have also shown reductions in residual,
capillary-trapped oil. Experiments in porous rock cores performed by Wang et al. [7,8] showed the
evidence that viscoelastic polymer can reduce residual oil after waterflood and subsequent Newto-
nian glycerol flood. Their micromodel studies [9–11] based on “dead-end” and other geometries
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provided more details showing the advantages of viscoelastic polymers for oil recovery at the
microscale. By comparing the displacements using HPAM solutions with different concentrations,
Xia et al. [12] further indicated the displacing efficiency of HPAM increases with its elasticity.
From these observations, the authors hypothesized several mechanisms for the additional recovery
of nonwetting fluid, such as the “pulling effect” (due to the tangential elastic force at the interfaces)
and forming of the “oil thread” passages (continuous oil flow channels). Since HPAM solutions also
exhibit other complex properties [13] such as the shear thinning behavior that makes its viscosity
change with the shear rate, it is necessary to exclude these effects before any conclusions can be
made regarding the effects of viscoelasticity on oil recovery. Urbissinova et al. [14] conducted core
flooding experiments by using polyethylene oxide (PEO) solutions with similar shear viscosity, but
different elasticities. The displacements by two different PEO solutions also showed that higher
elasticity leads to lower residual oil saturation. However, the extra oil recovery by applying the
polymer with a higher elasticity was not always observed when the oil viscosity is high [15] or at
low-pressure-gradient flooding conditions [16]. Recently, a more interesting and surprising result
was discovered by Erincik et al. [17]. By alternatively injecting high-elasticity and low-elasticity
polymers into relatively homogeneous sandstones, they found that additional oil was continually
produced. These discrepancies and new discoveries in core flooding experiments definitely require
further investigations at the pore scale.

Clarke and co-workers [18,19] discovered oscillations of trapped oil droplets driven by the
viscoelastic HPAM solution in a glass, porous micromodel. In contrast, no oscillation was found
during the displacement by the inelastic xanthan polymer solution. In the single-phase micromodel
study by Howe et al. [20], they observed unsteady streamlines during the flow of HPAM using
particle tracking velocimetry (PTV). The authors suggested the term “elastic turbulence” [21–25] for
these unique oscillation behaviors. They pointed out that the presence of elastic turbulence may help
recover more oil by destabilizing trapped droplets. Qi [26] also reported the oscillations induced by
viscoelastic polymers in a pore-throat (contraction-expansion) microchip. The nonwetting droplet
driven by the viscoelastic polymer was prevented from passing through the narrow throat, even at
much higher flow rates. Neither the oscillations nor the trapping was observed for displacing fluids
that were purely viscous.

Recent developments in pore-scale simulation tools, such as the lattice Boltzmann (LB) method
for non-Newtonian flow, offer a powerful way to model the aforementioned flows and observations
[27–33]. Xie et al. [32] developed an LB framework for modeling multiphase flow of viscoelastic
fluids by incorporating the Maxwell constitutive equation into a Rothman-Keller-type multiphase
LB model [34–38] through an elastic forcing term. This model corrects the problem that leads
to incorrect Maxwell fluid momentum equations encountered by previous LB models [39,40] for
Maxwell viscoelastic fluid flows.

In this work, we focus on the pore-scale mechanisms of viscoelastic effects on oscillation and
recovery of trapped nonwetting fluids. By applying the LB model proposed in Ref. [32], we are able
to isolate the viscoelastic property of displacing fluids. In addition, we also provide a streamline
analysis in the presence of another phase and compare it with the micromodel experiments. In
Sec. II, numerical formulations of the multiphase viscoelastic LB scheme are briefly introduced. In
Sec. III, three types of pore geometries are described as well as the computational details and defini-
tions of the dimensionless numbers. In Sec. IV, we examine whether our model can capture the same
oscillation phenomenon observed in Qi’s thesis [26]. Then based on an “x-block” geometry and a
dead-end geometry, we present more details and quantitative relationships on the role of viscoelastic
oscillation in the extraction of the trapped nonwetting fluids. Finally, we draw conclusions in
Sec. V.

II. NUMERICAL FORMULATIONS

This model applies N sets of LB equations to describe the motion of each fluid denoted by k. It
uses a body force Fel to account for the viscoelastic effects of Maxwell fluids. For each phase, the
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LB equation is written as

f k
i (x + ci�t, t + �t ) − f k

i (x, t ) = �k
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[
f k
i (x, t )
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[
ρk

ρ
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]
, (1)

where f k
i is the distribution function of fluid k on the ith velocity direction (the D2Q9 velocity

space is used here); x is the lattice position, t is the time, �t is the time step, ci is the lattice velocity.
ρk , ρ, and u are the macroscopic phase density, total density, and flow velocity, respectively. �k

i
is the collision operator combined by three suboperators (�k

i )S , (�k
i )I , and (�k

i )M : (�k
i )S is the

single-phase operator that governs the momentum evolution for each phase; (�k
i )I is the perturbation

operator to account for the interfacial tension γ between phases; (�k
i )M is the recoloring operator to

ensure mass conservation for each phase. The contour of phases is simply determined by the density
field. The �i in Eq. (1) is the forcing term [41] to account for the body force F consisting of gravity
ρg (g is the gravity acceleration) and the viscoelastic force Fel.

To obtain the viscoelastic force Fel, the Maxwell constitutive equation is adopted:

ε̇ = σ

ηp
+ τel

ηp

dσ

dt
, (2)

where ε̇ is the strain rate, σ is the stress, ηp is the intrinsic polymer dynamic viscosity, and τel is
the viscoelastic relaxation time. By integrating Eq. (2) over time from a finite value at t = −∞, the
stress can be expressed as

σ(x, t ) = ηp

τel

∫ t
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ε̇
(
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Taking the divergence of the elastic stress, we have

Fel(x, t ) = ∇ · σ = ηp

τel

∫ t

−∞
exp

(
− t − t ′

τel

)
∇2u

(
x, t ′)dt ′. (4)

By assuming the numerical time step �t � τel, this force can be further discretized by time step as

Fel(x, t ) =
(

1 − �t

τel

)
Fel(x, t − �t ) + ηp�t

τel
∇2u(x, t − �t ). (5)

