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Axisymmetric squirmers in Stokes fluid with nonuniform viscosity
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The ciliary locomotion and feeding of an axisymmetric microswimmer in a complex
fluid whose viscosity depends on a surrounding nutrient field are investigated numerically
in order to extend previous asymptotic results for weak nutrient-viscosity coupling.
Numerical simulations capture nonlinearities inherent in the full system that are missed
using perturbation-based linearization methods. The microswimmer’s ciliary beating is
modeled by a slip velocity, i.e., the squirmer model, and body geometry is modeled
by spheroids. It is found that swimming speed and feeding are most affected by a
nonuniform viscosity environment when the ratio of advection forces to diffusion transport,
characterized by the nondimensional Peclét number, is moderate, i.e., Pe = O(5). These
changes are correlated to significant increases in the pressure force on the surface of
the squirmer, as well as differences in power expenditure and hydrodynamic efficiency
compared to the constant-viscosity case. Additionally, the swimming and feeding changes
are found to be more significant in oblate spheroids than prolate spheroids, although the
shape has a smaller effect on performance than Peclét number or surface stroke. These
results suggest that nonlocal effects from viscosity variation are caused by a modification
to the pressure force, as opposed to the strain rate. These results should be useful in
interpreting experiments where a microswimmer affects a fluid’s local rheology.
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I. INTRODUCTION

Studying the locomotion principles of micrometer-scale organisms—commonly called
microswimmers—inspires both biologists and engineers who wish to develop artificial microrobots
for numerous applications such as targeted drug delivery [1–4] and miniature noninvasive surgery
[5,6]. Through the evolutionary goals of colonization and efficient nutrient acquisition, many
microorganisms adopt a specific means of swimming. Microswimmers such as bacteria, protozoa,
and algae use appendages to move through their environment. These appendages can be categorized
into two groups based on their morphology. The first group, flagella, are long, slender appendages
typically present in small numbers on a cell surface. The second group, cilia, are shorter relative
to swimmer size and often exist in groups of thousands. Ciliary swimmers in particular have been
influential in the design of microrobots [7–13] and therefore will be the focus of this study.

Microswimmers commonly swim through complex fluids containing inhomogeneities that
correspond to spatial variation in material properties. Aggregate suspensions of bacteria can affect a
fluid’s bulk viscosity [14–16] and, furthermore, some microswimmers may use spatial variations
in viscosity to improve their locomotion [17,18]. In addition to swimming through complex
environments, microswimmers can actively affect their surroundings. For bacteria, this is done
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through feeding on surrounding nutrients or other metabolic activity; for microrobots, this is done
through surface heat dissipation or chemical reaction as a by-product of swimming actuation. These
mechanisms have the theoretical potential to alter the local material properties of the surrounding
fluid. This raises the question of whether it is possible for a swimmer to modify local fluid rheology
in order to enhance its locomotion. In the case of bacteria, this could further be coupled to increased
feeding rates, which would provide an obvious evolutionary advantage. Additionally, experimental
exploration of the role of a fluid’s microrheology on swimming performance is an active area of
research [19,20], and the analysis presented here will aid in the interpretation of experimental
results. The question considered in this paper is how a single microswimmer can actively modify
local fluid properties in order to improve its locomotion or feeding performance.

The possibility for the existence of an active mechanism to improve locomotion or feeding is
motivated by several biological examples. First, the microswimmer H. pylori modifies the properties
of the surrounding fluid during its locomotion. This bacteria lives in the human stomach and uses
enzymes to locally transform impenetrable stomach mucus into a softer material in which the
organism has greater motility [21]. This modification of the environment by the microorganism
has an important impact on the virulence of H. pylori, which by recent estimates has infected 50%
of the world’s population [22]. The microorganisms Spiroplasma [23] and Leptospira interrogans
[24] have similarly demonstrated viscotaxis, although it is unclear if the organisms have any active
role in affecting near-field viscosity. Another example is the multicellular Volvox. This algae could
have a large rate of nutrient uptake and waste disposal and lives in a high-Peclét-number flow
regime [25–27] where the nutrient field exhibits a flow-induced asymmetry near the body. Colonies
of Volvox also exhibit enhanced mixing with a non-Gaussian distribution of tracer displacement
[28,29]. The question is whether nutrient-dependent flow characteristics and induced material
non-linearity can influence the flow statistics near the body and contribute to the deviation from
Gaussian statistics in this system. It might also constructively influence the rotational steering
observed in Volvox carteri [30,31] and C. crescentus [32].

In addition to these biological motivations, the coupling between transport of scalar fields (e.g.,
nutrients, temperature, and chemicals) and flow dynamics could be leveraged to manufacture more
efficient swimming microrobots. In general, two modes of swimming are available: passive and
active. Inert particles generate thrust passively through the use of gradients in a surrounding scalar
field. These gradients generate a slip velocity on the surface of the particle that results in phoretic
propulsion [33–35]. For an active swimmer, the surface slip velocity is generated by the particle
itself (e.g., bacteria and microrobots). Whether an active swimmer can benefit from the passive
mechanisms of well-coordinated scalar transport is an open question. This paper seeks to address
this question by considering a combination of passive and active effects; the squirmer is an active
swimmer whose cilia produce a slip velocity on the surface, but the dependence of the fluid viscosity
on the surrounding nutrient concentration allows a feedback mechanism for the stroke motion to
induce passive phoretic propulsion.

