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Scaling of Rayleigh-Taylor mixing in porous media
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Pushing two fluids with different density one against the other causes the development
of the Rayleigh-Taylor instability at their interface, which further evolves in a complex
mixing layer. In porous media, this process is influenced by the viscous resistance
experienced while flowing through the pores, which is described by the Darcy’s law.
Here, we investigate the mixing properties of the Darcy-Rayleigh-Taylor system in the
limit of large Péclet number by means of direct numerical simulations in three and two
dimensions. In the mixing zone, the balance between gravity and viscous forces results
in a non-self-similar growth of elongated plumes, whose length increases linearly in time
while their width follows a diffusive growth. The mass-transfer Nusselt number is found to
increase linearly with the Darcy-Rayleigh number supporting a universal scaling in porous
convection at high Ra numbers. Finally, we find that the mixing process displays important
quantitative differences between two and three dimensions.
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Rayleigh-Taylor (RT) mixing is produced by a well-known instability at the interface of two
fluids with different density in the presence of a relative acceleration. The instability develops in
a nonlinear phase with a mixing layer which grows in time. Usually, RT mixing is studied for
bulk fluids at low viscosity where the turbulent mixing layer grows as t2 and produces velocity
and temperature fluctuations which follow the Kolmogorov-Obukhov phenomenology in three
dimensions (3D) [1] and the Bolgiano-Obukhov phenomenology in two dimensions (2D) [2–4].
RT turbulence has been extensively studied within the general framework of turbulent convection,
and is today one of the prototypes of buoyancy-driven flow with a wide range of applications [5–7].

RT instability has also been studied in porous media, starting from the classical works on linear
stability analysis [8] and the comparison with experiments in quasi-two-dimensional (quasi-2D)
Hele-Shaw cells [9]. Recently, RT mixing in porous media has received renewed attention in view
of its applications, in particular in CO2 sequestration in saline aquifers. Dissolution of carbon
dioxide in the aqueous phase increases its density and induces a buoyancy-driven instability which
accelerates the process of CO2 sequestration into the bulk of the aquifer [10–12]. Motivated by this
application, several experimental and numerical studies of RT mixing have been reported, mostly in
two dimensions [13,14], while few experiments in three dimensions have been performed [15].

In spite of their importance for applications, buoyancy-driven flows in porous media are much
less known than their turbulent analog in bulk flow. RT mixing is not an exception and indeed its
basic statistical properties are still not fully understood. In this Rapid Communication we study
porous RT mixing by means of extensive three-dimensional direct numerical simulations (DNS) of
Darcy’s equation at different resolutions and diffusivities in order to achieve a possible asymptotic
regime. By comparing the results of 3D and 2D numerical simulations at the same Péclet number
we find similar qualitative behavior but significant quantitative differences. We find that in 3D the
extension of the mixing layer grows linearly in time, in agreement with dimensional predictions and
experimental findings [9] and in contrast with what has been observed recently in two dimensions
where anomalous scaling has been reported [14]. The horizontal characteristic scale of plumes is
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found to follow a diffusive law and therefore the mixing layer does not evolve in a self-similar
way. We also find that the dimensionless mass flux, quantified by the Nusselt number, grows
proportionally to the Darcy-Rayleigh number of the flow both in two and three dimensions, a
result which confirms recent findings in Rayleigh-Bénard (RB) convection in porous media [16,17].
Surprisingly we find that, at a given Rayleigh number, the Nusselt number is larger in 2D than in
3D, while the opposite is observed for RB convection [17].

We consider the Darcy’s equation for a single-phase (miscible) flow in an isotropic porous
medium [18] in the Boussinesq approximation [19]

u = κ

μφ
(−∇p + ρg), (1)

∂tρ + u · ∇ρ = D∇2ρ, (2)

where u represents the velocity field (incompressible, i.e., ∇ · u = 0) and ρ is the density field. In
(1) κ is the isotropic permeability, φ is the porosity, μ is the viscosity (which is assumed constant), D
is the diffusivity coefficient, and g = (0, 0,−g) is the gravity acceleration. More generally, the flow
q = φu through a nonisotropic porous medium can be expressed in terms of the permeability tensor
Ki j as qi = −Ki j (∂ j p + ρgδ j3)/μ. Here we consider for simplicity the isotropic case Ki j = κδi j .

The Rayleigh-Taylor setup is obtained by taking an initial unstable step density profile with
ρ = ρ0 − �ρ/2 for −H/2 � z � 0 and ρ = ρ0 + �ρ/2 for 0 � z � H/2, where �ρ is the density
jump. H and L are the vertical and horizontal sizes of the box, respectively. Given that the term ρ0g
in Eq. (1) can be absorbed in the hydrostatic pressure, in the numerical simulations we set ρ0 = 0
without loss of generality. The only parameter which controls the dynamics of the system is the
Péclet number Pe = Lw0/D, where w0 = κg

μφ
�ρ is a characteristic velocity.