Finally, by substituting Eq. (5) into Eq. (1) and by setting the “numerical kinematic viscosity” of
viscoelastic fluid in the original LB scheme to approach zero, the LB equation (1) solves the correct
momentum equation for Maxwell fluids in the single-phase region:

∂tρku + (u · ∇ )ρku = −∇p + Fel + ρg. (6)

By doing so, this method corrects the excess “LB viscous term” which remained in the early LB
models for Maxwell fluid flows [39,40] that led to an incorrect Maxwell momentum equation. By
selecting a much smaller numerical time step than the viscoelastic relaxation time τel, numerical
instabilities induced by this treatment are avoided [32]. Most real fluids are better described by
complex, nonlinear models, e.g., the finitely extensible nonlinear elastic (FENE) model and the
Phan-Thien-Tanner (PTT) model. However, they are numerically challenging to solve and to our
knowledge, have never been successfully applied to model multiphase flow in porous domains
because of the difficulties in determining appropriate stress boundary conditions. Therefore, we
choose to use this Maxwell-based multiphase LB framework to investigate the effect of elasticity
on flow. More details of this model was presented in our previous work [32].

III. PROBLEM DEFINITION AND DIMENSIONLESS NUMBERS

To investigate the effect of viscoelasticity on the displacement of nonwetting fluids, we perform
pore-scale simulations on three different geometries. The computational domains and initial phase
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FIG. 1. Initial numerical configurations for three cases studied in this work: (a) a pore-throat structure;
(b) an x-block structure, and (c) a dead-end pore structure.

distributions for each geometry are presented in Fig. 1, with red representing the nonwetting
Newtonian oil droplets, blue representing the displacing fluid, and white being the solid or grain
phase.

Figure 1(a) shows a pore-throat structure similar to the microfluidic chip in Qi’s thesis [26].
The viscoelastic polymeric solution is injected into the pore containing a nonwetting oil droplet
(shown in red). The modeling results of this case are compared with Qi’s experiments [26], where
the authors discovered that oil droplets driven by viscoelastic polymers with stronger elasticities
were oscillating in the large pore and never entered the narrow throat even at high flow rates. This
case is also desired as another validation for this numerical scheme, although it has been verified
through various benchmarks such as capturing the unique bubble rising behaviors in a viscoelastic
bulk fluid [32].

The flow domain in Fig. 1(b) contains an “x-shaped” solid grain at the centerline of the pore,
with four nonwetting droplets of the same diameter initially trapped in the corners. This x-block
geometry is similar to the unit in Clarke et al.’s micromodel [18]. Figure 1(c) presents a pore with a
dead-end branch, where a nonwetting droplet is initially deposited in the mid-bottom of the dead-end
pore. The discussions based on these two structures will reveal mechanisms of nonwetting drop
mobilization by the viscoelastic fluid flow.

In all cases, the gravitational force is not accounted for as it is perpendicular to the xy plane.
Velocity boundary conditions [42] are applied at the inlet with a constant flow rate Qp. The
convective outflow boundary conditions [43] are applied at the outlet to ensure smooth two-phase
outflows. The upper and lower boundaries and other fluid-solid boundaries follow the bounce-back
rule with completely bulk fluid wet conditions by assigning the wetting fluid concentration to be 1
on the solid wall [32].

Computational domains, fluid properties, and other parameters used for these simulations are
listed in Table I. By taking the mean velocity at the inlet Qp/w as the characteristic velocity, and
by defining a characteristic length L (droplet diameter d for the pore-throat case, and the main pore
width w for the other two cases), the main dimensionless numbers governing these processes are
calculated as the Reynolds number, Re = ρpQpL/(wηp), the Capillary number, Ca = ηpQp

wγ
, and the

Deborah number, De = τelQp/(wL). Note that all the properties like density and dynamic viscosity
are taken from the bulk displacing fluid. The selected parameters in Table I ensure small values
of Re (< 0.1) and Ca (< 1 × 10−3), which are within the interest of many subsurface engineering
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TABLE I. Parameters used for simulations.

Parameters Pore-throat case x-block case Dead-end case

Domain size (lattices) 2500 × 300 400 × 150 360 × 160
Lattice space �x (m) 1 × 10−6 2 × 10−6 2 × 10−6

Time step �t (s) 6.67 × 10−8 1.67 × 10−7 1.67 × 10−7

Area flow rate Qp (m2/s) 4 × 10−7 4 × 10−7 4 × 10−7

Density of the nonwetting fluid ρo (kg/m3) 764 900 900
Viscosity of the nonwetting fluid ηo (Pa s) 0.0022 0.009 0.0045
Density of the viscoelastic displacing fluid ρp,el (kg/m3) 1000 1000 1000
Viscosity of the viscoelastic displacing fluid ηp,el (Pa s) 0.032 0.01 0.01
Relaxation time of the viscoelastic displacing fluid τel (s) 0.069 0.01, 0.5 0.01 to 40
Density of the Newtonian displacing fluid ρp,N (kg/m3) 1000 1000 1000
Viscosity of the Newtonian displacing fluid ηp,N (Pa s) 0.008 0.01 0.01
Interfacial tension γ (N/m) 0.04 0.04 0.04

problems [44]. The small Re and Ca also limit the strain of fluids, making it possible to use the
Maxwell model in this work.

IV. RESULTS AND DISCUSSION

A. Pore-throat structure and viscoelastic oscillation

First, we attempt to qualitatively explain the observations of nonwetting droplet oscillation in
a wetting, viscoelastic fluid as reported by Qi [26]. The rheological properties (relaxation time
and viscosity) are chosen as the same as measured by Qi (τel = 0.069s, ηp,el = 0.032 Pa s). The
Deborah number for this case is De = 0.51. Our numerical configuration mimics the contraction-
expansion microchip geometry in the experiment, but there are some important differences because
of the 2D geometry implemented here. For example, (1) the pore-to-throat width ratio in the
simulation is 300:20, which is equal to the pore-to-throat area ratio, but not the width ratio (300:60)
in experiments; (2) in order to allow the flow of polymer between the droplet and walls in the
two-dimensional (2D) simulation, the nonwetting droplet does not touch the wall, whereas the oil
droplet is a squeezed ellipsoid touching the wall in the experiments due to the limit in the height
direction.