When a fluid environment is modeled by linear, constant-coefficient PDEs, as is the case
in constant-viscosity Stokes equation, one can employ classical techniques to find fundamental
solutions of the flow field produced by ciliary beating. This approach has been successfully
applied to ciliary microswimmers in Newtonian fluids [36–41]. More recently, there has been an
interest in understanding how the swimming performance of microswimmers changes in a complex
fluid environment with nonlinear rheology. This is motivated by the fact that real-world fluid
environments contain numerous complexities such as particles, polymers, and temperature [42].
As stated above, spatial gradients in these complexities can induce local modification to the fluid
rheology and consequently affect the governing constitutive relation between stress and shear rate;
unfortunately, these complexities also reduce the number of analytic solutions available.

Governing flow equations that are only weakly nonlinear can be solved with asymptotic
techniques. These techniques can be accompanied by the powerful generalized reciprocal theorem
(GRT) [43] to explain swimming performance changes [44–46]. The GRT—where a known
auxiliary solution is employed to solve for quantities, such as swimming speed, in a corresponding
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domain—has been used to study the effect of weakly nonlinear shear-thinning viscosity [47,48]
and viscoelasticity [49–52] on microswimmer mobility. This technique was used previously by
the authors to show that, when the fluid viscosity depends weakly on nutrient concentration, the
optimal swimming speed of the constant-viscosity microswimmer can further increase, among
other results [53]. This suggests that a microorganism could harness the viscosity-modifying
properties of nutrient concentration to swim faster. However, since the effect of variable viscosity
on feeding occurs at higher order asymptotic terms than examined, investigating the effect of
nutrient-dependent viscosity on nutrient uptake requires different methods.

To study systems with substantial nonlinearity, e.g., resulting from a strong nutrient-viscosity
coupling, one often requires numerical methods. To solve the problem considered here—a coupled
variable-coefficient Stokes and advection-diffusion system—the finite element method is employed.
The generality of this method allows us to examine complex domains that would be difficult to
achieve with other methods such as finite differences [54]. Although boundary integral methods
have been employed to study ciliated swimmers [55,56], the presence of variable coefficients in our
problem undermines their computational efficiency. The canonical model of a spheroidal squirmer
allows us to explore the feedback mechanisms between passive and active swimming methods in a
computationally efficient manner.

The paper proceeds as follows: Section II describes the squirmer model, first in general and then
using specific conditions for our simulations and its numerical discretization. Section III contains
descriptions of the results for different parameter regimes, including the effect of Peclét number,
strength and type of nutrient-viscosity (and nutrient-diffusivity) relationship, squirmer surface
motion, and squirmer geometry. Section IV concludes by discussing the importance and significance
of our findings in the wider context of the microswimmer and complex fluids community.

II. SCALAR TRANSPORT AROUND AN AXISYMMETRIC SQUIRMER

We consider a spheroidal squirmer with surface S in an unbounded domain D at negligible
Reynolds number Re = ρUα/μ0 � 1, where ρ is the constant fluid mass density, U is the
characteristic swimming velocity, α is the characteristic length of the squirmer, and μ0 is the
characteristic (far-field) viscosity of the fluid. We additionally assume that ciliary beating (with
frequency σ ) is slow enough that σRe � 1 and therefore the steady approximation is valid. The
axisymmetric squirmer model in a spatially varying nutrient field is described in a general form in
Sec. II A. In Sec. II B, we simplify this general model for our specific squirmer configuration as well
as enforce additional constraints to assist physical interpretation of the results. We then detail our
numerical discretization of the strongly coupled system by the finite-element method in Sec. II C.

A. General steady squirmer in a nutrient-dependent fluid

We follow the general model previously proposed by Magar et al. [57] and Michelin and Lauga
[58], briefly restated here for convenience. More details can be found in Pedley [41] and Pak
and Lauga [40]. In a body-fixed, axisymmetric coordinate system, the flow is governed by Stokes
equations,

∇ · T = 0, ∇ · u = 0, for x ∈ D, (1a)

u = uS , for x ∈ S, (1b)

u → −U, as ||x|| → ∞, (1c)

where u is the fluid velocity, U is the translational velocity of the squirmer, T = −pI + 2μD is
the viscous stress tensor with spatially varying viscosity μ = μ(x), p is the fluid pressure, D(u) =
1
2 (∇u + ∇u�) is the strain rate tensor, and uS is the tangential squirmer motion on the surface S
with respect to the center of mass of the body.
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The squirmer is assumed to be a free swimmer at zero Reynolds number where inertial effects
are negligible. This implies the free-swimming condition which corresponds to zero drag on the
body of the squirmer,

∫
S τ dS = 0, where τ = n · T is the traction on the surface S with n being

the unit normal vector pointing into the flow. Note that torque is always zero by the requirement of
axisymmetry.

The characteristic length α is chosen to be the square root of the surface area of the squirmer, and
characteristic velocity is

√
P0/μ0α, where P0 is the power expenditure by an equivalent squirmer

(with the same surface area) in a constant-viscosity fluid defined as

P =
∫
D
T : D dV = −

∫
S

uS · τ dS. (2)

This nondimensionalization is chosen so that comparisons can be made between different spheroidal
geometries.

