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We computationally studied the kinematics of a simple reciprocal model swimmer
(asymmetric dumbbell) in a Newtonian fluid as a function of the Reynolds number
(Re), and investigated how the onset and gradual increase of inertia impacts swimming
behavior: a reversal in the swim direction, flow field, and the swim stroke. We divided
the swim stroke into the increase and decrease in the distance between the two spheres
(expansion and compression respectively) and related them to power and recovery strokes.
We found that the switch in swim direction also corresponds to a switch in power and
recovery strokes. We obtained expressions for the mean swimming velocity by collapsing
the net displacement during expansion and compression under power-law relationships
with respect to Re, the swimmer’s amplitude, and the distance between the two spheres.
Analyzing the fluid flows, we saw that the averaged flow field during expansion always
resembles a pusher and during compression it always resembles a puller, but when averaged
over the whole cycle, the flow that dominates is the one that occurs during the power stroke.
We also related the power and recovery strokes to the swimming efficiency during times
of expansion and compression, and found that the power stroke is, surprisingly, not always
more efficient than the recovery stroke. Our results may have important implications in
biology and ultimately the design of artificial swimmers.
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I. INTRODUCTION

Biological and artificial swimmers exist across a broad range of length scales, from micron-sized
bacteria and self-propelled nanoparticles to large aquatic organisms and marine robots on the order
of meters. Swimming can be categorized by the Reynolds number (Re), which relates viscous and
inertial forces. Microscopic swimmers at low Re, where viscosity dominates, swim differently from
high-Re swimmers, where inertia dominates. Indeed, in nature one can see bacteria swim with a
corkscrew chiral flagellum at low Re, while larger fish undulate their bodies pushing fluid backward
to move forward at high Re. Between the two extremes resides the intermediate Reynolds regime
(Re ≈ 0.1–1000), where both viscosity and inertia play a role. Mesoscopic organisms, i.e., those that
operate at intermediate Re, are diverse both in size, ≈0.5 mm–50 cm, and in swimming mechanisms,
including, for example, jet propulsion of squid and jellyfish [1,2], rowing of copepod antennae [3,4],
aquatic flapping flight of pteropods [5,6], anguilliform (eel-like) locomotion [7–11], and ciliate
beating [12,13]. Understanding motility in fluids is important both for answering fundamental
biological questions, such as how do organisms swim, feed, communicate, etc., but also for the
design of artificial swimmers and flyers, such as marine robots and drones.
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To gain insight into generic features and underlying physical mechanisms, simple theoretical
models have been developed such as the scallop and Purcell’s three-link swimmer [14], the
squirmer model [15–18], asymmetric and symmetric dumbbell swimmers [19–21], the three-sphere
swimmer [22], and the push-me-pull-you swimmer [23]. Most of the models have focused on
microscopic scales where inertia is negligible, because (a) there are a lot of interesting biological
questions and applications at microscopic scales, such as intracellular dynamics and processes
in the cytoplasm, cell motility, bacteria, and algae [24], as well as artificial swimmers, such as
self-propelled colloids and nanoparticles aspiring, for example, to aid in drug delivery [25,26];
and (b) Stokesian swimmers must break time reversibility, which makes their design theoretically
challenging. While the Stokes regime is indeed very interesting, it is as important to understand
what happens as we move away from the strict Re = 0 Stokes regime, when and how inertia kicks
in, and its consequences for different kinds of swimmers (e.g., different geometries and motility
mechanisms). Models that include finite inertia are the inertial squirmer [27–33], the flapping
plate [34,35], and the asymmetric and symmetric dumbbell swimmers [36–40].

It is worth noting that a lot of biology takes place near the boundary between the Stokes and
intermediate Reynolds regimes, yet where the boundary is precisely is generally unknown. It matters
where the boundary is because organisms have to change their swimming mode, feeding strategy,
etc. depending on the regime in which they live. Switching regimes is not unusual; in fact, a plethora
of organisms born into the Stokes regime move out of it as they grow in size. We would expect that
they also change the way they move as a result of this change in regime. For example, the mollusk
C. antarctica switches from using cilia to flapping as it grows [41], the brine shrimp transitions
from rowing to gliding with metachronally beating legs [42], and the nymphal mayfly transitions
from rowing to flapping with its gill plates [43]. From an applications point of view, understanding
the physics near the boundary can help us design artificial swimmers or (microfluidic) processes
that utilize the relative ratio of inertial and viscous forces, switching between regimes, and thus
switching between desired properties. For a longer discussion on the motivation and importance
of studying motility at intermediate Re, including applications in biology and materials, see this
perspective article [44].

In this paper, we studied the kinematics of a simple reciprocal model swimmer as a function of the
Reynolds number. The same asymmetric dumbbell model (termed the spherobot) was determined
to switch swim direction depending on the Reynolds number because of the corresponding induced
steady streaming flows [39]. The spherobot switched from a small-sphere-leading regime to a
large-sphere-leading regime at Rec ≈ 20. Here, we studied the motion of the spherobot swimmer in
more detail by splitting its oscillation into the expansion and compression of the two spheres, and
we collapsed their corresponding net displacements under piecewise power-law relationships with
respect to Re, inverse Strouhal number ε, and equilibrium distance between spheres d0. We also
related the expansion and compression to power and recovery strokes. We found that the switch
in swim direction as Re increased corresponded to a switch in the power and recovery strokes. In
the small-sphere leading regime (Re < Rec), the power stroke occurred during compression and the
recovery stroke occurred during expansion, while the reverse occurred in the large-sphere-leading
regime (Re > Rec). We noticed how as Re increased and inertial forces became more dominant,
our swimmer transitioned from a jerky, back-and-forth motion with a large backward displacement
during the recovery stroke in the small-sphere-leading regime to a continuous movement forward
in the direction of swimming all in the same direction, with no backward displacement during
the recovery stroke in the large-sphere-leading regime. By studying the fluid flows, we saw that
the averaged flow field during expansion was always pusherlike and during compression it was
pullerlike, which is to be expected, but when averaged over the whole cycle one of the two flow
fields dominated. We determined that the most dominant flows consistently occurred during the
power stroke in each regime. We also related the power and recovery strokes to the spherobot’s
efficiency during times of expansion and compression, and we found that the power stroke was,
surprisingly, not always more efficient than the recovery stroke. The subtle differences in Re that
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FIG. 1. (a) Reciprocal oscillation of the spherobot swimmer over one cycle. The large sphere (orange)
with radius R always oscillates in the opposite direction of the small sphere (blue) with radius r. The distance
between the spheres d (t ) = d0 + A sin(2π f t ) is prescribed to be of a simple harmonic oscillator with frequency
f , where d0 is the equilibrium distance between the spheres, and A = Ar + AR is the amplitude of the spherobot.
The amplitudes of the small and large spheres are Ar and AR, respectively. When absent of fluid, the spherobot’s
center of mass (CM), shown in purple, does not move throughout the oscillation. (b) Simulation specifications
and parameters.

can lead to switching regimes and swim strokes may have important implications for biology and
ultimately the design of artificial swimmers.

The structure of the paper is as follows. In Sec. II we briefly describe the model, the compu-
tational method, and simulation details. In Sec. III we present results for the kinematics of the
spherobot, and in Sec. IV we present results for averaged fluid flows, efficiencies, and the evolution
of fluid flow. We end with a discussion and conclusions in Sec. V.