Figure 2 compares the displacement of a nonwetting oil by a viscoelastic polymer with that by a
Newtonian fluid; the arrows show the actual directions of droplet motion [see Supplemental Material
[45] (Movies 1a and 1b) for the full time-dependent simulation]. Figure 3(a) records the change
of distance from the drop center to the throat inlet in the x direction for both cases. A high-pass
(20 Hz) fast Fourier transform is performed on the distance evolution curve of the viscoelastic case
to better illustrate the droplet’s motion, as shown in Fig. 3(b). These figures show the back-and-forth
movement of the droplet in viscoelastic polymer predicted from simulations, while no oscillation is
found for the Newtonian case and the droplet passes through the throat, which are all in agreement
with Qi’s experimental observations [26].

To explain the observations in the experiments and simulations, we investigate the flow fields by
extracting snapshots of the streamlines, as shown in Fig. 4. The patterned vortices and symmetric
streamlines are observed for the displacement by the Newtonian fluid, while for the displacement by
the viscoelastic polymer, the flow is chaotic with disordered vortices and streamlines. Comparing
the flow fields downstream of the droplet, a large vortex is observed in all viscoelastic simulations,
which blocks the droplet. However, in the Newtonian case, no such vortex exists and streamlines
provide a path towards the throat, which makes the droplet pass through at this flow rate.
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FIG. 2. Comparisons of oil displacements by (a) the Newtonian fluid and by (b) the viscoelastic polymer
in the pore-throat geometry.

Figure 4(c) presents more details of the two big vortices beside the droplet. Their self-rotational
times (the time required to rotate one radian) are estimated around 0.066 and 0.053 s, which are
very close to the relaxation time of the viscoelastic fluid (τel = 0.069 s). Therefore, it indicates that
the chaotic streamline observed here is a kind of “elastic turbulence” [21–25]. The unique vortex
and the oscillation behavior of a droplet displaced by a viscoelastic fluid are induced by the elastic
memory of viscoelastic fluids, which are also similar to what causes the “cusp shape” and “negative
wake” behind a bubble free rising in a viscoelastic fluid [46–49].

Here we present a simple explanation for the oscillation phenomenon under ideal conditions as
illustrated in Fig. 5. Since the Reynolds number is quite small (0.0075 for the viscoelastic case), the
driving force Fdrive exerted on the oil droplet is mainly provided by the viscous force, Fvis, which is
assumed to be a constant as

Fdrive ≈ Fvis ∝ ηpUpd = ηpQpd/w, (7)

while due to the viscoelastic fluid’s memory effect, the magnitude of the elastic force Felastic keeps
changing with the droplet moving distance. Using the analogy of an elastic spring, it is assumed to

FIG. 3. (a) Evolution of the distance from drop center to the throat inlet in x direction for both cases. (b) A
high-pass (20 Hz) fast Fourier transform performed on the distance evolution curve of the viscoelastic case.
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FIG. 4. Comparisons of streamlines extracted from typical snapshots during (a) the Newtonian fluid
displacement and (b) the viscoelastic polymer displacement. (c) Local enlarged figure of (b) providing more
details of the vortices.

FIG. 5. An ideal sketch illustrating the oscillation behavior of a droplet driven by a viscoelastic fluid.
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be linearly related to the displacement S(t ) as

Felastic(t ) ∝ −dE · S(t ) = −dηp · S(t )/τel, (8)

where E is the elastic modulus of the viscoelastic polymer. Therefore, the motion of droplet
approximately follows the simple harmonic motion with amplitude

A ∝ Fdrive
τel

dηp
= τelQp

w
= dDe, (9)

and time period

t∗ = 2π

√
m

dE
∝ d

√
ρoτel

ηp
, (10)

where m denotes the droplet mass.
Initially (t = 0) the droplet starts from the status of S(0) = 0, u(0) = 0, and Felastic(0) = 0, so

the total force is Fdrive, which will drive it forward. The droplet starts to accelerate and compress
the polymer ahead. As long as the droplet keeps moving forward, the value of the opposite
elastic force Felastic will increase. When reaching t = 1

4 t∗, the elastic force Felastic( 1
4 t∗) is equal

to −Fdrive, indicating a zero total force, and the droplet reaches its maximum velocity Umax at
the position S( 1

2 t∗) = A. During the period between t = 1
4 t∗ and t = 1

2 t∗, the droplet still moves
forward, but with a decreasing velocity as the negative Felastic keeps increasing. At time t = 1

2 t∗,
the droplet velocity decreases to 0 and reaches its farthest position Smax = 2A with the elastic force
Felastic( 1

2 t∗) = −2Fdrive. The total force is then negative and u( 1
2 t∗) = 0; the droplet starts moving

backward, and its position during t = 1
2 t∗ to t = t∗ follows the reverse process of the previous

forward period. Finally the droplet returns to the initial status at t = t∗, and new cycles follow up
periodically. This back-and-forth movement results in the appearance of the aforementioned vortex
in Fig. 4(b). As a consequence, the droplet displaced by viscoelastic polymer will notably oscillate
and be blocked in front of the throat.

It should be noted from Qi’s experiment that the amplitude of oscillation increases with the flow
rate while the frequency is independent of the flow rate. These two features are also predicted by
the above simple theory according to Eqs. (9) and (10).

B. Release of nonwetting droplets from the x block by viscoelastic oscillation

From the above results of the pore-throat simulations, it seems that the viscoelastic oscillation
prevents the nonwetting droplets from moving forward. But as mentioned in the Introduction, many
experiments have shown that viscoelastic polymer recovered more oil than Newtonian displacing
fluid with the same viscosity. Therefore, this section discusses whether the oscillations induced by
the polymer’s elasticity can help the displacement of nonwetting fluids.

Releasing of the trapped droplets by the x-block geometry shown in Fig. 1(b) is studied here.
We compare two viscoelastic polymer solutions with different relaxation times: one with a larger
value of τel = 0.5 s and the other with a smaller value of τel = 0.01 s. Another displacement by
a Newtonian fluid with the same density and viscosity of the polymer is set as a reference case.
The dimensionless numbers are then obtained as Re = 0.04 and Ca = 3.33 × 10−4. The Deborah
numbers for these three cases are De = 2.22, De = 0.044, and De = 0, respectively.