The scalar nutrient C is fully absorbed on the surface S of the squirmer (i.e., ignoring
metabolism) and approaches a limiting value of C∞ in the far field. For convenience, the nutrient
is normalized as c = (C∞ − C)/C∞. In accordance with the Stokes-Einstein relationship, where
diffusivity is inversely proportional to viscosity, we also assume variable diffusivity of the nutrient.
The transport of c is modeled with an advection-diffusion equation in the body-fixed coordinate
system:

u · ∇c = 1

Pe
∇ · [H (c)∇c], for x ∈ D, (3a)

c = 1, for x ∈ S, (3b)

c → 0, as ||x|| → ∞, (3c)

where

H (c) = 1 + kκcξ (4)

is the nutrient-dependent diffusivity and the Peclét number is defined using the previously men-
tioned characteristic length and velocity, Pe = 1

κ0

√
P0α/μ0, with κ0 being the (constant) far-field

nutrient diffusivity. Through a suitable rescaling, the normalized scalar field c can be interpreted
as a different physical quantity, such as temperature or a chemical agent emitted, as opposed to
absorbed, by the squirmer. Through Eq. (5), the viscosity depends on the nutrient field, and the
nutrient field depends on the viscosity (through the velocity field), so a two-way coupling exists
between Eqs. (1) and (3). To be clear, these governing equations assume that the spatiotemporal
scales under consideration are large enough to neglect contributions from thermal or biological
noise, effects that are sometimes considered when studying colloidal particles [59].

We follow our previous work in defining the pointwise dependence of viscosity [53] on nutrient
in a canonical form as

μ(c(x)) = μ0[1 + kμ c(x)ξ ], (5)

where kμ and ξ are parameters that govern the strength and qualitative nature of the relationship,
respectively. The characteristic viscosity μ0 corresponds to the viscosity of the nutrient-saturated
fluid, i.e., the far field. Qualitatively, kμ < 0 corresponds to viscosity increasing with increasing
nutrient C, as is the case with sugars, nitrate, and other complex proteins. Correspondingly,
kμ > 0 means viscosity increases with decreasing C, for example, when C measures temperature
or a different chemical whose presence decreases fluid viscosity [60–64]. In accordance with the
Stokes-Einstein relationship, the strength of the nutrient-diffusivity relationship, kκ , is typically
the opposite sign of the nutrient-viscosity strength kμ; e.g., if viscosity increases with nutrient
concentration, then diffusivity decreases. The power ξ is analogous to those used in power laws for
shear-dependent viscosity flows, employed here to represent the potentially nonlinear relationship
between nutrient concentration and viscosity or diffusivity. Figure 1 illustrates the qualitative
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FIG. 1. The nutrient-viscosity relationship for (a) various kμ, fixed ξ = 1, and (b) various ξ , fixed kμ > 0,
and (c) fit to two real materials, using Eq. (5). Fitting the data for viscosity vs concentration of mucin, a protein,
gives kμ = −0.76 and ξ = 0.70 [65]; fitting the data for viscosity vs water temperature gives kμ = 1.45 and
ξ = 1.35 [66]. The power-law coefficient ξ determines the nonlinearity of relationship, while the magnitude
and sign of kμ determines the strength of the relationship and whether the viscosity increases or decreases near
the surface of the squirmer (C = 0, c = 1), respectively. Note that C is the dimensional nutrient variable and c
is its dimensionless counterpart.

behavior of μ with respect to nutrient in Eq. (5) and, in particular, Fig. 1(c) gives estimates for
kκ and ξ where C is Mucin concentration and water temperature from experimental viscosity data.
These fit parameters motivate the need for both kκ and ξ in Eq. (5).

Feeding by the microswimmer is modeled as the nutrient flux through the surface S and is defined
in its nondimensional form by

� = − 1

Pe(1 + kκ )

∫
S

∂c

∂n
dS, (6)

where ∂c/∂n = n · ∇c. The coefficient in front of the integral differs from [58, Eq. (12)] due to the
evaluation of the diffusivity function H (c) on the swimmer surface, S .

Finally, we note that the variable-viscosity Stokes problem in Eq. (1) with nutrient-dependent
viscosity in Eq. (5) can be combined to generate the inhomogeneous Stokes problem

∇ p̃ + ∇2u = F , (7)

where p̃ = p/(μ0kμ) and

F (c, u) = cξ−1[∇c(∇u + ∇u�) − c∇2u]. (8)

This formulation indicates the “active force” exerted within a fluid with nutrient-dependent
viscosity. This form of the fluid equation will aid our interpretation of results in Sec. III.

B. Spheroidal squirmer model

Spheroids are approximations for microswimmer geometries and are often used as a canonical
representative shape [67,68]. Here, the squirmer surface S is chosen to be a spheroid, also known as
an axisymmetric ellipsoid, with principal semiaxes a, b, and c where b = c provides axisymmetry
along the swimming direction (see Fig. 2). The spheroid is characterized by the aspect ratio 	 = a/b,
where for 	 < 1, 	 = 1, or 	 > 1 the surface S is called oblate, spherical, or prolate, respectively.
As mentioned previously, to compare the swimming and feeding of various spheroids, the surface
area of the swimmer, α2, is kept fixed for all aspect ratios 	. This constraint is motivated by the
observation that both the power expenditure and feeding rate of a microswimmer during locomotion
are proportional to the surface area.
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FIG. 2. Spheroidal microswimmer where b = c. The shape is prolate if a > b, spherical if a = b, and oblate
if a < b.

