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The evolution of a turbulent tangle of quantum vortices in the presence of finite-size
active particles is studied by means of numerical simulations of the Gross-Pitaevskii
equation. Particles are modeled as potentials depleting the superfluid and described with
classical degrees of freedom following a Newtonian dynamics. It is shown that particles do
not modify the building-up and the decay of the superfluid Kolmogorov turbulent regime.
It is observed that almost the totality of particles remains trapped inside quantum vortices,
although they are occasionally detached and recaptured. The statistics of this process
is presented and discussed. The particle Lagrangian dynamics is also studied. At large
timescales, the velocity spectrum of particles is reminiscent of a classical Lagrangian
turbulent behavior. At timescales faster than the turnover time associated with the mean
intervortex distance, the particle motion is dominated by oscillations due to the Magnus
effect. For light particles, a nonclassical scaling of the spectrum arises. The particle velocity
and acceleration probability distribution functions are then studied. The decorrelation time
of the particle acceleration is found to be shorter than in classical fluids, and related to the
Magnus force experienced by the trapped particles.
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I. INTRODUCTION

When a fluid is stirred, energy is injected into the system exciting structures at different scales.
In particular, in three-dimensional classical flows, the energy supplied at large scales is transferred
toward small scales in a cascade process. Eventually, it reaches the smallest scales of the system,
where dissipation acts efficiently. In the presence of a very large separation between the injection and
dissipation scale, this cascade scenario proposed by Richardson leads to a fully developed turbulent
state that can be described by the Kolmogorov phenomenology [1]. Kolmogorov turbulence is
expected to be universal, and it is in fact commonly observed in nature, industrial applications,
and in more exotic flows such as superfluids.

A superfluid is a peculiar flow, whose origin is a consequence of quantum mechanics. At finite
temperature, a superfluid is considered to be a mixture of two components: the normal fluid, which
can be described by the Navier-Stokes equations, and the superfluid component with zero viscosity
[2]. At very low temperatures, the normal component can be neglected and the fluid becomes
completely inviscid. As a consequence, an object moving at low velocities does not experience
any drag from the fluid. However, when the object exceeds a critical velocity, quantum vortices are
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nucleated [3,4]. Quantum vortices (or superfluid vortices) are the most fundamental hydrodynamical
excitations of a superfluid. They are topological defects (and nodal lines) of the macroscopic wave
function describing the system, and as a consequence their circulation is quantized. In superfluid
helium, the core size of quantum vortices is of the order of 1 Å. Despite the lack of viscosity,
quantum vortices can reconnect and change their topology (see, for instance, [5–8]), unlike classical
(prefect) fluids.

When energy is injected in a low-temperature superfluid at scales much larger than the mean
intervortex distance �, a classical Kolmogorov regime is expected. Such a behavior has been
observed numerically [9–11] and experimentally [12,13]. Indeed, at such scales the quantum nature
of vortices is not important and the superfluid behaves like a classical fluid. At the scales of the
order of � and smaller, the isolated nature of quantized vortices becomes relevant. The system
keeps transferring energy toward small scales but through different nonclassical mechanisms [14].
An example of such mechanisms is the turbulent Kelvin wave cascade. Kelvin waves are helical
oscillations propagating along quantum vortices, and the energy can be carried toward small scales
thanks to nonlinear wave interactions. This energy cascade has been successfully described in the
framework of weak-wave turbulence theory [15,16]. The resulting theoretical predictions have been
observed numerically in vortex-filament and Gross-Pitaevskii numerical simulations [17–19].