Comparisons of droplet positions and streamlines are shown in Fig. 6 [see Supplemental Material
[45] (Movies 2a, 2b, and 2c) for the entire processes]. In the Newtonian case, all four initially
deposited oil droplets in the corners remain trapped due to the block by the “x” branches. In the
low-elasticity polymer (τel = 0.01 s and De = 0.044) cases, three droplets are stripped off except
for the one droplet most upstream. However, in the high-elasticity polymer (τel = 0.5 s and De =
2.22) cases, all the droplets are released from the solid x block. Some of the droplets released
by the viscoelastic polymer contact each other and then coalesce into a bigger one. In terms of the
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FIG. 6. Comparisons of the streamlines of oil displacement by (a) a Newtonian fluid, (b) a viscoelastic
polymer with τel = 0.01 s, and (c) a viscoelastic polymer with τel = 0.5 s in the x-block geometry.

streamlines, a steady symmetrical pattern is maintained during displacement by the Newtonian fluid.
However, the streamlines in two viscoelastic polymer displacing cases are disordered and unsteady.
As the Reynolds number is quite small here, this turbulence is caused only by the viscoelastic
oscillation. To quantify the strength of oscillations, we further calculate the magnitude of vorticity
through

|ω| =
∣∣∣∣∂uy

∂x
− ∂ux

∂y

∣∣∣∣, (11)

with its nondimensional form being ω̃ = wL|ω|/Qp.
Figure 7 presents the evolution of the vorticity fields in these simulations. The mean vorticity

magnitude of the Newtonian displacing fluid is 66.60 s−1, and remains constant with time. The mean
vorticity magnitudes of the viscoelastic polymers are higher than that of the Newtonian fluid and
vary with time due to the movement of droplets. And at the same moment, the vorticity magnitude of
the high-elasticity polymer is always larger than that of the low-elasticity polymer, which indicates
a stronger oscillation.

Combining the results from Figs. 6 and 7, we demonstrate that the oscillation in the flow field
induced by the viscoelastic memory effect can help the release of trapped nonwetting droplets from

FIG. 7. Evolution of the vorticity fields in (a) the Newtonian fluid, (b) the viscoelastic polymer with τel =
0.01 s, and (c) the viscoelastic polymer with τel = 0.5 s during displacements in the x-block geometry.
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FIG. 8. Snapshots of (a) the streamlines and (b) the vorticity fields during displacements in the dead-end
geometry by different fluids.

their initially trapped positions. The strength of the oscillation and the ability to release the droplets
increase with the polymer’s elasticity (indicated by De).

C. Release of a nonwetting droplet trapped in a dead-end pore by viscoelastic oscillation

Naturally occurring porous media have many dead-end pores and nonwetting phase droplets
often get trapped in such pores. To find a quantitative relationship between the oscillation strength
(|ω|) and the polymer’s elasticity (De), we perform simulations based on the dead-end geometry
shown in Fig. 1(c). In this section, nine viscoelastic polymer solutions with relaxation times from
0.01 to 40 s are considered, resulting in Deborah numbers varying from 0 to 400. The Reynolds
number and the Capillary number are Re = 0.04 and Ca = 5 × 10−4, respectively. A Newtonian
reference case is also presented.

Snapshots of the streamlines and the vorticity fields during the displacements by five different
fluids are shown in Figs. 8(a) and 8(b) [see Supplemental Material [45] (Movies 3a–3e) for the full
time-dependent numerical simulation]. Similar to the previous results shown in the x-block cases,
the disorder in streamlines and the vorticity magnitude increase with the Deborah number. For the
Newtonian case, the streamlines in the main pore region are nearly straight. For the polymer with
extremely weak elasticity (τel = 0.01 s and De = 0.1), the pattern of streamlines are close to those in
the Newtonian case. Therefore, among these five cases, only the polymer with the largest elasticity
(τel = 14 s and De = 140) successfully extracts the droplet from the dead-end pore by its strong
oscillation.

We also compute the evolution of the mean vorticity magnitude in displacing fluids for each case,
as illustrated in Fig. 9. These curves further indicate the increasing trend of the oscillation strength
(|ω|) with the polymer’s elasticity. There are three polymers with larger elasticities that extract the
droplets, while in other cases the droplets are still trapped. During the short initial stage, the vorticity
fields in all cases increase as the downstream fluids start to flow. Then the mean vorticity curves
gradually go down for the trapped cases, since the fixed positions of droplets make the flow fields
evolve towards a steady state. However, for the three extracted cases, notable jumps are observed
which denote the initiation of the droplet extraction. The critical mean vorticity is about 2200 s−1 to
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FIG. 9. Evolution of the mean vorticity magnitude in displacing fluids (the solid points denote the initial
moments of the droplet extraction).

release droplets. After the transition moments, the vorticity fields in these cases remain at high levels
as the extracted droplets continue to oscillate in the main pore before moving out of the boundary.
It is also found that the larger the polymer’s elasticity, the earlier the extraction begins.

The average values of the mean vorticity curves in Fig. 9 over the simulation time are
nondimensionalized by the reciprocal of the characteristic time Qp/wL and plotted with

√
De, as

presented in Fig. 10. Based on the monotonically increasing relationship between the oscillation
strength and the Deborah number, Fig. 10 can be divided into two regions by a critical Deborah
number—smaller than that which denotes the trapped region and the other is the extracted region.
It is difficult to find an evident quantitative relationship between the nondimensional average
mean vorticity (ω̃) and De in the extracted region because the two-phase configurations change
rapidly. While in the trapped region, the droplets stay in the dead-end pore with comparable phase
configurations. It seems a linear correlation between ω̃ and

√
De works here, however, a more

fundamental explanation is expected.
The exact linear correlation and the critical Deborah number found in Fig. 10 should be

determined by factors like droplet diameter, size of the dead-end pore, etc. As shown in Fig. 11,
we further discuss the impact of the dead-end size on droplet extraction by changing the depth from

FIG. 10. Correlation between the nondimensional average mean vorticity magnitude over time and
√

De.
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FIG. 11. The impact of the dead-end depth on droplet extraction.

120 to 300 μm. The width of the main pore is kept as 200 μm. We find that the critical Deborah
numbers are around 9, 13, and 16, respectively, which increase with the depth of the dead-end pore.
This is expected since a deeper dead-end pore indicates a more difficult condition to release the
droplet.