II. MODEL, METHODS, AND BACKGROUND

The spherobot is a geometrically simple, reciprocal model swimmer composed of two unequally
sized spheres of radii R and r, such that R > r (asymmetric dumbbell); see Fig. 1(a) and
Refs. [39,45]. The spheres oscillate in antiphase with respect to each other, and they are coupled
to one another by prescribing the distance between their centers, d (t ) = d0 + A sin(2π f t ), with an
actuated spring, where d0 is the equilibrium distance between the centers, A is the amplitude of
the spherobot, A = 0.5(dmax − dmin), and f is the frequency of oscillation; see Fig. 1(a). At each
time step, the equilibrium distance of the actuated spring is updated, and an equal and opposite
force is applied to each sphere to move them a desired distance, d (t ), apart. The magnitude and
direction of the force applied to each sphere depend on the relative positions of the two spheres.
[FR(t ), Fr (t )] = [+,−]k[d (t ) − x(t )], in which FR is the force applied to the large sphere, Fr is
the force applied to the small sphere, k is a spring constant, and x(t ) is the current (actual)
distance between the spheres. Note that FR = −Fr at every instance in time (i.e., the swimmer is
self-propelled). The prescribed distance between the spheres’ centers changes sinusoidally with
time, and the model ensures a geometrically reciprocal cycle (error ≈ 1/1000th of the small spheres
radius). The model conditions ensure that the spherobot swims only along the oscillation axis
(vertical). Since the forces were equal in magnitude and the spheres were of the same density,
their amplitudes were different: AR < Ar and A = AR + Ar . Subscripts R and r indicate quantities
specific to the large and small sphere, respectively. Both spheres were neutrally buoyant with the
surrounding fluid, i.e., they had equal densities ρp = ρ f = ρ.

The spherobot was immersed in a viscous, incompressible Newtonian fluid that occupied a finite
cell with no-slip walls. The fully coupled fluid-structure interaction system was resolved using
the constrained immersed boundary (CIB) method [46,47]. The CIB scheme was implemented in
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IBAMR, which is an immersed boundary numerical method with adaptive mesh refinement [48,49].
The IB method for fluid-structure interaction uses an Eulerian formulation of the momentum
equation and incompressibility constraint for the coupled fluid-solid system along with a Lagrangian
description of the motion of the immersed structures. Let x ∈ � be fixed Eulerian physical
coordinates, and let s ∈ U i be fixed Lagrangian curvilinear coordinates attached to the structure.
In our notation, X(s, t ) ⊂ � is the physical position of material point s at time t . The momentum
equation and incompressibility constraint are given by

ρ
Du
Dt

(x, t ) = −∇p(x, t ) + μ∇2u(x, t ) + f (x, t ), (1)

∇ · u(x, t ) = 0, (2)

in which u(x, t ) is the material velocity field, p(x, t ) is the pressure field that imposes the
incompressibility constraint, f (x, t ) is a body force that arises from the presence of the immersed
structure, ρ is the mass density, and μ is the viscosity. Eulerian and Lagrangian variables are coupled
via integral transforms with Dirac delta function kernels:

f (x, t ) =
∫

U
F(s, t )δ(x − X(s, t ))ds, (3)

U(s, t ) =
∫

�

u(x, t )δ(x − X(s, t ))dx. (4)

Equation (3) converts the Lagrangian force density F(s, t ) (which is a Lagrange multiplier force that
constrains the spheres to move as rigid bodies) to an equivalent Eulerian force density f (x, t ), and
Eq. (4) evaluates the local material velocity at each structural position.

The position of each sphere of the spherobot is updated via

∂X
∂t

(s, t ) = U(s, t ) = VCOM + WCOM ∧ R(s, t ), (5)

in which VCOM and WCOM are the (unknown) translational and rotational velocities, respectively,
and R(s, t ) = X(s, t ) − XCOM(t ) is the radius vector to the center of mass of the sphere. The
Lagrangian force density F(s, t ) is required to satisfy the net external force and torque constraint on
the immersed body: ∫

U
F(s, t ) ds = Fexternal, (6)∫

U
R(s, t ) ∧ F(s, t ) ds = Texternal. (7)

We remark that the net external force and torque on the immersed structure excludes hydrodynamic
traction forces on the surface of the body, but could include forces and torques arising, for example,
due to gravity, surface tension, tethered springs, etc. In the case of the spherobot, Fexternal is nonzero
and results from the force applied by the actuated spring, and Texternal = because the actuated spring
passes through the centers of masses of the two spheres. There are no other external forces or
torques.

In our computer model, each sphere of the spherobot was composed of a mesh of Lagrangian
marker points that were generated using an in-house Python code, and the singular δ-function
kernels were replaced by a six-point regularized kernel function [46]. The remainder of the spatial
discretization and the time stepping algorithm for the CIB method have been described in detail in
prior work [46,47].

An adaptive mesh was implemented to improve the efficiency of the simulation. The coarsest
level was broken up into N = 8 cells along one dimension. We used a grid refinement ratio of 1 : 4
where the next highest refinements are N = 32, 128, and 512. There were four refinement levels,
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and the spherobot’s mesh was evaluated at the highest grid refinement of N = 512. The simulation
box was 6× the length of the swimmer and it was 53× the radius of the small sphere to prevent
interactions with the wall.

In previous work, we investigated the spherobot, which was shown to switch swim direction
depending on a critical Re [39]. The swim direction was related to the reversal of steady streaming
flows (SS) around the small sphere [50]. We note three important findings that are relevant in
this paper too: (i) The steady streaming reversal of the time-averaged flow fields over a cycle is
qualitatively similar to puller and pusher flow fields defined in Stokes flows, although our swimmers
were at finite inertia and no assumptions were made on the fluid flows; (ii) we showed that steady
streaming flows can be used as a propulsion mechanism, which is especially interesting in the
low-intermediate Re < 20, where inertia is weak; and (iii) Although the SS flows reversal is gradual
as a function of Re, the result in a system like ours is a drastic change in behavior, namely a switch
in the direction of swimming.

Before further discussion of the spherobot, let us first consider the simpler problem of a
single oscillating sphere with angular frequency ω, amplitude A, and radius r. As discussed in
Ref. [27], in general there are three relevant dimensionless ratios in this class of problems: the
frequency (flapping) Reynolds number Re f = rAω/ν, which scales with the nonlinear advective
term in the Navier-Stokes equations [27,51–53]; M2 = r2ω/ν, which scales with the unsteady
term in the Navier-Stokes equations [50]; and the particle Reynolds number Rep = ρpr2ω/ρ f ν,
which quantifies the particle inertia. Note that for us ρp = ρ f so the particle Reynolds num-
ber reduces to M2. The oscillatory motion introduces a relevant length scale, the oscillatory
boundary layer thickness, δ = √

ν/ω [54]. M can also be thought of as the ratio of the particle
radius r to the oscillatory boundary layer thickness δ. An oscillating sphere also produces a
nonzero cycle-averaged flow otherwise known as steady streaming, and there is an additional
dimensionless ratio, the streaming Reynolds number Res = A2ω/ν, which quantifies the steady
streaming flows around a single oscillating sphere beyond the oscillatory boundary layer [50,55,56].
At intermediate Reynolds numbers, choosing which dimensionless ratio best characterizes the
system is challenging because a lot of the parameters can have similar magnitudes, as is the case
here. Thus, even for the simpler case of one oscillating sphere, there are at least four relevant
dimensionless ratios.

Additional complexity enters the system when we include a second sphere of a different size
oscillating antiphase, resulting in net motion, i.e., swimming. First, there are the extra length scales
the second sphere introduces, e.g., the radius and amplitude of the second sphere, and the distance
between spheres. Second, there is a swimming Reynolds Reswim = Ul/ν, where U is the swim
velocity and l is the swimmer’s length scale. It is worth noting that for experimentally relevant
systems, many of these length scales (that enter the different dimensionless ratios) are of the same
order of magnitude giving values for the ratios close to 1. As a result, the problem becomes more
challenging and often analytically intractable [57].