The surface area α2 can be approximately calculated based on the semiaxes of the spheroid
according to

α2 = 4π

(
(ab)p + (ac)p + (bc)p

3

)1/p

, (9)

where for p = 1.6075 the error of the surface area approximation is bounded by ±1.061% [69]. For
a given aspect ratio 	 and with the assumption that b = c, Eq. (9) is solved for b,

b(	) =
[

3( α2

4π
)p

2	p + 1

]1/(2p)

. (10)

The surface motion uS consists of orthogonal, tangential “stroke modes” with the surface
velocity of uS = uS

t et , where et is the unit tangent vector on the surface of the spheroid. The surface
velocity magnitude uS

t is represented by

uS
t (γ ) =

∞∑
n=1

βnKn(γ ), Kn(γ ) =
√

3

n(n + 1)

√
1 − γ 2P′

n(γ ), (11)

where for each orthogonal mode n, Pn(γ ) is the nth-order Legendre polynomial and γ =
cos(2πχ/LE ). Here, LE is the total arclength of the ellipse with semiaxis a and b and χ is the
arclength from the front point to a particular point on the surface. We note that uS is slightly
modified from Shoele and Eastham [53], who considered only spheres, to adjust for arc length
along the spheroid.

The surface stroke modes βn are constrained by

2

3
β2

1 +
∞∑

n=2

β2
n = 1, (12)

which, in the constant-viscosity case, fixes the power expenditure of the squirmer as defined in
Eq. (2). In the variable-viscosity case, however, the power is not fixed because the viscous stress
is affected by the distribution of the scalar field c. In order to account for this variation, we will
consider the low-Re hydrodynamic efficiency η, defined to be [70, Eq. (20)]

η = U 〈D〉
〈P〉 , (13)

where 〈D〉 is the average drag on an inert body traveling with speed U , and 〈P〉 is the average power
expended by the swimmer with surface actuation. In the case of steady governing equations, 〈P〉 is
given by Eq. (2).
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This paper addresses the following question: What is the relative change in swimming and
feeding performance for an axisymmetric squirmer in a fluid with a strong nutrient-viscosity (and
nutrient-diffusivity) relationship? As the two-way coupling introduces a strong nonlinearity into our
governing equations, answering this question requires numerical simulation. As we will show, these
numerical simulations will allow us to address modifications in nutrient flux, hydrostatic pressure,
power consumption, and hydrodynamic efficiency that are not present in a weak coupling.

C. Numerical methodology

We employ the finite-element method (FEM) [71,72] to numerically calculate the flow and
nutrient fields around a free-swimming, steady squirmer. Simulations are done using an in-house
FEM package developed in the JULIA programming language [73,74] and uses mesh data files
generated in Gmsh, an open-source finite element mesh generator [75]. Flow field visualizations
were done using VISIT [76], while contour and line plots were done in MATLAB [77].

We follow the derivation given by Tabata [78] for the axisymmetric Stokes equations and
reformulate Eq. (1) into the following weak form:∫∫

D′
2μ

[
D(u) : D(v) + urvr

r2

]
r dr dx −

∫∫
D′

p(∇ · v)r dr dx = 0, (14a)

∫∫
D′

q(∇ · u)r dr dx = 0, (14b)

for proper test functions q and v = vx êx + vr êr , where D′ is a cross section through our three-
dimensional (3D) domain along the axis of symmetry, and D is defined after Eq. (1). Note that x
is the axis of symmetry and r � 0 is the radial coordinate. The axisymmetric weak form of the
advection-diffusion system is

Pe
∫∫

D′
ψ (u · ∇c)r dr dx =

∫∫
D′

H (c)(∇c · ∇ψ )r dr dx, (15)

where ψ is a test function. The flow solution (u, p) is calculated using quadrilateral Q2-Q1 Taylor-
Hood elements and c is calculated using Q2 elements.

The computational model is carefully validated for different canonical problems and closed-form
solutions, including comparison to asymptotic results from Ref. [53] in Fig. 3. The velocity and
scalar c converge with O(h−4), consistent with Q2 elements, and pressure converges with O(h−2),
consistent with Q1 elements, where h is the characteristic edge length for the mesh. Based on the
convergence study, the mesh resolution of approximately h ≈ 0.02 was chosen near the squirmer
surface and extended exponentially to ||x|| = 20 000 to form a semicircular computational domain
with approximately 6 192 elements. The h at the surface is chosen to encapsulate the boundary layer
fully at the highest Pe simulated. The boundaries of this mesh are split into four regions: an inlet
with Dirichlet boundary conditions on velocity for the incoming flow, an outlet with no stress, the
surface of the squirmer with Dirichlet condition using the tangential slip velocity uS , and finally the
line of symmetry on which the radial component of velocity is set to zero, ur = 0, as a necessary
condition of axisymmetric flow. This mesh gives at least four digits of accuracy for drag calculations
when compared to the analytic, constant-viscosity Stokes drag on an inert sphere.

To solve the coupled, nonlinear system (14) and (15) numerically using only linear solvers, we
employ an iterative splitting scheme: Solve one system, then use that solution as a parameter in the
other system, and iterate until convergence is reached. Specifically, the Stokes system (14) is solved
first with an initial, constant-viscosity field, and then the resulting velocity field u is used in solving
Eq. (15); when kκ = 0, an iterative technique to update H (c) is used until convergence of c. The
resulting c solution is used to compute the μ field in Eqs. (14) using Eq. (5), then we solve the Stokes
system again, etc. A solution {u, p, c} to Eqs. (14) and (15) is considered to reach convergence only
when an absolute difference tolerance of 10−6 is achieved for all discretized variables at each degree
of freedom.
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FIG. 3. Asymptotic validation and extension to strong coupling. (a) The first-order velocity improvement
U1 for kμ = 0.001 is plotted, where U = U0 + kμ U1 (kκ = 0). The dash-dotted line represents the low-Pe
asymptotic results from Ref. [53]. (b) Extension as kμ increases to strongly nonlinear regime shows ξ and kμ

dependence of V , as defined in Eq. (16) to represent modification to swimming speed.