Comparing with the x-block case, the critical Deborah number required to release the trapped
droplet in the dead-end pore is much larger. This is mainly due to the difference in the complexity
of the geometries, as the more complex x-block geometry itself is able to provide additional
disturbance to oscillate the droplets. Therefore, the droplets in the x-block geometry are more easily
extracted and a smaller Deborah number is sufficient.

V. CONCLUSIONS

A recently developed lattice Boltzmann model for multiphase viscoelastic flows has been
applied to explore the effects of viscoelasticity on nonwetting droplet mobilization. Flow and
droplet mobilization in three different pore geometries are simulated. In contrast to most published
microfluidic experiments, the viscoelastic property of displacing fluids is isolated from other
non-Newtonian effects such as shear thinning and shear thickening. The oscillation induced by
the viscoelastic memory effect is considered to be the main reason for the enhanced recovery of
nonwetting fluids by using viscoelastic displacing fluids. The disorder of streamlines in viscoelastic
fluids is reported in the presence of another fluid phase.

In the “pore-throat” geometry, the simulation results qualitatively agree with experiments by Qi
[26]; the nonwetting droplet driven by the high-elasticity polymers oscillates and does not pass
through the narrow throat even at high flow rates. We observe the existence of a large vortex
downstream of the droplet in the viscoelastic case by our simulation, which should be the direct
reason for blocking the droplet. A derivation based on the theory of simple harmonic motion further
explains the periodic oscillation behavior of the droplet. Although it appears that such oscillation
prevents the nonwetting droplets moving forward in main pores, the x-block and dead-end cases
demonstrate that such viscoelastic oscillation can result in the mobilization of nonwetting fluids
from trapped positions. Moreover, by analyzing the vorticity fields, the oscillation strength and the
extraction capability of displacing fluids are found to monotonically increase with their elasticity.
Prior to the mobilization, a linear correlation between the average mean vorticity and

√
De is

obtained for the dead-end case. Combining these results together may provide an explanation to
the surprising reduction of residual oil by alternative injection of high-elasticity and low-elasticity
polymers found by Erincik et al. [17]. The high-elasticity polymer helps to release droplets from
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FIG. 12. The effect of simulation time step on the streamlines during a Newtonian bubble rising in a
viscoelastic fluid [32]. The Capillary number Ca and the Deborah number De are 21.2 and 4, respectively.

trapped positions, but some of the extracted droplets oscillate in big pores; subsequently injected
low-elasticity polymers help push these droplets out, but may lead to trapped droplets in new
positions. Therefore, such rearrangements of fluid distribution inside the porous rock continues
to reduce residual oil.

We only focus on nonwetting droplets here, however, future studies on the effect of wettability
and by using more complex nonlinear constitutive equations are expected. The linear correlation
between the average vorticity and the square root of De also deserves a further fundamental
investigation.
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APPENDIX: DISCUSSION OF THE CHAOTIC STREAMLINES

Here we are to prove that the disorder of streamlines we observe is not a result of numerical
artifacts. We had a benchmark test in our previous paper [32] on the droplet rising problem and

TABLE II. Simulation parameters used for convergence tests.

Simulation parameters Pore-throat case x-block case Dead-end case
τel = 0.069 s τel = 0.5 s τel = 14 s

Base grids Domain size (lattices) 1550 × 300 400 × 150 360 × 160
Lattice space �x (m) 1 × 10−6 2 × 10−6 2 × 10−6

Time step �t (s) 6.67 × 10−8 1.67 × 10−7 1.67 × 10−7

Double grids Domain size (lattices) 3100 × 600 800 × 300 720 × 320
Lattice space �x (m) 0.5 × 10−6 1 × 10−6 1 × 10−6

Time step �t (s) 1.67 × 10−8 4.17 × 10−8 4.17 × 10−8

Half grids Domain size (lattices) 775 × 150 200 × 75 180 × 80
Lattice space �x (m) 2 × 10−6 4 × 10−6 4 × 10−6

Time step �t (s) 6.67 × 10−8 1.67 × 10−7 1.67 × 10−7
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FIG. 13. Convergence tests for the droplet displacement by viscoelastic fluids in (a) the pore-throat channel,
(b) the x-block channel, and (c) the dead-end channel.

showed a real kind of numerical instability caused by using larger time steps than the relaxation time.
Fig. 12 shows the effect of the simulation time step on the streamlines during a Newtonian bubble
rising in a viscoelastic fluid. All of these cases capture the negative wake and cusp shape, which
are caused by the viscoelastic effect [46–49]. However, numerical instabilities (the local disorders
observed in the white circled area) increase with time step. For the case with the smallest time step,
the upper streamlines are steady and smooth, which indicates no numerical instabilities. As a result,
a criterion for the time step (�t < 1.25 × 10−5τel) was set in [32]. Note that the time steps for all the
cases in this paper satisfy this criterion and the domain sizes are comparable with the droplet rising
case (200 × 400) we studied. In particular, the straight streamlines (e.g., the downstream streamlines
in the pore-throat case) are smooth and do not have such kind of numerical instabilities. Therefore,
the disorder of streamlines we report in this paper is not a result of the time-step caused numerical
artifact.

We further implement convergence tests for the droplet displacement by viscoelastic fluids in all
the three pore geometries. The results obtained by using double grids and half grids are compared
with the results shown in the main text. All the physical parameters are kept the same, except the
domain size, the lattice space, and the time step listed in Table II.

Figure 13 presents the comparisons of streamlines and droplet positions during displacements
obtained by different simulation grids for each case. All of the simulations using different
resolutions capture the main chaotic streamlines without the local small disorders, and a finer
resolution seems to capture more chaotic structures, particularly in the pore-throat case. Although
there are certain differences in the streamlines, in general, the base-grid results are similar to the
double-grid results. For the sake of computational cost, we use the base grids for the results shown
in the main content.

Therefore, all of the above results indicate that the chaotic streamlines we got in this paper are
due to the physical viscoelastic effects and not due to numerical instabilities.