Here, we use Re = Arrω/ν as the reference Reynolds number (for simplicity, the notation will be
just Re) because that was the Re we found to determine the spherobot switch in the swim direction
from a small-sphere-leading regime (SSL) to a large-sphere-leading regime (LSL) in previous
work [39]. Note that a similar Re has been shown to dominate other intermediate-Re phenomena:
the scaling of the stagnation point indicating the reversal of outer and inner steady streaming [58,59]
and the gap between two granular spheres oscillating in phase [60,61].

We investigated the spherobot’s movement in Stokes flow and in the range of 0.1 � Re � 150.
To give some intuition to the reader, if we were to observe a dumbbell composed of a small sphere
with radius r = 1 mm and a large sphere with radius R = 2r = 2 mm that swims in water and
oscillates with a frequency f = 10 Hz and amplitude A = r = 1 mm, the Reynolds number would
be in the intermediate range, Re = 2π f Arr/ν = 50.3. We defined the length scales with respect to
the radius of the small sphere r and the time scales with respect to the frequency of the oscillation
f . We introduced the dimensionless positions, velocities, equilibrium distance between spheres, and

063103-5



THOMAS DOMBROWSKI AND DAPHNE KLOTSA

TABLE I. List of net displacements.

Variable Definition


ŷCM center of mass

ŷR large sphere

ŷr small sphere

ŷexp expansion

ŷcom compression

ŷmin shift in compression

ŷ+ along 〈v̂CM〉

ŷ− opposite to 〈v̂CM〉

time,

ŷ = y/r, v̂ = v/ f r, d̂0 = d0/r, τ = f t, (8)

as well as the amplitude, kinematic viscosity, and large sphere radius,

ε = A/r, M = r
√

ω/ν = r/δ, α = R/r, (9)

in terms of their dimensional counterparts. We performed a parameter sweep varying the fluid’s
kinematic viscosity M, the spherobot’s amplitude ε, and the equilibrium distance between spheres
d̂0, while keeping the spheres’ radii R and r, frequency f , and sphere and fluid density ρ constant
(α = R/r = 2 and ρ = 2 kg/m3). All of the simulation parameters are shown in Fig. 1(b). The
simulations were run long enough for the spherobot to reach a steady state, defined as less than a
1% change in the average velocity over consecutive oscillations. Data were acquired after steady
state was reached. In most of the paper we focused on two characteristic systems, one in the small-
sphere-leading regime at Re = 2.5 and one in the large-sphere-leading regime at Re = 70.0. For
both systems, d̂0 = 6.5 and ε = 1.2. We used the software VISIT [62] for fluid flow analysis. Other
analysis was done using in-house PYTHON code. In the rest of the paper, we assume the spherobot
is placed vertically (y-direction) with the large sphere on top and the small sphere at the bottom (as
shown in Fig. 1). For all figures showing a characteristic cycle of oscillation, the data are shifted
in the time axis in the following way. The first half of the cycle is a region of expansion, followed
by a region of compression in the second half. We define τ = f t as our dimensionless time unit,
essentially the fraction of time elapsed in the cycle. At τ = 0.00, 1.00 the spheres are at minimum
distance d̂0 − ε, at τ = 0.50 they are at maximum distance d̂0 + ε, and at τ = 0.25, 0.75 they are at
their equilibrium distance apart d̂0. We used a number of variables to describe the net displacement
of the spherobot during its cycle, as shown in Table I.

III. RESULTS

A. Kinematics

We first studied how the periodic oscillation of the two spheres that composed the spherobot
resulted in net displacement of their combined center of mass (CM) over one cycle, ŷCM = (ŷrmr +
ŷRmR)/(mr + mR), where ŷ indicates the position along the swimmer’s axis and m is the mass of
each sphere indicated by the subscript, for a range of Re (Fig. 2). Note that because of the unequal
masses of the spheres, the CM is actually on the large sphere (see Fig. 1) and as such closely follows
the trajectory of the large sphere. We used the CM to indicate the displacement and velocity of the
spherobot as a whole. Moreover, displacement was measured in relation to the position of the CM
at the start of the cycle at ŷCM = 0. The full parameter range of data shown in Table I is found in the
supplemental information (SI). We present our findings where the spherobot’s amplitude, ε = 1.2,
the equilibrium distance between spheres, d̂0 = 6.5, and the individual sphere radii, α = 2, were
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FIG. 2. Kinematic quantities plotted as functions of time over one cycle of oscillation after steady state
had been reached. (a) Displacement of spherobot, represented by the net displacement of its center of mass

ŷCM, (b) velocity of spherobot represented by v̂CM, and (c) displacement of individual spheres of radius R
and r. Net swimming direction is indicated by the colors of the curves (black, Stokes flow; pink to yellow,
small-sphere-leading; and green to blue, large-sphere-leading). The Reynolds number is represented by the
shading of the curves; see the legend.

held constant such that Re was only ∝1/ν. In other words, Re was increased gradually via the
kinematic viscosity ν.

For Re = 0 (Stokes flow), the spherobot’s reciprocal motion resulted in no net displacement over
a cycle, as expected from the scallop theorem [14]. It moved in the direction of the large sphere
during expansion, reaching maximum displacement halfway through the cycle, and then it moved
in the direction of the small sphere during compression, ultimately returning exactly where it began;
see Fig. 2(a), black curve.

1. Small-sphere-leading

As we transitioned from Stokes flow to intermediate Re, the spherobot’s trajectory changed;
see Fig. 2(a), pink to yellow curves. At the start of its cycle, the spherobot moves forward (small
sphere on the front), then slightly in the opposite direction during expansion and the initial part of
compression; it moves with the small sphere on the front for the rest of the compression, with net
displacement in that same direction at the end of the cycle. Note that the maximum displacement
during the cycle is in the opposite direction to that of net swimming. This backward maximum
displacement occurred at the half-period mark for Stokes flows and was shifted to a later time
τ ≈ 0.55–0.65 in the small-sphere-leading (SSL) regime. As Re increased both the maximum
backward displacement near the half-period mark and the net displacement at the end of the cycle
got smaller, see curves from Re = 0.5 to 13.5, at τ ≈ 0.5 and τ = 1, respectively. For Re = 18.0,
the net displacement after one cycle is ≈0. The spherobot will switch direction and transition from
the small-sphere-leading to the large-sphere-leading regime.
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2. Large-sphere-leading

In the large-sphere-leading (LSL) regime we see two behaviors; see Fig. 2(a), green to blue
curves. First, for Re = 27 and 34, at the start of its cycle, the spherobot moves backward slightly
(small sphere on the front), and then moves forward (large sphere on the front) during expansion.
It then continues to move forward during compression, only to slightly move back again at the
end of the compression, with net displacement toward the large sphere. Already, it is clear that
in the large-sphere-leading regime, the spherobot is hardly ever found to be with displacement in
the opposite direction to its swimming, contrary to the small-sphere-leading regime. Then, as Re
increases further (Re > 45), the backward motion is suppressed more until the spherobot moves
in the direction of swimming at all times. The two behaviors are more evident from the velocity
plots [see Fig. 2(b), green curves], where for Re = 27 and 34 the velocity at the start and the end of
the cycle is negative (toward the small sphere), while for all other higher Re the velocity is always
positive (toward the large sphere).

3. Separate spheres

To understand how each sphere contributes to the overall motion, we also looked at the
kinematics of the spheres separately; see Fig. 2(c). During expansion, for both regimes the large
sphere’s net displacement is always LSL, and the small sphere’s is Rr always SSL. During
compression, the large and small spheres do the opposite, i.e., the large sphere’s net displacement
DyR is always SSL, and the small sphere’s Dyr is always LSL. The distinction in the trajectories of
the two regimes seems to appear during compression.