We perform extensive numerical simulations of the Darcy-Boussinesq equations (1) and (2) by
means of pseudospectral code [20] in both two and three dimensions. The box sizes are L = 2π

and H = 4L with a uniform numerical grid at resolution M × M × 4M. The boundary conditions
are periodic in all the directions and we impose a zero-velocity mask around z = ±H/2 (where
the density stratification is stable). Time evolution is obtained by a second-order Runge-Kutta
scheme with explicit linear part and the code is fully parallelized in one direction by using MPI
libraries. The time step is chosen to satisfy the Courant criterion. In order to trigger the instability,
a random perturbation is added in a narrow region around the interface at z = 0. Being interested
in investigating the possible asymptotic regime and the effects of finite Pe on the growth law of the
mixing layer, the values of Pe considered in our study are the highest permitted by the resolution of
the simulation and are comparable with values reported for CO2 sequestration [21].

Three flows at different diffusivities D = 4 × 10−4, D = 2 × 10−4, and D = 10−4 (at resolutions
M = 512, M = 1024, and M = 2048, respectively) are simulated, corresponding to Péclet numbers
Pe = 0.8 × 104, Pe = 1.6 × 104, and Pe = 3.1 × 104. In all cases the values of the diffusivity are
sufficiently large to resolve the initial instability predicted by linear stability analysis, i.e., the
maximum resolved wave number kmax = M/3 is larger than k∗ =

√
5−2
2D w0 [22,23] (kmax/k∗ = 1.16).

During the evolution of the mixing layer, the most energetic modes move to larger scales making
this requirement less stringent [24,25]. The results are averaged over an ensemble of 2 simulations
for the 3D case and 20 simulations for the 2D case with different initial random perturbations.
Numerical results are made dimensionless by using L and τ = L/w0 as length and time units,
respectively.

We first focus on the results of the 3D simulations. In Fig. 1 we show two snapshots of the density
field at different times in the evolution of the mixing layer. One observes that heavy (light) plumes
penetrating into light (heavy) domains become bigger and more elongated, suggesting the lack of
self-similarity. In spite of the complexity of the mixing layer, the mean density vertical profile,
defined as the average over horizontal planes ρ(z, t ) = 〈ρ(x, t )〉xy = 1

L2

∫
ρ(x, t )dx dy, displays a

self-similar evolution with a close-to-linear gradient in the central part, as shown in Fig. 2(a). The

upper inset in Fig. 2(a) shows the density standard deviation σ (z, t ) ≡
√

ρ(z, t )2 − ρ(z, t )
2

inside
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FIG. 1. Two snapshots of the density fields for the 3D simulation at Pe = 1.6 × 104 at times t = 2τ (left)
and t = 4τ (right). Colors represent the relative density.

the mixing layer at three different times. While the region of nonzero σ (z) extends in time following
the mixing layer, the peak value of σ remains approximately constant, indicating a lack of complete
homogenization. We note that, in agreement with the Darcy’s law (1), the profile of density standard
deviation is equal to the profile of the rms vertical velocity, i.e., wrms(z, t ) = w0σ (z, t )/�ρ [see
lower inset of Fig. 2(a)].

The observed simple density profile allows a precise determination of the size of the mixing layer
(i.e., regions in which density is not uniform and velocity is nonzero) by using a nonlinear diffusive
model developed recently for turbulent RT mixing at high Reynolds numbers [26]. The model is
based on an eddy diffusivity which depends on the local density and predicts for the mixing layer
the polynomial profile ρ(z) = �ρ

4
z
z1

[3 − ( z
z1 )2] for |z| � z1, where z1 represents half size of the

mixing layer. We find that the above cubic expression fits very well the density profiles shown in
Fig. 2(a) and allows one to measure precisely the extension of the mixing layer as h(t ) = 2z1(t ).
We remark that other definitions of the width of the mixing layer have been used, based on local
threshold value [27] or global quantities [28]. When applied to our data these methods give results
similar to the polynomial fit but with larger uncertainties.