[1] M. M. Denn, Issues in viscoelastic fluid mechanics, Annu. Rev. Fluid Mech. 22, 13 (1990).
[2] M. A. Rao, Rheology of food gum and starch dispersions, in Rheology of Fluid and Semisolid Foods:

Principles and Applications, edited by G. V. Barbosa-Canovas (Springer, Boston, 2007), pp. 153–222.
[3] N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevskii, and V. Volpert, Methods of blood flow modelling,

Math. Modell. Nat. Phenom. 11, 1 (2016).
[4] M. Brust, C. Schaefer, R. Doerr, L. Pan, M. Garcia, P. E. Arratia, and C. Wagner, Rheology of Human

Blood Plasma: Viscoelastic Versus Newtonian Behavior, Phys. Rev. Lett. 110, 078305 (2013).

063301-14

https://doi.org/10.1146/annurev.fl.22.010190.000305
https://doi.org/10.1146/annurev.fl.22.010190.000305
https://doi.org/10.1146/annurev.fl.22.010190.000305
https://doi.org/10.1146/annurev.fl.22.010190.000305
https://doi.org/10.1051/mmnp/201611101
https://doi.org/10.1051/mmnp/201611101
https://doi.org/10.1051/mmnp/201611101
https://doi.org/10.1051/mmnp/201611101
https://doi.org/10.1103/PhysRevLett.110.078305
https://doi.org/10.1103/PhysRevLett.110.078305
https://doi.org/10.1103/PhysRevLett.110.078305
https://doi.org/10.1103/PhysRevLett.110.078305


NONWETTING DROPLET OSCILLATION AND …

[5] K. S. Sorbie, Polymer-Improved Oil Recovery (Springer, New York, 2013).
[6] K. C. Taylor and H. A. Nasr-El-Din, Water-soluble hydrophobically associating polymers for improved

oil recovery: a literature review, J. Petrol. Sci. Eng. 19, 265 (1998).
[7] D. Wang, G. Wang, W. Wu, H. Xia, and H. Yin, The influence of viscoelasticity on displacement

efficiency–from micro to macro scale, SPE Annual Technical Conference and Exhibition, 11-14 Novem-
ber 2007, Anaheim, California, https://www.onepetro.org/conference-paper/SPE-109016-MS.

[8] D. Wang, J. Cheng, Q. Yang, G. Wenchao, L. Qun, and F. Chen, Viscous-elastic polymer can increase
microscale displacement efficiency in cores, SPE Annual Technical Conference and Exhibition, 1-4
October 2000, Dallas, Texas, https://www.onepetro.org/conference-paper/SPE-63227-MS.

[9] D. Wang, J. Cheng, H. Xia, Q. Li, and J. Shi, Viscous-elastic fluids can mobilize oil remaining after water-
flood by force parallel to the oil-water interface, SPE Asia Pacific Improved Oil Recovery Conference, 6-9
October 2001, Kuala Lumpur, Malaysia, https://www.onepetro.org/conference-paper/SPE-72123-MS.

[10] D. Wang, H. Xia, Z. Liu, and Q. Yang, Study of the mechanism of polymer solution with visco-elastic
behavior increasing microscopic oil displacement efficiency and the forming of steady “oil thread” flow
channels, SPE Asia Pacific Oil and Gas Conference and Exhibition, 17-19 April 2001, Jakarta, Indonesia,
https://www.onepetro.org/conference-paper/SPE-68723-MS.

[11] H. Xia, Y. Ju, F. Kong, and J. Wu, Effect of elastic behavior of hpam solutions on displacement efficiency
under mixed wettability conditions, SPE Annual Technical Conference and Exhibition, 26-29 September
2004, Houston, Texas, https://www.onepetro.org/conference-paper/SPE-90234-MS.

[12] H. Xia, D. Wang, G. Wang, and J. Wu, Effect of polymer solution viscoelasticity on residual oil, Pet. Sci.
Technol. 26, 398 (2008).

[13] D. A. Z. Wever, F. Picchioni, and A. A. Broekhuis, Polymers for enhanced oil recovery: a paradigm for
structure–property relationship in aqueous solution, Prog. Polym. Sci. 36, 1558 (2011).

[14] T. Urbissinova, J. J. Trivedi, and E. Kuru, Effect of elasticity during viscoelastic polymer flooding-a
possible mechanism of increasing the sweep efficiency, SPE Western Regional Meeting, 27-29 May 2010,
Anaheim, California, https://www.onepetro.org/conference-paper/SPE-133471-MS.

[15] E. C. M. Vermolen, M. J. T. Van Haasterecht, and S. K. Masalmeh, A systematic study of the polymer
visco-elastic effect on residual oil saturation by core flooding, SPE EOR Conference at Oil and Gas West
Asia, 31 March-2 April 2014, Muscat, Oman, https://www.onepetro.org/conference-paper/SPE-169681-
MS.

[16] P. Qi, D. H. Ehrenfried, H. Koh, and M. T. Balhoff, Reduction of residual oil saturation in sandstone cores
by use of viscoelastic polymers, SPE J. (Soc. Pet. Eng.) 22, 447 (2017).

[17] M. Z. Erincik, P. Qi, M. T. Balhoff, and G. A. Pope, New method to reduce residual oil saturation by
polymer flooding, SPE Annual Technical Conference and Exhibition, 9-11 October 2018, San Antonio,
Texas, https://www.onepetro.org/conference-paper/SPE-187230-MS.

[18] A. Clarke, A. M. Howe, J. Mitchell, J. Staniland, and L. A. Hawkes, How viscoelastic-polymer flooding
enhances displacement efficiency, SPE J. (Soc. Pet. Eng.) 21, 675 (2016).

[19] J. Mitchell, K. Lyons, A. M. Howe, and A. Clarke, Viscoelastic polymer flows and elastic turbulence in
three-dimensional porous structures, Soft Matter 12, 460 (2016).

[20] A. M. Howe, A. Clarke, and D. Giernalczyk, Flow of concentrated viscoelastic polymer solutions in
porous media: effect of mw and concentration on elastic turbulence onset in various geometries, Soft
Matter 11, 6419 (2015).

[21] R. G. Larson, E. S. G. Shaqfeh, and S. J. Muller, A purely elastic instability in taylor–couette flow,
J. Fluid Mech. 218, 573 (1990).

[22] P. Pakdel and G. H. McKinley, Elastic Instability and Curved Streamlines, Phys. Rev. Lett. 77, 2459
(1996).

[23] G. H. McKinley, P. Pakdel, and A. Öztekin, Rheological and geometric scaling of purely elastic flow
instabilities, J. Non-Newtonian Fluid Mech. 67, 19 (1996).