In Stokes flow, the trajectory of each sphere is symmetric with respect to time over a cycle, and
the two spheres are always antiphase. As we increase Re, the individual spheres are affected by
the onset of inertia differently, resulting in a phase difference between them. We present data for
two characteristic systems (described in Sec. II), one in each regime. In Fig. 3, we compared the
velocities of the large sphere (orange), small sphere (blue), CM (purple), and identified regions of
“slip” to be when both spheres moved in the same direction. When both spheres’ velocities are
negative (toward the small sphere), we call this SSL-slip, and when they are both positive (toward
the large sphere), we call it LSL-slip. In the small-sphere-leading regime, at the end of expansion
and the start of compression we found slip in the direction opposite to swimming (LSL-slip), while
at the end of compression and the start of expansion we found a larger slip in the direction of
swimming (SSL-slip); see Fig. 3(a). In the large-sphere-leading regime, at the end of expansion and
the start of compression the slip was still LSL but now in the direction of swimming, while at the
end of compression and the start of expansion we found that the direction of slip depended on the
Re. As Re increased, the slip switched to LSL. In other words, the increase in inertia only affected
the slip direction after compression. So, we identified for Re > 0.0 two contributions to the motion
of the spherobot, namely the oscillatory and the slip (steady).

We also varied ε and d̂0 in addition to ν, shown in Fig. 2. The full parameter range is shown in
Table I, and additional plots are included in the SI (Sec. I). The magnitude of the net displacement
at the end of the cycle increased when ε and Re also increased. Conversely, the net displacement
decreased when d̂0 increased (Figs. S1 and S2 of the SI).

To help identify trends in the data, we decomposed 
ŷCM into the net displacements during
expansion 
ŷexp and during compression 
ŷcom. Figures 4(a) and 4(b) show an example of this
decomposition for all amplitudes and equilibrium distances studied. Let us consider expansion first.
When the 
ŷexp data are plotted on a log-log scale, see Fig. 4(a), we see a constant negative slope
followed by a constant positive slope, indicative of two regions, each defined by a power law in Re.
If we now consider compression and look at the data for 
ŷcom on a log-log scale, see Fig. 4(b), we
observe three distinct trends with respect to Re all with positive slopes, also determined to be power
laws with different exponents. We considered three variables Re, ε = A/r, and d̂0 and assumed
they are independent of one another. We partitioned the data into two expansion regions and three
compression regions with Re, and we performed a multiple variable linear regression on each. It is
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FIG. 3. We define slip to be the region of movement where both spheres move in the same direction. As
a result, the entire spherobot moves in the same direction as its spheres. Here, we show the nondimensional
velocities (v/ f r) of the spherobot v̂CM (purple), its large sphere v̂R (orange), and its small sphere v̂r (blue) when
it is (a) small-sphere-leading and (b) large-sphere-leading. We identify the regions of slip observed during
each spherobot’s oscillation with black circles, and the region is magnified to the right. For the (a) small-
sphere-leading spherobot, slip regions (1) and (2) are shown. Region (1) displays a region where slip is small-
sphere-leading. It occurs at the end of compression and at the start of expansion. Region (2) shows a region
where slip is large-sphere-leading. It occurs at the end of expansion and the start of compression. For the
(b) large-sphere-leading spherobot, slip regions (3) and (4) are identified. Regions (3) and (4) show regions
where the spherobot slips large-sphere-leading. Region (3) occurs at the end of compression and the start of
expansion. Region (4) occurs at the end of expansion and the start of compression.
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FIG. 4. (a) Net displacement of the spherobot during expansion 
ŷexp as a function of Re on a log-log scale
for all ε and d̂0 simulated; see the legend. Curves show a constant negative slope followed by a positive slope
except for when both ε = 0.8 (pink) and d̂0 = 9.0, 10.0. The turning point and the positive slope change for
different amplitudes ε (color). (b) Net displacement of the spherobot during compression 
ŷcom as a function
of Re on a log-log scale. There are three distinct positive slope trends with Re. We fit the expansion and
compression displacements with respect to Re, ε, and d0 using a multiple variable linear regression. (c) 
ŷexp

vs Re on a log-log scale collapsed into a negative slope (black dashed) and a positive slope region (red dashed).
(d) 
ŷcom vs Re on a log-log scale collapsed into three distinct positive slope regions. The corresponding
relationships with Re, ε, and d0 are also shown in (c) and (d). The dotted gray line represents the critical
Reynolds number where the swimming direction switches from small-sphere-leading to large-sphere-leading.

important to note that each region has a different dependence on Re, ε, and d̂0. For the expansion,
the data were split where there was a minimum in 
ŷexp; see Fig. 4(a). For compression, the data
were split where the slope changed at Re ≈ 2.0 and then again when 
ŷexp was at a minimum (the
same criterion as the expansion data); see Fig. 4(b). The resulting collapse is shown on a log-log
scale in Figs. 4(c) and 4(d). Equations (10) and (11) show the fits for 
ŷexp and 
ŷcom, respectively,
and their power-law relationships with Re, ε, and d̂0. It is worth noting that while there is currently
no analytical theory for finite amplitudes, the expressions we obtained from the collapse can be used
to give a prediction for the velocity of the spherobot, 〈v̂CM〉 = f (
ŷexp + 
ŷcom), where f is the
frequency of its oscillation,


ŷexp =

{
10−1.6Re−0.3ε1.4d̂0.8

0 Fig. 4(c) black,

10−1.9Re0.3ε2.3d̂0.2
0 Fig. 4(c) red;

(10)


ŷcom =

⎧⎪⎨
⎪⎩

10−2.9Re1.9ε−1.0d̂1.1
0 Fig. 4(c) black,

10−1.9Re0.4ε0.7d̂0.4
0 Fig. 4(c) blue,

10−1.6Re0.4ε1.7 Fig. 4(c) red.

(11)
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B. Power and recovery

To gain insight into the spherobot’s motility mechanism in the two regimes, we divided its
periodic motion into power and recovery strokes, a classical analysis for the motility of Stokesian
swimmers [63]. In living organisms, a common way to define power and recovery strokes is as
follows. The power stroke occurs when the swimmer’s appendage, i.e., the part of the swimmer that
generates motion, moves opposite to the direction of the mean swim velocity 〈v̂CM〉, and the recovery
stroke occurs when the appendage moves in the same direction as 〈v̂CM〉 [64,65]. For example, one
can imagine a human swimmer’s breast stroke. The power stroke occurs when the swimmer’s arms
move back to propel the swimmer forward, and the recovery stroke occurs as the arms return to
their original position. During the recovery stroke, the swimmer either moves backward or slows
down depending on the motility mechanism, Re, etc. It is also important to note that organisms
with reciprocal strokes (stroke the same forward in time as backward) cannot swim in Stokes flow,
meaning the power stroke is identical to the recovery stroke, and the swimmer moves back and forth
the same amount, e.g., the scallop or the spherobot.

How does a power and recovery stroke emerge as Re increases from 0 to finite? And how do
the notions of power and recovery strokes evolve as Re increases further? We aim to answer these
questions for the spherobot. We view the large sphere as the body of the swimmer and the small
sphere as its appendage. The justification for this is that the small sphere moves the most as it has a
larger amplitude than the large sphere; see also [39]. Thus, we define the power stroke to be when
the velocity of the small sphere and the average velocity of the CM over the whole cycle are in
opposite directions, v̂r〈v̂CM〉 < 0, and the recovery stroke when the velocity of the small sphere and
the average velocity of the CM are in the same direction, v̂r〈v̂CM〉 > 0. Note that 〈v̂CM〉 < 0 in the
small-sphere-leading regime and 〈v̂CM〉 > 0 in the large-sphere-leading regime.