The evolution of the mixing layer is shown in Fig. 2(b) for the 3D simulations at different
diffusivities. We notice that, at variance with the turbulent case where it follows an accelerated
law [6], here the mixing layer grows linearly in time as h(t ) = αw0t where α is a dimensionless
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FIG. 2. Panel (a): Mean density profiles ρ(z, t ) at times t = 0.8τ (red), t = 1.6τ (blue), t = 2.4τ (ma-
genta), t = 3.2τ (green), t = 4.0τ (violet), and t = 4.8τ (black). Upper inset: density standard deviation
σ (z, t ) = (ρ2 − ρ2)1/2 at times t = 1.6τ (blue), t = 3.2τ (green), and t = 4.8τ (black). Lower inset: rms
vertical velocity profile wrms(z, t ) at times t = 1.6τ (blue), t = 3.2τ (green), and t = 4.8τ (black). Simulation
in 3D at Pe = 3.1 × 104. Panel (b): Time evolution of the width of the mixing layer h(t ) = 2z1(t ) for the
simulations at Pe = 0.8 × 104 (red), Pe = 1.6 × 104 (blue), and Pe = 3.1 × 104 (black). The black dashed
line represents the two-dimensional case with Pe = 3.1 × 104. Inset: Time derivative dh/dt normalized with
w0 to give the value of the coefficient α = (dh/dt )/w0 � 0.59.

coefficient which measures the efficiency of the process. The physical reason for the linear growth
is that in porous media viscosity suppresses the inertial accelerating term and the velocity in the
mixing layer reaches a constant value, which is proportional to the dimensional estimate w0. From
the time derivative of h(t ) which, for the simulations at highest Pe, reaches a constant value at final
times [see the inset of Fig. 2(b)] we are able to measure the value of the dimensionless coefficient
α = (dh/dt )/w0 � 0.59 with still a possible weak dependence on Pe.

From the point of view of dimensional analysis, the time derivative α = dh/dt and the peak
value of the profile of wrms can be considered equivalent quantities. Nonetheless, the convergence
to the asymptotic regime for these two quantities may be different, because α depends on the global
evolution of the mixing layer, while the peak of wrms is attained in a narrow central region. In
particular, our results indicate that the saturation of the peak value of wrms anticipates the constant-α
regime. Indeed, by comparing the insets of Figs. 2(a) and 2(b), we observe that in the simulation with
the largest Pe at time t ∼ 1.6τ the peak value of the profile of wrms has already become constant,
while α has not yet reached a constant plateau. Moreover, we have found that the peak of the profile
of wrms reaches a constant value also in the 3D simulations at lower Pe in which the regime of
constant α is not yet attained.

The extension of the mixing layer defines the (time-dependent) Darcy-Rayleigh number of the
flow measuring the ratio of diffusive to buoyancy timescales and defined here as Ra = w0h

D . At
large values of Ra density fluctuations are transported by buoyancy forces and the efficiency of this
process is quantified by the mass-transfer Nusselt number Nu = 〈wρ〉h

D�ρ
(brackets indicate average

over the physical domain). The classical argument for the dependence of Nu over Ra assumes that, at
large values of Ra the density flux becomes independent on h and, for a porous medium, predicts an
“ultimate” linear scaling Nu � Ra. The linear scaling is also a rigorous bound for Rayleigh-Bénard
porous convection [29,30] and has been observed in numerical simulations of porous Rayleigh-
Bénard convection both in 2D [16] and in 3D [17].

Figure 3(a) shows the dependence of Nu over Ra for the 3D runs at higher resolutions. For large
values of Ra a linear regime is evident (and confirmed by the derivative shown in the inset) for which
Nu � 0.031Ra. This ultimate regime can be predicted for the case of RT mixing from the definition
of Nu by assuming a constant 〈wρ〉 = cw0�ρ which gives Nu = cRa. The coefficient c � 0.031
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FIG. 3. Panel (a): Nusselt number as a function of the Rayleigh number for the simulations at Pe = 1.6 ×
104 (red open circles) and Pe = 3.1 × 104 (blue open triangles). Blue filled triangles represent the results for
the 2D case (Pe = 3.1 × 104). The black line represents the linear dependence Nu = 0.031Ra − 124.9. Inset:
derivative d (Nu)/d (Ra) for the two three-dimensional cases (symbols as above). Panel (b): Time evolution
of the horizontal correlation scale hx (t ) for the simulations at Pe = 0.8 × 104 (red), Pe = 1.6 × 104 (blue),
and Pe = 3.1 × 104 (black). The black dashed line represents the results for the two-dimensional case with
Pe = 3.1 × 104. Inset: Square horizontal scale h2

x rescaled with Dτ demonstrating diffusive growth.

measures the strength of the correlations between density fluctuations and vertical velocity induced
by the Darcy law.