[24] A. Groisman and V. Steinberg, Elastic turbulence in a polymer solution flow, Nature (London) 405, 53
(2000).

[25] A. Groisman and V. Steinberg, Elastic turbulence in curvilinear flows of polymer solutions, New J. Phys.
6, 29 (2004).

063301-15

https://doi.org/10.1016/S0920-4105(97)00048-X
https://doi.org/10.1016/S0920-4105(97)00048-X
https://doi.org/10.1016/S0920-4105(97)00048-X
https://doi.org/10.1016/S0920-4105(97)00048-X
https://www.onepetro.org/conference-paper/SPE-109016-MS
https://www.onepetro.org/conference-paper/SPE-63227-MS
https://www.onepetro.org/conference-paper/SPE-72123-MS
https://www.onepetro.org/conference-paper/SPE-68723-MS
https://www.onepetro.org/conference-paper/SPE-90234-MS
https://doi.org/10.1080/10916460600809600
https://doi.org/10.1080/10916460600809600
https://doi.org/10.1080/10916460600809600
https://doi.org/10.1080/10916460600809600
https://doi.org/10.1016/j.progpolymsci.2011.05.006
https://doi.org/10.1016/j.progpolymsci.2011.05.006
https://doi.org/10.1016/j.progpolymsci.2011.05.006
https://doi.org/10.1016/j.progpolymsci.2011.05.006
https://www.onepetro.org/conference-paper/SPE-133471-MS
https://www.onepetro.org/conference-paper/SPE-169681-MS
https://doi.org/10.2118/179689-PA
https://doi.org/10.2118/179689-PA
https://doi.org/10.2118/179689-PA
https://doi.org/10.2118/179689-PA
https://www.onepetro.org/conference-paper/SPE-187230-MS
https://doi.org/10.2118/174654-PA
https://doi.org/10.2118/174654-PA
https://doi.org/10.2118/174654-PA
https://doi.org/10.2118/174654-PA
https://doi.org/10.1039/C5SM01749A
https://doi.org/10.1039/C5SM01749A
https://doi.org/10.1039/C5SM01749A
https://doi.org/10.1039/C5SM01749A
https://doi.org/10.1039/C5SM01042J
https://doi.org/10.1039/C5SM01042J
https://doi.org/10.1039/C5SM01042J
https://doi.org/10.1039/C5SM01042J
https://doi.org/10.1017/S0022112090001124
https://doi.org/10.1017/S0022112090001124
https://doi.org/10.1017/S0022112090001124
https://doi.org/10.1017/S0022112090001124
https://doi.org/10.1103/PhysRevLett.77.2459
https://doi.org/10.1103/PhysRevLett.77.2459
https://doi.org/10.1103/PhysRevLett.77.2459
https://doi.org/10.1103/PhysRevLett.77.2459
https://doi.org/10.1016/S0377-0257(96)01453-X
https://doi.org/10.1016/S0377-0257(96)01453-X
https://doi.org/10.1016/S0377-0257(96)01453-X
https://doi.org/10.1016/S0377-0257(96)01453-X
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1088/1367-2630/6/1/029
https://doi.org/10.1088/1367-2630/6/1/029
https://doi.org/10.1088/1367-2630/6/1/029
https://doi.org/10.1088/1367-2630/6/1/029


XIE, XU, MOHANTY, WANG, AND BALHOFF

[26] P. Qi, The effect of polymer viscoelasticity on residual oil saturation, Ph.D. thesis, The University of
Texas at Austin, 2018.

[27] T. N. Phillips and G. W. Roberts, Lattice boltzmann models for non-newtonian flows, IMA J. Appl. Math.
76, 790 (2011).

[28] J. Su, J. Ouyang, X. Wang, and B. Yang, Lattice boltzmann method coupled with the oldroyd-b
constitutive model for a viscoelastic fluid, Phys. Rev. E 88, 053304 (2013).

[29] S. Zou, X. Xu, J. Chen, X. Guo, and Q. Wang, Benchmark numerical simulations of viscoelastic fluid
flows with an efficient integrated lattice boltzmann and finite volume scheme, Adv. Mech. Eng. 7, 805484
(2014).

[30] C. Xie, J. Zhang, V. Bertola, and M. Wang, Lattice boltzmann modeling for multiphase viscoplastic fluid
flow, J. Non-Newtonian Fluid Mech. 234, 118 (2016).

[31] C. Xie, W. Lv, and M. Wang, Shear-thinning or shear-thickening fluid for better eor? — a direct pore-scale
study, J. Pet. Sci. Eng. 161, 683 (2018).

[32] C. Xie, W. Lei, and M. Wang, Lattice boltzmann model for three-phase viscoelastic fluid flow, Phys. Rev.
E 97, 023312 (2018).

[33] N. Wang, H. Liu, and C. Zhang, Deformation and breakup of a confined droplet in shear flows with
power-law rheology, J. Rheol. 61, 741 (2017).

[34] S. Leclaire, M. Reggio, and J. Trépanier, Numerical evaluation of two recoloring operators for an
immiscible two-phase flow lattice boltzmann model, Appl. Math. Models 36, 2237 (2012).

[35] S. Leclaire, M. Reggio, and J. Trépanier, Progress and investigation on lattice boltzmann modeling of
multiple immiscible fluids or components with variable density and viscosity ratios, J. Comput. Phys.
246, 318 (2013).

[36] S. Leclaire, N. Pellerin, M. Reggio, and J. Trépanier, Enhanced equilibrium distribution functions for
simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models,
Int. J. Multiphase Flow 57, 159 (2013).

[37] S. Leclaire and N. Pellerin, Unsteady immiscible multiphase flow validation of a multiple-relaxation-time
lattice boltzmann method, J. Phys. A: Math. Theor. 47, 105501 (2014).

[38] S. Leclaire, A. Parmigiani, O. Malaspinas, B. Chopard, and J. Latt, Generalized three-dimensional lattice
boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous
media, Phys. Rev. E 95, 033306 (2017).

[39] I. Ispolatov and M. Grant, Lattice boltzmann method for viscoelastic fluids, Phys. Rev. E 65, 056704
(2002).

[40] M. Yoshino, Y. Toriumi, and M. Arai, Lattice boltzmann simulation of two-phase viscoelastic fluid flows,
J. Comput. Sci. Technol. 2, 330 (2008).