Flow visualization is certainly a fundamental issue in every fluid dynamics experiment. Among
the techniques that have been developed to sample a fluid, particle image velocimetry (PIV) and
particle tracking velocimetry (PTV) are two of the most common methods [20]. The use of particles
as probes has also been adapted to the study of cryogenic flows, in particular in superfluid helium
4He experiments [21], where micrometer-sized hydrogen and deuterium particles have been used.
For instance, hydrogen ice particles have been successfully employed to visualize isolated or
reconnecting vortex lines [22], as well as the propagation of Kelvin waves [23]. Moreover, the
observation of power-law tails in the probability density of the particle velocity is an important
difference with respect to classical turbulent states [24–26]. Similar deviations from classical
behaviors have recently been reported also for the acceleration statistics [26,27]. Particles in such
experiments typically have a size that can rise up to several microns, which is many orders of
magnitude larger than the size of the vortex core in superfluid helium. For instance, the solidified
hydrogen particles produced in the experiments [22,23] are slightly smaller than 2.7 μm, while
in [25,26] their size is between 5 and 10 μm. Although it has been seen that particles unveil the
dynamics of quantum vortices, it is not yet clear how much they affect the dynamics of quantum
turbulent flows.

Several theoretical efforts have been made in the past decade in order to clarify what is the
dynamics of particles in a superfluid and how particles interact with quantum vortices. For example,
the vortex-filament (VF) method can be coupled with the classical hydrodynamical equations of a
sphere, allowing us to study different specific problems. The interaction between one particle and
one vortex has been addressed [28,29], as well the backreaction of tracers in a thermal counterflow
[30,31]. In the context of finite-temperature superfluids, the spatial statistics of particles have been
recently addressed in simulations of the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model [32].

Finally, since the work of Winiecki and Adams [4], particles described by classical degrees of
freedom have been implemented self-consistently in the framework of the Gross-Pitaevskii (GP)
equation [33–37]. Although the GP model is formally derived for dilute Bose-Einstein condensates,
it is considered a general tool for the study of superfluid dynamics at very low temperature. Indeed,
unlike the VF method or the HVBK model, it naturally contains quantum vortices as topological
defects of the order parameter. It was found analytically and confirmed numerically that the GP
model can reproduce the process of trapping of large active inertial particles by straight vortex
lines [34], in accordance with hydrodynamical calculations [28,29]. In this framework, the interplay
between many trapped particles and Kelvin waves has also been investigated [36].

In the present work, we study the influence of particles on quantum turbulent flows at very
low temperature by using the GP model coupled with classical particles. In particular, we study
the evolution of a free decaying superfluid turbulent vortex tangle loaded with finite-size active
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particles. We consider spherical particles of different masses and having a diameter up to 20 core
sizes. Such a size is about 1000 times smaller than that of solidified particles used in superfluid
helium experiments. Nevertheless, it is slightly smaller than or comparable to the mean intervortex
distance in our simulations, similar to current experiments. We also study the different regimes of
the turbulent evolution from the Lagrangian point of view. The paper is organized as follows. In
Sec. II we describe the Gross-Pitaevskii model coupled with classical particles. We also review the
standard properties of the model and give the basic definitions used later to analyze the flow. We
also describe the numerical method used in this work. Then, in Sec. III, we present our main results.
In particular, in Sec. III A we address whether the presence of particles affects the scales of the
flow at which Kolmogorov turbulence takes place. Section III B is devoted to a study of the particle
dynamics inside the vortex tangle, their trapping by vortices, and their dynamics at scales larger and
smaller than the intervortex distance. Particle velocity and acceleration statistics are then presented
in Sec. III C. Finally, Sec. IV contains our conclusions.

II. MODEL FOR PARTICLES IN A LOW-TEMPERATURE SUPERFLUID

A. Gross-Pitaevskii equation coupled with particles

We describe a superfluid of volume V at low temperature by using the complex field ψ , which
obeys the GP dynamics. We consider Np particles in the system. Each particle is characterized by
the position of its center of mass qi and its classical momentum pi. The presence of a particle of
size ap generates a superfluid depletion in a spherical region of radius ap. This effect is reproduced
by coupling the superfluid field with a strong localized potential Vp, which has a fixed shape and is
centered at the position q j (t ).