III. RESULTS

A squirmer’s swimming speed U and nutrient flux � depend on whether the squirmer is in a
constant- or variable-viscosity fluid. To quantify the relative change in a squirmer’s performance,
we define two normalized parameters V and J as follows:

V = U − U0

U0
, J = � − �0

�0
, (16)

where U0 is the free-swimming speed of the squirmer in a corresponding constant-viscosity fluid,
and �0 is the analogous quantity for nutrient flux. V represents the velocity modification, and J
represents the nutrient flux modification. Parameter regimes with V > 0 indicate improvement of
swimming performance in the variable-viscosity environment. Regimes with J > 0, and c being
interpreted as nutrient concentration, correspond to feeding enhancement in the variable-viscosity
environment.

In Sec. III A, the effect of nutrient-viscosity coupling on a treadmill squirmer is investigated,
specifically by varying Pe, kμ, kκ , and ξ ; additionally, changes in power expenditure and hydrody-
namic efficiency are addressed. Then in Sec. III B different surface stroke modes and spheroidal
geometries are introduced and their influence on the swimming and feeding performance is
discussed.

A. Spherical treadmill squirmer

In this section, the swimming and feeding performance of a spherical “treadmill” squirmer (β1 =√
3/2) is examined. To isolate the effect of kμ, we temporarily let nutrient diffusivity be constant

(kκ = 0); we will examine the effect of nonzero kκ later. The effect of Pe and ξ on velocity and
flux modification, V and J , is shown in Fig. 4 for increasing strength of coupling, kμ. Interestingly,
even for very small Pe, the velocity modification is nonzero and increases monotonically with kμ;
however, V is not monotonic in Pe, and experiences an extreme value for Pe = O(5), although
the Pe at which this extreme value occurs decreases with increasing coupling nonlinearity, ξ . In a
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FIG. 4. Effect of Pe and ξ on speed (V ) and flux (J) modification. [(a), (b)] V for kμ = −0.5 and 0.5 and
[(c), (d)] J for kμ = −0.5 and 0.5, respectively. Both V and J monotonically increase in kμ. It is found that the
nonlinear relationship between viscosity and nutrient concentration does not change the qualitative contours of
V or J .

low-Pe environment with constant diffusivity, flux modification, unlike V , is unaffected by variable
viscosity. As Pe increases, J also displays nonmonotonic behavior with extreme values observed
for Pe ≈ 7. It is interesting to note that the extreme value of Pe for J is independent of the power
coefficient ξ , while the extreme value of V is affected by the value of this power coefficient. In
this manner, the nonlinearity of the nutrient-viscosity relationship affects swimming speed, but not
nutrient flux.

These observations suggest the following physical explanation: For small Pe, diffusion dom-
inates, and so there is no nutrient boundary layer near the surface of the swimmer. This lack
of a boundary layer means that nutrient in the near field is similar in both the constant- and
variable-viscosity fluids, meaning the diffusive fluxes across the boundary are similar as well, as
we observe. However, the drag on the surface of the squirmer is a nonlocal effect, which allows for
a modified free-swimming velocity even in the absence of a boundary layer. As Pe increases, the
advection effect dominates over diffusion, and a boundary layer develops. This nutrient boundary
layer causes asymmetric distribution of the viscosity around the squirmer. At Pe = O(5), the
thickness of the boundary layer has maximum effect on propulsion, as there is enough viscosity
to “push off” against. As the Pe increases even further, the nutrient boundary layer becomes thinner,
and the viscosity of the fluid in the near-field decreases (increases) even further for kμ > 0 (kμ < 0).
The thickness of the viscosity boundary layer, as opposed to the nutrient boundary layer, can be
further controlled by the nonlinearity parameter ξ (see Fig. 7). This explains why, when increasing
Pe, the optimal swimming modification requires decreasing the nonlinearity parameter ξ . This is
because decreasing ξ “extends” the viscosity variation with c, such that there is some relationship
between Pe and ξ where the viscosity boundary layer is “optimal” for propulsion.

Because the power expenditure is nonconstant even with the constraint on stroke modes in
Eq. (12), it is useful to examine modifications to both power consumption and hydrodynamic
efficiency as they depend on Pe and ξ . Analogous to our variables for modifications to speed and
nutrient flux, we define

P∗ = P − P0

P0
, η∗ = η − η0

η0
, (17)

where P0 and η0 are the power and efficiency of a squirmer in the constant-viscosity environment.
Note that the modification to efficiency can depend on two quantities: the drag on an inert sphere or
the power expenditure by the squirmer in a variable viscosity fluid.