[41] Z. Guo, C. Zheng, and B. Shi, Force imbalance in lattice boltzmann equation for two-phase flows,
Phys. Rev. E 83, 036707 (2011).

[42] Z. Guo, C. Zheng, and B. Shi, Non-equilibrium extrapolation method for velocity and pressure boundary
conditions in the lattice boltzmann method, Chin. Phys. 11, 366 (2002).

[43] Q. Lou, Z. Guo, and B. Shi, Evaluation of outflow boundary conditions for two-phase lattice boltzmann
equation, Phys. Rev. E 87, 063301 (2013).

[44] A. Satter and G. M. Iqbal, 3 - reservoir rock properties, in Reservoir Engineering, edited by A. Satter and
G. M. Iqbal (Gulf Professional Publishing, Boston, 2016), pp. 29–79.

[45] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.063301 for dy-
namic videos of the oil droplet displacements.

[46] Y. J. Liu, T. Y. Liao, and D. D. Joseph, A two-dimensional cusp at the trailing edge of an air bubble rising
in a viscoelastic liquid, J. Fluid Mech. 304, 321 (1995).

[47] S. B. Pillapakkam, P. Singh, D. Blackmore, and N. Aubry, Transient and steady state of a rising bubble in
a viscoelastic fluid, J. Fluid Mech. 589, 215 (2007).

[48] S. L. Ortiz, J. S. Lee, B. Figueroa-Espinoza, and B. Mena, An experimental note on the deformation and
breakup of viscoelastic droplets rising in non-newtonian fluids, Rheol. Acta 55, 879 (2016).

[49] D. Fraggedakis, M. Pavlidis, Y. Dimakopoulos, and J. Tsamopoulos, On the velocity discontinuity at a
critical volume of a bubble rising in a viscoelastic fluid, J. Fluid Mech. 789, 310 (2016).

063301-16

https://doi.org/10.1093/imamat/hxr003
https://doi.org/10.1093/imamat/hxr003
https://doi.org/10.1093/imamat/hxr003
https://doi.org/10.1093/imamat/hxr003
https://doi.org/10.1103/PhysRevE.88.053304
https://doi.org/10.1103/PhysRevE.88.053304
https://doi.org/10.1103/PhysRevE.88.053304
https://doi.org/10.1103/PhysRevE.88.053304
https://doi.org/10.1155/2014/805484
https://doi.org/10.1155/2014/805484
https://doi.org/10.1155/2014/805484
https://doi.org/10.1155/2014/805484
https://doi.org/10.1016/j.jnnfm.2016.05.003
https://doi.org/10.1016/j.jnnfm.2016.05.003
https://doi.org/10.1016/j.jnnfm.2016.05.003
https://doi.org/10.1016/j.jnnfm.2016.05.003
https://doi.org/10.1016/j.petrol.2017.11.049
https://doi.org/10.1016/j.petrol.2017.11.049
https://doi.org/10.1016/j.petrol.2017.11.049
https://doi.org/10.1016/j.petrol.2017.11.049
https://doi.org/10.1103/PhysRevE.97.023312
https://doi.org/10.1103/PhysRevE.97.023312
https://doi.org/10.1103/PhysRevE.97.023312
https://doi.org/10.1103/PhysRevE.97.023312
https://doi.org/10.1122/1.4984757
https://doi.org/10.1122/1.4984757
https://doi.org/10.1122/1.4984757
https://doi.org/10.1122/1.4984757
https://doi.org/10.1016/j.apm.2011.08.027
https://doi.org/10.1016/j.apm.2011.08.027
https://doi.org/10.1016/j.apm.2011.08.027
https://doi.org/10.1016/j.apm.2011.08.027
https://doi.org/10.1016/j.jcp.2013.03.039
https://doi.org/10.1016/j.jcp.2013.03.039
https://doi.org/10.1016/j.jcp.2013.03.039
https://doi.org/10.1016/j.jcp.2013.03.039
https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.001
https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.001
https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.001
https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.001
https://doi.org/10.1088/1751-8113/47/10/105501
https://doi.org/10.1088/1751-8113/47/10/105501
https://doi.org/10.1088/1751-8113/47/10/105501
https://doi.org/10.1088/1751-8113/47/10/105501
https://doi.org/10.1103/PhysRevE.95.033306
https://doi.org/10.1103/PhysRevE.95.033306
https://doi.org/10.1103/PhysRevE.95.033306
https://doi.org/10.1103/PhysRevE.95.033306
https://doi.org/10.1103/PhysRevE.65.056704
https://doi.org/10.1103/PhysRevE.65.056704
https://doi.org/10.1103/PhysRevE.65.056704
https://doi.org/10.1103/PhysRevE.65.056704
https://doi.org/10.1299/jcst.2.330
https://doi.org/10.1299/jcst.2.330
https://doi.org/10.1299/jcst.2.330
https://doi.org/10.1299/jcst.2.330
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1088/1009-1963/11/4/310
https://doi.org/10.1088/1009-1963/11/4/310
https://doi.org/10.1088/1009-1963/11/4/310
https://doi.org/10.1088/1009-1963/11/4/310
https://doi.org/10.1103/PhysRevE.87.063301
https://doi.org/10.1103/PhysRevE.87.063301
https://doi.org/10.1103/PhysRevE.87.063301
https://doi.org/10.1103/PhysRevE.87.063301
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.063301
https://doi.org/10.1017/S0022112095004447
https://doi.org/10.1017/S0022112095004447
https://doi.org/10.1017/S0022112095004447
https://doi.org/10.1017/S0022112095004447
https://doi.org/10.1017/S0022112007007628
https://doi.org/10.1017/S0022112007007628
https://doi.org/10.1017/S0022112007007628
https://doi.org/10.1017/S0022112007007628
https://doi.org/10.1007/s00397-016-0970-3
https://doi.org/10.1007/s00397-016-0970-3
https://doi.org/10.1007/s00397-016-0970-3
https://doi.org/10.1007/s00397-016-0970-3
https://doi.org/10.1017/jfm.2015.740
https://doi.org/10.1017/jfm.2015.740
https://doi.org/10.1017/jfm.2015.740
https://doi.org/10.1017/jfm.2015.740