In Fig. 5, we plot v̂CM (purple), with the displacements in the same direction as 〈v̂CM〉 termed

ŷ+ (green area) and opposite to it 
ŷ− (red area), and we indicate power (P) and recovery
strokes (R) in each regime. For Re = 0.0, there was no distinction between power and recovery
strokes because the spherobot does not swim, 〈v̂CM〉 = 0.0; see Fig. 5(a). Connecting to the two
regimes, in the small-sphere-leading regime, Fig. 5(b), the spherobot performs a power stroke during
compression and a recovery stroke during expansion. The effect of inertia is already apparent: the
curve has shifted in the time axis compared to Stokes flow, such that, early in the recovery stroke,
the swimmer is still moving forward due to the power stroke. Similarly, the swimmer is still moving
backward early in the power stroke. As Re increases, the power and recovery strokes produce
smaller displacements in both directions; see Fig. 5(c). As a result, the spherobot experiences less
intense back-and-forth motion. Note that we do not see a further shift with respect to time. At the
critical value where the transition in the swimming direction occurs (Re = 18.0), expansion and
compression generate smaller but equal displacements in both directions, so the spherobot remains
stationary over a cycle; see Fig. 5(d). As Re increases further, the spherobot switches direction
to swim large-sphere-leading, and now performs a power stroke during expansion and a recovery
stroke during compression; see Figs. 5(e) and 5(f). Its periodic motion is still prescribed and does
not change, but the power and recovery strokes reverse. There is also a behavioral change in the
recovery stroke. When Re > 18 but still close to the transition, the recovery stroke produces a
backward displacement [Fig. 5(e)], while for higher Re the recovery stroke does not produce a
backward displacement and just slows down the swimmer [Fig. 5(f)]. The power stroke, on the other
hand, does not change much with Re, and the maximum velocity remains approximately constant.
This is a demonstration showing how the movement of a simple model swimmer is affected by the
onset and gradual increase of inertia.

IV. FLUID FLOWS AND EFFICIENCY

We showed that in the small-sphere-leading regime, the averaged flow over a cycle is pullerlike,
i.e., the flow is pulled in toward the spheres along the swimming direction and is pushed out along
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FIG. 5. The power and recovery stroke of the spherobot is determined by the movement of its appendage,
the small sphere, represented by v̂r . We define the power stroke to be when the small sphere moves opposite
to the direction of net motion, v̂r〈v̂CM〉 < 0. Vice versa, the recovery stroke is defined to be when the small
sphere moves in the same direction as the net motion, v̂r〈v̂CM〉 > 0. In this figure, the nondimensional velocity
of the spherobot, v̂CM, is represented by the purple curves. The mean swim direction 〈v̂CM〉 is indicated by
the purple arrow in the accompanying spherobot schematics. The shaded areas under the v̂CM curve represent
the displacements: in the mean swimming direction 
ŷ+ (green) and opposite to it 
ŷ− (red). The power
and recovery strokes for each swimmer are labeled by P and R, respectively. (a) The spherobot in Stokes
flow. Here, there is zero net displacement. Therefore, there is no power or recovery stroke observed. (b) and
(c) The spherobot swims net small-sphere-leading at Re = 2.5. Its power stroke is during compression, and its
recovery stroke is during expansion. (d) The spherobot does not swim and its net displacement is very small
and approximated to be zero. Like Stokes flow, we do not observe a power or recovery stroke. (e) and (f) The
spherobot swims large-sphere-leading at Re = 33.0 and 70.0. Its power and recovery stroke are opposite of
those observed for the small-sphere-leading spherobot. The power stroke occurs during expansion, and the
recovery stroke occurs during compression.
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the perpendicular [see Fig. 6(c)], while in the large-sphere-leading regime the averaged flow over a
cycle is pusherlike, i.e., the flow is pushed out away from the spheres along the swimming direction
and is pulled in along the perpendicular; see Fig. 6(f) [39]. We related this reversal of averaged fluid
flows of the spherobot to a reversal in steady streaming around a sphere calculated analytically by
Riley [50]. It is noteworthy that while the spherobot operates at intermediate Reynolds numbers and
the flow around it is generated by the oscillation of the spheres, its average flow field qualitatively
resembles the flow around Stokesian model pullers and then pushers as Re increases and the flow
field of the spherobot reverses. As discussed more by Dombrowski et al. [39], there is no reason
to assume that such a link would exist because the source of the flow field and the hydrodynamics
are different in the two cases: surface velocity oscillations at Re = 0 in the squirmer model versus
translational sphere oscillations at intermediate Re in the spherobot.

To get more insight into how the averaged fluid flow fields’ reversal relates to motion, we split
the flows averaging over expansion and compression separately for the two characteristic systems.
The averaged flow during expansion resembles a pusher and during compression a puller for both
swimming regimes. This makes intuitive sense as we expect the fluid to flow into the gap between the
spheres during expansion and to be pushed out of the gap during compression. There is a competition
between pusher- and puller-type flow, and depending on Re, either puller or pusher flow is more
dominant, as evident by the difference in net flow fields (c) and (f).

The presence of both pullerlike and pusherlike flows during the cycle for both small-sphere
leading (pullerlike overall) and large-sphere-leading (pusherlike overall) regimes is interesting
because it apparently happens around living organisms, too, albeit in Stokes flows. Chlamydomonas
and sperm cells, for example, have been shown to oscillate between puller and pusher flows even
though they are classified as a puller and pusher, respectively, based on the net far field flow [66].
Relating to power and recovery strokes in each regime, it is worth noting that the flow field that
occurs during the power stroke is the one that dominates over the cycle; see Fig. 6. Note that we are
presenting the near-field flow here, which extends to the edge of the box ∼53r. It will be interesting
to do a systematic study of the near- and far-field flow and how they decay, and to compare, for
example, with the fields shown by Chisholm and Khair for inertial squirmers [32].

We also calculated the efficiency of our swimmer in each regime during expansion ηexp,
compression ηcom, and the whole cycle ηcyc. We defined the efficiency to be η = 
y+/E . 
y+
is the swimmer’s total distance traveled in the net swimming direction, and E = ∑1

τ=0 Uspring(τ ) =∑1
τ=0 0.5k[d (τ ) − x(τ )]2 is the total energy added to the system over one cycle, where k is the

spring constant, d (τ ) is the prescribed spring length, and x(τ ) is the current spring length in the
simulation (see also Sec. II). There was zero contribution to the efficiency when the spherobot
moved opposite to its swim direction. In Fig. 7, we calculated the efficiency of the spherobot with
parameters A = 0.18 m and d0 = 0.98 m and plotted as a function of Re. In the small-sphere-leading
regime, the spherobot was more efficient during compression (Fig. 7, green dotted line) than
expansion (Fig. 7, red solid line), ηcom > ηexp, i.e., it was more efficient to push fluid out from
between the spheres than to pull it in. In the large-sphere-leading regime, expansion (Fig. 7, green
solid line) was more efficient than compression (Fig. 7, red dotted line), ηexp > ηcom, i.e., it was
more efficient to pull fluid in between the spheres than to push it out. For most Re, the power stroke
is more efficient than the recovery stroke. However, at Re ≈ 110 for this spherobot configuration,
the recovery stroke becomes more efficient than the power stroke. In fact, the Re where the recovery
stroke becomes more efficient than the power stroke depends on the separation distance of the
spheres, d̂0. The larger the separation, the larger the Re where the recovery becomes the more
efficient stroke; see Fig. S11. We discuss possible explanations in the SI (Sec. III).