The power and efficiency modifications, P∗ and η∗, are shown in Fig. 5. Power expenditure
can vary dramatically between the variable- and constant-viscosity cases, but the contours and sign
of power modification are qualitatively similar to those for velocity modification. This suggests

063102-9



PATRICK S. EASTHAM AND KOUROSH SHOELE

-2 -1 0 1

1

2

3

-2 -1 0 1

1

2

3

-2 -1 0 1

1

2

3

-2 -1 0 1

1

2

3

FIG. 5. Effect of Pe and ξ on modification to power (P∗) and efficiency (η∗). [(a), (b)] Relative power use
for kμ = ∓0.5 and [(c), (d)] relative low-Re swimming efficiency, as defined in Eq. (17), for kμ ∓ 0.5.

that swimming velocity and power expenditure are both affected in the same manner by the
viscosity boundary layer. Additionally, examining the normalized low-Re hydrodynamic efficiency
in Figs. 5(c) and 5(d), we see that the nutrient-viscosity relationship completely determines the
increase or decrease in efficiency for kμ < 0 and kμ > 0, respectively. However, the sign of the
efficiency modification has flipped, i.e., environments with negative modification to power have
positive modification to efficiency, and vice versa, although the magnitude of the modification is
smaller. This is due to the modification to the drag on an inert sphere in a variable-viscosity fluid,
not pictured, which does not compensate enough for the changes in power required to move at a
prescribed velocity.

Notably, the efficiency in Fig. 5(d) experiences a minimum at small Pe and ξ ≈ 1.5, which
is surprisingly similar to the ξ = 1.35 estimated from experimental data on the variation in
viscosity with water temperature, as given in Fig. 1. These results suggest that extreme care
should be taken when estimating required power for microrobots, particularly those in kμ > 0
fluids such as thermophoretic microrobots; efficiency estimated from the ambient fluid viscosity
will underestimate the power required to move at the expected velocity.

Figures 6(a) and 6(b) show the contour plots of nutrient and pressure fields of a treadmill
squirmer at small and large Pe, respectively. The top half of each panel contains the nutrient field
and flow streamlines and the bottom panel shows the pressure field. Even though nutrient exhibits
large changes with increasing Pe, the flow streamlines are largely unaffected. The pressure field, on
the other hand, changes dramatically as Pe increases. For small Pe, the pressure is approximately
symmetric about the sphere. As Pe increases, however, the viscosity boundary layer develops, and
the total pressure difference between the front and back of the swimmer increases as well. This is
the most notable observed change in the flow variables compared to the constant-viscosity squirmer,
where pressure is unaffected by Pe. Because the streamlines are approximately similar for different
Pe, but pressure changes greatly, we hypothesize that viscosity gradients modify the pressure field
but only induces small changes in the velocity field.

The pressure field is also found to be affected by kμ, as predicted by Eq. (7). Although not shown
in Fig. 6, the sign of the pressure field switches with the sign of kμ. Additionally, the pressure
difference across the surface from front to back of the squirmer monotonically increases with |kμ|.
Because swimming performance is also monotonic in kμ, we conclude that the enhancement of
the swimming performance due to variable viscosity occurs when the pressure force is in the same
direction of swimming motion. By a similar argument, when the pressure force is in the opposite
direction of the swimming, performance is hindered. This effect modifies the free-swimming speed
through nonlocal interactions affecting the drag on the body.

In Fig. 7, two representative cases for the viscosity field μ for different ξ are shown. We
immediately notice that the streamlines are approximately the same with minor changes near the
body. Although not shown here, the increasing swimming modification is paired with an increase in
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FIG. 6. Effect of Pe on a treadmill squirmer with ξ = 1.0 and kμ = 0.5; nutrient field with streamlines on
top and pressure field on bottom. (a) Pe = 0.01, both nutrient and pressure are symmetric due to the diffusion-
dominated regime. (b) Pe = 10, advection-dominated regime causes an asymmetry in pressure and nutrient
fields which results in larger modifications to swimming speed and nutrient flux.

the asymmetrical pattern and magnitude of the pressure field, as explained previously. This indicates
the advantage of using a power-law model, Eq. (5), as a canonical form to represent the relation
between the nutrient and viscosity: By changing ξ , one can change the width of the viscosity
boundary layer near the surface of the squirmer, which in turn affects modifications to swimming
speed and nutrient flux.

The previous analyses are extended to situations in which both viscosity and diffusivity vary
simultaneously. This assumption is more physically realistic due to the Stokes-Einstein relationship
between bulk viscosity and diffusivity. In Fig. 8, we examine changes in V for low- and high-Pe
environments as the coefficient of nonlinearity ξ and the ratio kκ/kμ are varied; specifically, kμ

is kept fixed and kκ is varied. The expected physical scenario is kratio < 0, but ratios between −1
and 1 were examined for completeness. First, note that the line corresponding to kratio = 0 simply
gives the results for constant diffusivity cases as discussed in the previous section. By increase or
decrease of kκ , we see that the overall effect on velocity modification is minimal. However, these

FIG. 7. Viscosity fields for two ξ (k > 0): (a) ξ = 0.5, (b) ξ = 2.0. The nutrient boundary layer is similar
in both regimes (Pe = 10); changing ξ affects the viscosity field which determines the thickness of the viscosity
boundary layer, which in turn affects the swimming and feeding performances.
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FIG. 8. Effect of kratio and ξ on modification to swimming speed V . [(a), (b)] kμ = ∓0.5 at Pe = 0.1 and
[(c), (d)] kμ = ∓0.5 at Pe = 10. Velocity changes, while quantitatively different as Pe increases, also depends
on the value of kμ.

minimal effects on velocity modification are contrasted sharply with the strong changes in nutrient
flux modification, as presented in Fig. 9. The physical explanation for the effect of changing kratio

are explained using Fig. 10, but for concreteness we focus on the case of kμ > 0, kκ < 0 [e.g., the
left half of Figs. 9(b) and 9(c)] to physically explain the drastic change in nutrient flux modification.
In this regime, regardless of Pe, the negative diffusivity strength indicates that the nutrient diffuses
faster near the swimmer and as a result the nutrient boundary layer shrinks compared to the kκ = 0
case. This sharper boundary layer means the normal derivative of nutrient at the boundary is higher,
and therefore the nutrient flux increases significantly, even for Pe ≈ 0.