From Fig. 1 it is evident that density plumes become wider while elongating in the mixing
layer. To quantify this process we compute the characteristic horizontal scale of plumes hx defined
as the first zero crossing of the horizontal autocorrelation function of density c(r, t ) = 〈ρ(x +
r, y, 0, t )ρ(x, y, 0, t )〉xy/〈ρ(x, y, 0, t )2〉xy, computed on the middle plane z = 0. Figure 3(b) shows
the time evolution of hx(t ) for the three different simulations with different Pe. We notice that
here lines are in the opposite order with respect to Fig. 2(b), i.e., hx grows faster for the larger
diffusivity. Indeed, as shown in the inset of Fig. 3(b), the evolution of horizontal scale is compatible
with a diffusive growth hx(t )2 ∝ Dt . Nonetheless we remark that the diffusive growth of hx is the
result of nonlinear processes including plume merging and coarsening and it is not a simple direct
consequence of molecular diffusion.

The observation of a linear growth of the vertical scale [Fig. 2(b)] and the diffusive increase of
the horizontal scale [Fig. 3(b)] indicates that two different processes are active in the dynamics of
the mixing layer and that its evolution is not self-similar, at variance with the turbulent case. The
ballistic (diffusive) evolution of the vertical (horizontal) scales has also been observed in quasi-
2D Hele-Shaw cells and in 2D simulations [9,13] (with possible anomalous corrections for the
vertical motion [14]) and this suggests a possible universality of porous RT mixing with respect
to dimensionality. It is therefore interesting to directly compare our 3D results with corresponding
2D cases. To this aim, we have performed a set of numerical simulations for the two-dimensional
version of (1) with the same resolutions and diffusivities. The results in this case have been averaged
over ten independent realizations.

In Fig. 2(b) we plot the evolution of the mixing layer for the two-dimensional simulations at the
highest resolution and Péclet (Pe = 3.1 × 104). After an initial regime in which the growth of h(t )
is faster than ballistic, at large times a linear growth is observed also in 2D but with a coefficient α

which is about 40% larger than in the 3D case (α2D � 0.84). The faster growth of the mixing layer
in two dimensions is a consequence of density plumes which are more elongated and thinner than
in the 3D case. This is confirmed by Fig. 3(b), which shows that the horizontal correlation scale in
the 2D case is smaller than in the 3D counterpart.
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For the 2D simulations at lower Pe (Pe = 0.8 × 104 and Pe = 1.6 × 104, not shown here) no
linear regime is reached before h reaches the size of the box and a faster-than-ballistic growth
is observed, in agreement with recent studies [14]. Although the main goal of our work is not the
precise measurement of the scaling exponent h(t ) ∼ tγ in 2D, we report that the value of γ obtained
in 2D at Pe = 0.8 × 104 is close to 1.2, in agreement with the value γ = 1.208 ± 0.008 reported in
[14]. Nevertheless, we have found that the value of the scaling exponent γ reduces at increasing Pe,
suggesting that it may be affected by finite Pe and/or finite time corrections.

The fact that the mixing layer in 2D grows faster than in 3D has no a priori implications
on the Nu-Ra scaling since both quantities depend on h. Nonetheless, as shown in Fig. 3(a),
dimensionality plays an important role also in the transfer of mass since in 2D the Nusselt number
at a given Rayleigh number is much larger than in 3D. For large values of Ra, we observe a
linear Nu-Ra relation also in 2D but with a coefficient which is about two times larger than in
the three-dimensional case. As discussed above, a larger value of the Nusselt number means a larger
correlation between the vertical velocity and the density fluctuations which, in the present case,
is a consequence of more elongated and coherent plumes. The scaling regime Nu � Re has been
observed also in the case of RB convection in porous media [16,17] but with an opposite dependence
of the numerical prefactor on the dimensionality: in RB the coefficient in three dimensions is
approximately 40% larger than in two dimensions [16,17], while in RT we find that in two
dimensions the coefficient is almost two times larger than in 3D.

In conclusion, we have studied by means of extended direct numerical simulations of the
Darcy-Boussinesq equation, the dynamics of Rayleigh-Taylor mixing in three-dimensional porous
media in a range of parameters relevant for applications such as CO2 sequestration in saline aquifers
[21]. We have found that the growth of the mixing layer (i.e., plume elongation) follows accurately
the dimensional linear prediction with a coefficient which weakly depends on the diffusivity. The
horizontal width of density plumes is observed to grow much slower following a diffusive law.
The mass-transfer Nusselt number is found to grow linearly with respect to the Rayleigh number,
again in agreement with the dimensional prediction, with a coefficient which is independent on
the diffusivity (in the limit of large Ra). The comparison of the results with the outcome of
two-dimensional simulations at the same diffusivity and resolution shows qualitative similarities
but important quantitative differences, therefore suggesting caution in the use of 2D simulations
and/or experiments for the modeling of 3D applications such as, for example, the effectiveness of
CO2 sequestration based on the reservoir parameters. Moreover, our results stimulate further studies
aimed to investigate the transition between the 3D and the 2D regimes, which is expected to occur
in confined geometries at varying the relative extension of the horizontal scales.
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