We can attribute the motion of the spherobot to the continuous evolution in its averaged fluid
flow over a cycle (steady streaming) across Re; see Fig. 8. First, at low Re [Fig. 8(a)], the spherobot
oscillations generate only one vortex layer. The flow pulls inward along the swimming axis and
pushes outward along the perpendicular; see also Fig. 6(c). Because of the asymmetry in the
spherobot, there is a resulting asymmetry in fluid flow. The small sphere has a larger amplitude
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FIG. 6. The average velocity field of a small-sphere-leading (top row) and large-sphere-leading (bottom
row) spherobot averaged over (left) expansion, (middle) compression, and (right) an oscillation cycle. Flow
magnitudes are represented by the heat map, and the flow direction is indicated by the black arrows. (a) Flow
field of small-sphere-leading spherobot averaged over expansion. The fluid flows outward along the swimming
axis and inward perpendicular. (b) Flow field of small-sphere-leading spherobot averaged over compression.
The flow is opposite to that of expansion, inward along the swimmer’s axis and outward perpendicular.
(c) Averaged over a whole cycle small-sphere-leading spherobot flow. The net flow is pullerlike. (d) Flow
field of large-sphere-leading spherobot averaged over expansion. The fluid flows outward along the swimming
axis and inward perpendicular. (e) Flow field of large-sphere-leading spherobot averaged over compression.
The flow is opposite to that of expansion, inward along the swimmer’s axis, and outward perpendicular.
(f) Averaged over a whole cycle large-sphere-leading spherobot flow. The net flow is pusherlike.
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FIG. 7. Efficiency of a spherobot with parameters ε = 1.2 and d̂0 = 6.5 as a function of Re where
ηexp (solid green and red), ηcom (dashed green and red), and ηcyc (black) are depicted. Also shown are the
efficiencies of the power (green) and recovery (red) strokes. The inset shows a closeup of the efficiencies in the
small-sphere-leading regime. Here, the power stroke occurs during compression, the recovery stroke occurs
during expansion, and ηcom > ηexp. Because there is a switch in swimming direction at Re ≈ 20, the power
and recovery strokes also switch. Now, ηexp > ηcom. As expected, the power stroke is more efficient than the
recovery, but up until Re > 110 for this configuration. There is also a trend in the spherobot’s cycle efficiency
where swimming large-sphere-leading is generally more efficient than swimming small-sphere-leading.

so its oscillation affects the surrounding flow farther away than the large sphere does. In fact, steady
streaming flows theoretically scale as A2ω/ν [55]. Thus the averaged flow appears to be dominated
by the small sphere so much that the large sphere acts almost as an obstacle. As a result, at the lower
end of Re, the spherobot moves small-sphere-leading because the fluid below the small spheres
pulls it more than fluid above. As Re increases, the inner vortex layer reduces in size and extent, and
eventually an additional outer vortex layer forms only below the small sphere; see Fig. 8(b). The
outer vortex layer rotates counter to the inner vortex, which creates a competition between pulling
the spherobot down and pushing the spherobot up along its swimming axis (stagnation point). The
spherobot slows down and approaches zero. An outer vortex layer above the large sphere develops
at a higher Re relative to the outer vortex below the small sphere, i.e., Fig. 8(c). When the spherobot
is stationary at Re = Rec, the inner vortex pulls the spherobot as strongly as the outer vortex pushes
it. As Re increases further, Fig. 8(d), the outer vortex above the large sphere aligns its rotation
with the outer vortex above the small sphere and it disappears. The small sphere’s outer vortices
become more and more dominant, and the spherobot is pushed up more by the fluid below the small
sphere. The inner vortex becomes smaller, δ = √

ν/ω, and as a result the spherobot becomes more
efficient in swimming large-sphere-leading. Thus, here is another example in which we see how the
spherobot’s movement is due to a competition between pushing and pulling.

V. DISCUSSION

To summarize, we explored the spherobot’s kinematics and its relationship with Re, amplitude
ε, and the equilibrium distance between spheres d̂0 by collapsing the net displacements during
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FIG. 8. The fluid flow around the spherobot continuously evolves across Re. We provide four flows
averaged over a cycle, from a spherobot with d̂0 = 5.0 and ε = 1.2, across both swimming regimes to
highlight its evolution. Vortices of interest are identified with circles (O) and stagnation points are shown
with a (+). Their colors are chosen to contrast background vorticity. (a) At Re = 2.0, the spherobot swims
small-sphere-leading. We observe one pair of vortices from each sphere, and the small sphere’s vortices
dominate the surrounding flow. (b) At Re = 12.0, an outer vortex forms below the small sphere, which rotates
counter to the inner vortex. The flow direction change below the small sphere is shown to occur at the specified
stagnation point. (c) At Re = 20.0, another outer vortex forms above the large sphere with an accompanying
stagnation point. There is a competition between pushing and pulling the fluid both above and below the
spheres, and the spherobot does not swim. (d) The spherobot now swims large-sphere-leading at Re = 30.0.
The outer vortex above the large sphere disappears, and the flow merges with the outer vortex above the small
sphere, pink circle. The outer vortex below the small sphere (green circle) remains and moves closer to the
spherobot. The outer vortices generated from the small sphere movement dominate the surrounding fluid flow.

expansion 
ŷexp and during compression 
ŷcom. In the small-sphere-leading regime, the spherobot
performed a back-and-forth motion where it moved more in the direction of swimming during
compression than in the opposite direction during expansion. The backward motion disappeared as
Re increased and the spherobot moved in the direction of swimming during expansion and slowed
down during compression. We categorized the spherobot’s swimming into power and recovery
strokes. The swim stroke itself did not change; however, due to the change in swim direction, the
power and recovery strokes switched. We looked at the individual sphere’s velocities and identified
regions of slip where both spheres and the spherobot’s CM moved in the same direction. We noticed
that the slip direction at the end of the power stroke was always in the same direction as the
net swimming. We analyzed the flow fields for a small-sphere-leading and large-sphere-leading
spherobot. Much like living organisms, there was a competition between puller- and pusher-type
flow throughout the cycle. When averaged over the whole cycle, the flow that dominated was
the one that occurs during the power stroke. We calculated the efficiencies of the spherobot over
the cycle as well as during expansion and compression separately. We determined that in the
small-sphere-leading regime, it was more efficient to push fluid out of the gap between the spheres
than to pull fluid inward; the opposite was true for most Re in the large-sphere-leading regime. There
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was additional complexity in the efficiency in the large-sphere-leading regime, where we found that
at high Re depending on d̂0 the recovery stroke was more efficient than the power stroke.

We stress the importance in understanding motility and its complexity at intermediate Re.
Recent studies have reported other model swimmers that can switch their swim direction based on
internal or external stimuli; see, e.g., the passively flapping plate [34] and the asymmetric dumbbell
shaker [38], respectively. It remains to be seen whether other model swimmers at intermediate Re
show similar behavior, and what kind of classifications can be made. The theoretical models, such
as ours presented here, are important because in their simplicity they hopefully capture physical
mechanisms that are obscured by complexity in studies of real organisms. For example, it is possible
that steady streaming flows are present in real swimmers at intermediate Re and could explain how
they swim or switch between different modes of swimming. However, few studies have investigated
flow fields around intermediate-Re swimmers or even other biological systems where there are fluid
oscillations at intermediate Re, e.g., in the lung [67,68].

Another area of importance is how collective behavior emerges from the nonlinearities that arise
when many mesoscale organisms swim together. Are there systems where, say, two organisms
individually swim in one preferred direction, but together as a collective swim differently? Finally,
from an applications standpoint, it is important to understand the underlying physical mechanisms
behind motility at intermediate Re, impacting the design of artificial swimmers, drones, and inertial
microfluidics.

ACKNOWLEDGMENT

D.K. and T.D. acknowledge the National Science Foundation, Grant No. DMR-1753148.