The results of this section suggest that kμ primarily affects velocity through modifications to
the nonlocal drag force while having minimal effect on the nutrient flux modification. In contrast,
kκ significantly influences the nutrient flux modification with minor effect on swimming speed
modifications. Now that we have established these heuristics for the spherical, treadmill squirmer,
in the next section the influence of mixing modes and geometry on swimming and nutrient flux
modification will be discussed.

B. Spheroidal squirmers with coupled stroke modes

Now that we have gained intuition for how variable viscosity and diffusivity affects spherical
treadmill squirmers, we examine how the combination of different surface modes affects the
swimming and feeding performance of spheroidal squirmers. Following previous studies, we only
consider the first two modes of surface motion because the first two modes have a dominant
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FIG. 9. Effect of kratio and ξ on modification to nutrient flux J . [(a), (b)] kμ = ∓0.5 at Pe = 0.1 and [(c),
(d)] kμ = ∓0.5 at Pe = 10. While for kratio = 0 nutrient flux modification is minimal, the modification is drastic
as the diffusivity is allowed to vary proportionally to the viscosity variation.
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FIG. 10. Effect of kratio on nutrient boundary layer. Parameters match those of Figs. 8 and 9. For each
parameter regime, the nutrient field for kratio = −1 (top) or kratio = 1 (bottom) and ξ = 2 is shown. Changing
kratio affects the nutrient boundary layer, which has a significant effect on the nutrient flux.

role in squirmer performance [41,53,57,58]. Combinations of the first (treadmill) and the second
(pusher-puller) mode are examined; in a constant-viscosity fluid, propulsion is entirely generated by
the first mode while the second mode only mixes the fluid and provides zero net thrust. In the case
of nutrient-dependent viscosity, this mixing changes the local viscosity of the fluid, and therefore
the second mode can affect the swimming speed of the squirmer. To fix the effect of diffusivity, in
this section we fix kratio = −1 or, equivalently, kκ = −kμ.

In Fig. 11(a), we see an interesting asymmetry in speed modification when β2/β1 > 0 (puller-
like) versus when β2/β1 < 0 (pusher-like), as opposed to flux modification in Fig. 11(b), which is
approximately symmetric in β2/β1. For small Pe, all mode combinations have the same effect,
giving a small boost in swimming speed. Increasing the effect of advection (Pe = 1), there
is an equal contribution of advection and diffusion and pusher-like squirmers experience more
of a boost than puller-like squirmers, although for all stroke modes a positive modification to
swimming is observed. Nutrient uptake, however, shows a maximum near treadmill squirmers
(β2/β1 = 0), indicating that the feeding is optimized for the first mode. As Pe is increased even
further, and advection dominates, the effect of mixing from β2 has an adverse effect on swimming
modification for some squirmers (β2/β1 � 1 and β2/β1 � 3) while nutrient flux experiences a
higher modification for these mixing-dominated stroke modes. To summarize, the effect of stroke
mode becomes more prevalent as Pe increases; in particular, the swimming speed increase is

-5 0 5

-9%

-6%

-3%

0%

3%

-5 0 5

200%

220%

240%

FIG. 11. Effect of β2/β1 ratio on V and J for diffusion-dominated (Pe = 0.01, dots), balanced (Pe = 1,
dash), and advection-dominated (Pe = 30, solid) regimes. Speed modification (V ) is asymmetric with respect
to stroke mode, while J is approximately symmetric in β2/β1 and increases monotonically with Pe.
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FIG. 12. Effect of stroke mode on nutrient and pressure fields. Top (bottom) half of panels corresponds
to nutrient c (pressure p). Left panels [(a), (c)] correspond to balanced regimes (Pe = 1) whereas right panels
[(b), (d)] correspond to advection-dominated regimes (Pe = 20). Top panels [(a), (b)] are pusher-like squirmers
(β2/β1 = −3); bottom panels [(c), (d)] are puller-like (β2/β1 = 3). As all squirmers are swimming in the same
direction, the placement of the stagnation point either helps or hinders locomotion, but does not affect the
nutrient flux modification.

dependent on whether the squirmer is puller-like or pusher-like, whereas the effect of stroke mode
on nutrient flux is symmetric with respect to β2/β1. We should note that the overall increase in
nutrient flux modification values is due to the nonzero kκ .

The nutrient and pressure fields for four different β2/β1-Pe combinations are shown in Fig. 12.
Figures 12(a) and 12(b) show β2/β1 < 0 (pusher-like) for small and large Pe, respectively. The
stagnation point on the surface is slightly shifted to the right of the center line, and a stagnation
point in the flow induces some circulation on the right side of the squirmer. These stagnation points
are reversed in the case of β2/β1 > 0 (puller-like), as shown in Figs. 12(c) and 12(d). All swimmers
have positive velocity, so pusher-like squirmers induce a stagnation point in front of their bodies
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FIG. 13. Effect of shape. Oblate spheroids experience larger increases in speed and flux modifications than
prolate spheroids, although the stroke mode dependence largely mirrors the results for spheres.

while puller-like squirmers induce a stagnation point behind their bodies. Comparing the high-Pe
Figs. 12(b) and 12(d), we see that the boundary layer is thin at different places: thin on top for
pusher-like and thin on sides for puller-like squirmers. This nutrient boundary layer in turn creates
a viscosity boundary layer, which as we have explained previously affects the performance of the
swimmer.