[1] I. K. Bartol, P. S. Krueger, W. J. Stewart, and J. T. Thompson, Pulsed jet dynamics of squid hatchlings at
intermediate Reynolds numbers, J. Exp. Biol. 212, 1506 (2009).

[2] G. Herschlag and L. Miller, Reynolds number limits for jet propulsion: A numerical study of simplified
jellyfish, J. Theor. Biol. 285, 84 (2011).

[3] J. R. Strickler, Swimming of planktonic Cyclops species (Copepoda, Crustacea): pattern, movements and
their control, in Swimming and Flying in Nature (Springer, Boston, MA, 1975), pp. 599–613.

[4] R. W. Blake, Hydrodynamics of swimming in the water boatman, Cenocorixa bifida, Can. J. Zool. 64,
1606 (1986).

[5] B. J. Borrell, J. A. Goldbogen, and R. Dudley, Aquatic wing flapping at low Reynolds numbers:
Swimming kinematics of the Antarctic pteropod, Clione antarctica, J. Exp. Biol. 208, 2939 (2005).

[6] M. Mohaghar, D. Adhikari, and D. R. Webster, Characteristics of swimming shelled antarctic pteropods
(limacina helicina antarctica) at intermediate Reynolds number regime, Phys. Rev. Fluids 4, 111101
(2019).

[7] S. Kern and P. Koumoutsakos, Simulations of optimized anguilliform swimming, J. Exp. Biol. 209, 4841
(2006).

[8] L. A. Fuiman and P. W. Webb, Ontogeny of routine swimming activity and performance in zebra danios
(Teleostei: Cyprinidae), Anim. Behav. 36, 250 (1988).

[9] J. Sznitman, X. Shen, R. Sznitman, and P. E. Arratia, Propulsive force measurements and flow behavior
of undulatory swimmers at low Reynolds number, Phys. Fluids 22, 121901 (2010).

[10] M. J. McHenry, E. Azizi, and J. A. Strother, The hydrodynamics of locomotion at intermediate Reynolds
numbers: undulatory swimming in ascidian larvae (Botrylloides sp.), J. Exp. Biol. 206, 327 (2003).

[11] A. P. S. Bhalla, B. E. Griffith, and N. A. Patankar, A forced damped oscillation framework for undulatory
swimming provides new insights into how propulsion arises in active and passive swimming, PLoS
Comput. Biol. 9, e1003097 (2013).

[12] B. J. Gemmell, H. Jiang, and E. J. Buskey, A tale of the ciliate tail: Investigation into the adaptive
significance of this sub-cellular structure, Proc. R. Soc. B 282, 20150770 (2015).

063103-17

https://doi.org/10.1242/jeb.033241
https://doi.org/10.1016/j.jtbi.2011.05.035
https://doi.org/10.1139/z86-242
https://doi.org/10.1242/jeb.01733
https://doi.org/10.1103/PhysRevFluids.4.111101
https://doi.org/10.1242/jeb.02526
https://doi.org/10.1016/S0003-3472(88)80268-9
https://doi.org/10.1063/1.3529236
https://doi.org/10.1242/jeb.00069
https://doi.org/10.1371/journal.pcbi.1003097
https://doi.org/10.1098/rspb.2015.0770


THOMAS DOMBROWSKI AND DAPHNE KLOTSA

[13] H. Jiang, Why does the jumping ciliate mesodinium rubrum possess an equatorially located propulsive
ciliary belt? J. Plankton Res. 33, 998 (2011).

[14] E. M. Purcell, Life at low Reynolds number, Am. J. Phys. 45, 3 (1977).
[15] M. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small

reynolds numbers, Commun. Pure Appl. Math. 5, 109 (1952).
[16] J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 (1971).
[17] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys. 72,

096601 (2009).
[18] T. J. Pedley, Spherical squirmers: Models for swimming micro-organisms, IMA J. Appl. Math. 81, 488

(2016).
[19] G. Alexander and J. Yeomans, Dumb-bell swimmers, Europhys. Lett. 83, 34006 (2008).
[20] E. Lauga and D. Bartolo, No many-scallop theorem: Collective locomotion of reciprocal swimmers, Phys.

Rev. E 78, 030901(R) (2008).
[21] V. B. Putz and J. Dunkel, Low reynolds number hydrodynamics of asymmetric, oscillating dumbbell pairs,

Eur. Phys. J.: Spec. Top. 187, 135 (2010).
[22] A. Najafi and R. Golestanian, Simple swimmer at low Reynolds number: Three linked spheres, Phys. Rev.

E 69, 062901 (2004).
[23] J. Avron, O. Kenneth, and D. Oaknin, Pushmepullyou: An efficient micro-swimmer, New J. Phys. 7, 234

(2005).
[24] R. E. Goldstein, Batchelor prize lecture fluid dynamics at the scale of the cell, J. Fluid Mech. 807, 1

(2016).
[25] S. A. Mallory, C. Valeriani, and A. Cacciuto, An active approach to colloidal self-assembly, Annu. Rev.

Phys. Chem. 69, 59 (2018).
[26] M. O. Din, T. Danino, A. Prindle, M. Skalak, J. Selimkhanov, K. Allen, E. Julio, E. Atolia, L. S. Tsimring,

S. N. Bhatia et al., Synchronized cycles of bacterial lysis for in vivo delivery, Nature (London) 536, 81
(2016).

[27] E. Lauga, Continuous breakdown of purcell’s scallop theorem with inertia, Phys. Fluids 19, 061703
(2007).

[28] S. Wang and A. Ardekani, Inertial squirmer, Phys. Fluids 24, 101902 (2012).
[29] A. S. Khair and N. G. Chisholm, Expansions at small reynolds numbers for the locomotion of a spherical

squirmer, Phys. Fluids 26, 011902 (2014).
[30] N. G. Chisholm, D. Legendre, E. Lauga, and A. S. Khair, A squirmer across reynolds numbers, J. Fluid

Mech. 796, 233 (2016).
[31] G. Li, A. Ostace, and A. M. Ardekani, Hydrodynamic interaction of swimming organisms in an inertial

regime, Phys. Rev. E 94, 053104 (2016).
[32] N. G. Chisholm and A. S. Khair, Partial drift volume due to a self-propelled swimmer, Phys. Rev. Fluids

3, 014501 (2018).
[33] R. Mahalinkam, F. Gong, and A. S. Khair, Reduced-order model for inertial locomotion of a slender

swimmer, Phys. Rev. E 97, 043102 (2018).
[34] J. Zhang, N.-S. Liu, and X.-Y. Lu, Locomotion of a passively flapping flat plate, J. Fluid Mech. 659, 43

(2010).
[35] S. E. Spagnolie, L. Moret, M. J. Shelley, and J. Zhang, Surprising behaviors in flapping locomotion with

passive pitching, Phys. Fluids 22, 041903 (2010).
[36] D. Klotsa, K. A. Baldwin, R. J. A. Hill, R. M. Bowley, and M. R. Swift, Propulsion of a Two-Sphere

Swimmer, Phys. Rev. Lett. 115, 248102 (2015).
[37] B. U. Felderhof, Effect of fluid inertia on the motion of a collinear swimmer, Phys. Rev. E 94, 063114

(2016).
[38] J. F. Collis, D. Chakraborty, and J. E. Sader, Autonomous propulsion of nanorods trapped in an acoustic

field, J. Fluid Mech. 825, 29 (2017).
[39] T. Dombrowski, S. K. Jones, G. Katsikis, A. P. S. Bhalla, B. E. Griffith, and D. Klotsa, Transition in

swimming direction in a model self-propelled inertial swimmer, Phys. Rev. Fluids 4, 021101(R) (2019).