We now expand our discussion beyond spheres to spheroidal squirmers. As mentioned previ-
ously, the surface area is kept constant in order to isolate the effect of geometry on speed and flux
modification. We present the results for different aspect ratio 	 of the spheroid at fixed Pe = 10, for
three representative β2/β1 ratios selected based on results above for stroke mode coupling. As shown
in Fig. 13, for all three stroke mode combinations, both speed and flux modifications monotonically
decrease in 	, meaning that oblate spheroids have more positive changes in swimming and feeding
due to spatially varying viscosity than prolate spheroids of the same surface area. Additionally,
there is an asymmetry in the stroke mode coupling. In Fig. 13(a), the speed modification V is
positive but decreases to zero as 	 increases for pusher-like and treadmill squirmers (β2/β1 � 0),
while for puller-like squirmers (β2/β1 > 0), speed modification is negative for all but the most

FIG. 14. Effect of shape on nutrient field. Top panels show pusher-like squirmers (β2/β1 = −5), and the
bottom panels show puller-like squirmers (β2/β1 = 5) for various aspect ratios: (a) 	 = 0.6, (b) 	 = 1.0, and
(c) 	 = 1.7. The effect of stroke mode for different geometries is qualitatively similar to a sphere, suggesting
shape is only a minor effect.
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oblate spheroids simulated. In Fig. 11(b), nutrient flux modification is positive, although it decreases
monotonically in 	, for all stroke mode combinations. Treadmill squirmers (β2/β1 = 0) experience
the lowest flux modification, although it is still positive, reinforcing the result in Fig. 11(b). To
summarize, the qualitative results for the effect of shape largely mirror the results for spheres, with
the minor addition that oblate spheroids experience more positive modification in speed and flux
than prolate spheroids.

Figure 14 shows three representative spheroids along with their nutrient field and streamlines
for two different surface actuation of pusher-like (top panels) and puller-like (bottom panels). All
squirmers have positive velocity. Similar to spherical squirmers, the stagnation point in front of
the squirmer leads to improved swimming performance over the constant-viscosity case, while the
stagnation point behind the squirmer has a negative effect on swimming modification. The flow
profiles are qualitatively similar for all 	, indicating that shape is only a minor effect to consider
when evaluating the performance change due to the presence of viscosity gradients.

IV. CONCLUSIONS

In this paper, we extended previous asymptotic results, where analysis was restricted to examin-
ing the effect of a weak coupling between viscosity and nutrient on swimming performance for a
spherical squirmer [53]. The numerical method employed here allows us to extend these previous
results by considering modifications to nutrient flux, power, and hydrodynamic efficiency, in
addition to swimming speed for spheroidal swimmers, not just spheres. These quantities of interest
were studied by examining the effects of the relative strength of advection to diffusion (represented
through Pe), the type of nutrient-viscosity relationship (through kμ and ξ ), nutrient-dependent
diffusivity (through kκ ), the stroke mode coupling (through β2/β1), and the shape of the spheroid
(through aspect ratio 	). We observed that all of the above parameters affected the swimming speed
of the squirmer and the nutrient flux at its boundary, although some were more influential than
others.

We now summarize heuristics that can be taken from our main results. We found that (1)
variable viscosity primarily affected swimming speed while variable diffusivity primarily affected
the nutrient flux, (2) the swimming speed modification is primarily generated by changes in
the pressure field as opposed to the velocity field, (3) pusher-like and puller-like squirmers
experienced equivalent boosts in nutrient acquisition, while pusher-like squirmers obtained more
positive velocity modification than puller-like squirmers, and (4) the aspect ratio of the squirmer
was not found to significantly affect the results, meaning that future studies can reliably capture
phenomena of interest using only spherical squirmers. An interesting result related to the design of
microswimmers is that, in the case of swimming in a fluid with temperature-dependent viscosity, the
power required to swim at an expected velocity will be underestimated if one assumes the fluid has
constant viscosity. Therefore, care should be taken when designing swimmers which can affect a
fluid’s local rheology. These power results should be extended to biological swimmers with caution,
as the power expenditure from time-dependent motion [79] and fully resolved cilia dynamics
[80] show that the steady squirmer model drastically underestimates power consumption of actual
biological swimmers. All of these results were only achievable once the fully nonlinear system was
solved using a numerical method and demonstrate that the asymptotic analysis previously employed,
while elegant, can only capture the physics of a weakly coupled system and is not able to reveal the
physics of the system with strong interaction between the feeding and swimming.

In conclusion, we presented how several quantities of interest related to microswimmer loco-
motion change in a fluid with nutrient-dependent viscosity. The relatively insignificant change in
velocity profile, coupled with the significant changes in pressure distribution due to the presence
of viscosity gradients, warrants future study. An additional extension would be investigation
into the possibility of purely mixing modes (βn, n � 2) enabling locomotion that is otherwise
impossible in constant-viscosity fluids as has been observed in other non-Newtonian fluids.
Finally, including biological unsteadiness by employing the unsteady Stokes equation as well as
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alternative interpretations of the Peclét number—e.g., using reorientation times due to biological
or thermal noise to investigate how variable viscosity affect chemotaxis behavior in groups of
microswimmers—would be interesting. These results have implications for designing the next
generation of artificial microswimmers, and in particular demonstrated the promise of using a
feedback mechanism between passive and active modes of motion.
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