063103-18

https://doi.org/10.1093/plankt/fbr007
https://doi.org/10.1119/1.10903
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1209/0295-5075/83/34006
https://doi.org/10.1103/PhysRevE.78.030901
https://doi.org/10.1140/epjst/e2010-01278-y
https://doi.org/10.1103/PhysRevE.69.062901
https://doi.org/10.1088/1367-2630/7/1/234
https://doi.org/10.1017/jfm.2016.586
https://doi.org/10.1146/annurev-physchem-050317-021237
https://doi.org/10.1038/nature18930
https://doi.org/10.1063/1.2738609
https://doi.org/10.1063/1.4758304
https://doi.org/10.1063/1.4859375
https://doi.org/10.1017/jfm.2016.239
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevFluids.3.014501
https://doi.org/10.1103/PhysRevE.97.043102
https://doi.org/10.1017/S0022112010002387
https://doi.org/10.1063/1.3383215
https://doi.org/10.1103/PhysRevLett.115.248102
https://doi.org/10.1103/PhysRevE.94.063114
https://doi.org/10.1017/jfm.2017.381
https://doi.org/10.1103/PhysRevFluids.4.021101


KINEMATICS OF A SIMPLE RECIPROCAL MODEL …

[40] T. Parthasarathy, F. K. Chan, and M. Gazzola, Streaming-enhanced flow-mediated transport, J. Fluid
Mech. 878, 647 (2019).

[41] S. Childress and R. Dudley, Transition from ciliary to flapping mode in a swimming mollusc: Flapping
flight as a bifurcation in reω, J. Fluid Mech. 498, 257 (2004).

[42] T. A. Williams, A model of rowing propulsion and the ontogeny of locomotion in artemia larvae, Biol.
Bull. 187, 164 (1994).

[43] A. T. Sensenig, K. T. Kiger, and J. W. Shultz, The rowing-to-flapping transition: ontogenetic changes in
gill-plate kinematics in the nymphal mayfly centroptilum triangulifer (ephemeroptera, baetidae), Biol. J.
Linn. Soc. 98, 540 (2009).

[44] D. Klotsa, As above, so below, and also in between: Mesoscale active matter in fluids, Soft Matter 15,
8946 (2019).

[45] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.063103 for
more details on methods, additional figures and movies of the spherobot.

[46] B. Kallemov, A. P. S. Bhalla, B. E. Griffith, and A. Donev, An immersed boundary method for rigid
bodies, Commum. Appl. Math. Comput. Sci. 11, 79 (2016).

[47] F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. P. S. Bhalla, B. E. Griffith, and A. Donev, Hydrody-
namics of suspensions of passive and active rigid particles: A rigid multiblob approach, Commun. Appl.
Math. Comput. Sci. 11, 217 (2016).

[48] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, An adaptive, formally second order
accurate version of the immersed boundary method, J. Comput. Phys. 223, 10 (2007).

[49] IBAMR: An adaptive and distributed-memory parallel implementation of the immersed boundary method,
https://github.com/IBAMR/IBAMR.

[50] N. Riley, On a sphere oscillating in a viscous fluid, Q. J. Mech. Appl. Math. XIX, 461 (1966).
[51] N. Vandenberghe, S. Childress, and J. Zhang, On unidirectional flight of a free flapping wing, Phys. Fluids

18, 014102 (2006).
[52] N. Vandenberghe, J. Zhang, and S. Childress, Symmetry breaking leads to forward flapping flight, J. Fluid

Mech. 506, 147 (2004).
[53] S. Alben and M. Shelley, Coherent locomotion as an attracting state for a free flapping body, Proc. Natl.

Acad. Sci. (USA) 102, 11163 (2005).
[54] H. Schlichting and K. Gersten, Boundary-layer Theory (Springer, Berlin, Heidelberg, 2017).
[55] N. Riley, Steady streaming, Annu. Rev. Fluid Mech. 33, 43 (2001).
[56] E. J. Chang and M. R. Maxey, Unsteady flow about a sphere at low to moderate reynolds number. part 1.

oscillatory motion, J. Fluid Mech. 277, 347 (1994).
[57] W. Coenen, Steady streaming around a cylinder pair, Proc. R. Soc. London, Ser. A 472, 20160522 (2016).
[58] M. Tatsuno, Secondary flow induced by a circular cylinder performing unharmonic oscillations, J. Phys.

Soc. Jpn. 50, 330 (1981).
[59] C. W. Kotas, M. Yoda, and P. H. Rogers, Visualization of steady streaming near oscillating spheroids,

Exp. Fluids 42, 111 (2007).
[60] D. Klotsa, M. R. Swift, R. M. Bowley, and P. J. King, Interaction of spheres in oscillatory fluid flows,

Phys. Rev. E 76, 056314 (2007).
[61] D. Klotsa, M. R. Swift, R. M. Bowley, and P. J. King, Chain formation of spheres in oscillatory fluid

flows, Phys. Rev. E 79, 021302 (2009).
[62] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison,

G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M.
Durant, J. M. Favre, and P. Navrátil, VisIt: An End-User Tool For Visualizing and Analyzing Very Large
Data, in High Performance Visualization–Enabling Extreme-Scale Scientific Insight (2012), pp. 357–372,
https://wci.llnl.gov/simulation/computer-codes/visit/faqs/faq09.

[63] S. Vogel, Life’s Devices (Princeton University Press, Princeton, NJ, 1988).
[64] F. E. Fish, Transitions from drag-based to lift-based propulsion in mammalian swimming, Am. Zool. 36,

628 (1996).
[65] S. Alben, L. Miller, and J. Peng, Efficient kinematics for jet-propelled swimming, J. Fluid Mech. 733,

100 (2013).

063103-19

https://doi.org/10.1017/jfm.2019.643
https://doi.org/10.1017/S002211200300689X
https://doi.org/10.2307/1542239
https://doi.org/10.1111/j.1095-8312.2009.01314.x
https://doi.org/10.1039/C9SM01019J
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.063103
https://doi.org/10.2140/camcos.2016.11.79
https://doi.org/10.2140/camcos.2016.11.217
https://doi.org/10.1016/j.jcp.2006.08.019
https://github.com/IBAMR/IBAMR
https://doi.org/10.1093/qjmam/19.4.461
https://doi.org/10.1063/1.2148989
https://doi.org/10.1017/S0022112004008468
https://doi.org/10.1073/pnas.0505064102
https://doi.org/10.1146/annurev.fluid.33.1.43
https://doi.org/10.1017/S002211209400279X
https://doi.org/10.1098/rspa.2016.0522
https://doi.org/10.1143/JPSJ.50.330
https://doi.org/10.1007/s00348-006-0224-8
https://doi.org/10.1103/PhysRevE.76.056314
https://doi.org/10.1103/PhysRevE.79.021302
https://wci.llnl.gov/simulation/computer-codes/visit/faqs/faq09
https://doi.org/10.1093/icb/36.6.628
https://doi.org/10.1017/jfm.2013.434


THOMAS DOMBROWSKI AND DAPHNE KLOTSA

[66] G. S. Klindt and B. M. Friedrich, Flagellar swimmers oscillate between pusher- and puller-type
swimming, Phys. Rev. E 92, 063019 (2015).

[67] H. Kumar, M. H. Tawhai, E. A. Hoffman, and C.-L. Lin, Steady streaming: A key mixing mechanism in
low-reynolds-number acinar flows, Phys. Fluids 23, 041902 (2011).

[68] J. B. Grotberg, Respiratory fluid mechanics, Phys. Fluids 23, 021301 (2011).

063103-20

https://doi.org/10.1103/PhysRevE.92.063019
https://doi.org/10.1063/1.3567066
https://doi.org/10.1063/1.3517737