All the particles considered have the same size, as well as the same mass Mp. The Hamiltonian
of the system is given by

H =
∫ ⎛

⎝ h̄2

2m
|∇ψ |2 + g

2

(
|ψ |2 − μ

g

)2

+
Np∑

i=1

Vp(|x − qi|)|ψ |2
⎞
⎠dx +

Np∑
i=1

p2
i

2Mp
,+

Np∑
i< j

V i j
rep, (1)

where m is the mass of the bosons constituting the superfluid, and g is the nonlinear coupling
constant between the bosons, related to the s-wave scattering length as so that g = 4πash̄

2/m.
The chemical potential is denoted by μ. The particle interaction potential V i j

rep is responsible for
short-range repulsion between particles, so that they behave as hard spheres and do not overlap.
A detailed discussion on the inclusion of this short-range repulsion and the effect on the particle
collisions in the model (1) can be found in [33]. The equations of motion that govern the superfluid
field and the particle positions are obtained varying the Hamiltonian (1):

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + (g|ψ |2 − μ)ψ +

Np∑
i=1

Vp(|x − qi|)ψ, (2)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (3)

This model has been successfully used to study vortex nucleation [4], trapping of particles by
quantum vortices [34], and the interaction between particles trapped inside quantum vortices and
Kelvin waves [36]. We denote by GP the Gross-Pitaevskii model without particles, and by GP-P the
full coupled system (2) and (3).

In the case in which particles are absent, the chemical potential μ fixes the value of the ground
state of the system ψ∞ = √

ρ∞/m = √
μ/g. Large-wavelength perturbations around this state are

sound waves that propagate with the speed of sound c =
√

gρ∞/m2, while they become dispersive

at length scales smaller than the healing length ξ =
√

h̄2/2gρ∞.
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The GP model describes a superfluid with zero viscosity. Using the Madelung transformation
ψ (x) = √

ρ(x)/m ei m
h̄ φ(x), the GP equation (2) is mapped into the continuity and Bernoulli equations

of a superfluid of density ρ and velocity vs = ∇φ. A superfluid flow is potential, but the phase
is not defined at the nodal lines of ψ (x). Therefore, the vorticity is concentrated along these
filaments, which are the topological defects usually called quantum vortices. The effective size
of the quantum vortex core coincides with the healing length ξ , and the contour integral of the
superfluid velocity around a single vortex filament is the Feynman-Onsager quantum of circulation
κ = h/m = 2π

√
2cξ .

Using the Madelung transformation and the Helmholtz decomposition, the kinetic term of
the superfluid energy density is decomposed into incompressible, compressible, and quantum
energy [9]:

EGP
kin = h̄2

2mV

∫
|∇ψ |2 dx = E I

kin + EC
kin + EQ

= 1

2V

∫ (
[(

√
ρvs)I]2 + [(

√
ρvs)C]2 + κ2

4π2
[∇√

ρ]2

)
dx, (4)

where (
√

ρvs )I = PI[
√

ρvs] and (
√

ρvs)C = vs − (
√

ρvs)I, the operator PI[·] being the projector
onto the space of divergence-free fields. The other energies of the superfluid are the internal energy
Eint = (2V )−1

∫
g(ρ/m − μ/g)2 dx, where the energy of the ground state is subtracted, and the

interaction energy with the particles EGP
P = V −1

∫ ∑Np

i Vp(|x − qi|)ρ dx, so that the total energy is
given by Etot = EGP

kin + Eint + EGP
P . From these definitions follow the corresponding energy spectra

defined in terms of the Fourier transform of the fields [9].

B. Numerical methods and parameters

In the simulations presented in this work, we solve the system (2) and (3) in a cubic periodic box
of side L = 341ξ with Nc = 5123 collocation points by using a standard pseudospectral method.
We use a fourth-order Runge-Kutta scheme for the time-stepping and the standard 2/3 rule for the
dealiasing. In numerics, we fix c = 1 and ψ∞ = 1.

To produce a homogeneous and isotropic tangle of quantized vortex lines, we impose an initial
Arnold-Beltrami-Childress (ABC) flow, following the procedure described in [38]. In particular, we
use a superposition of k = 1 × 2π/L and k = 2 × 2π/L basic ABC flows: vABC = v(1)

ABC + v(2)
ABC,

with

v(k)
ABC = [B cos(ky) + C sin(kz)]x̂ + [C cos(kz) + A sin(kx)]ŷ + [A cos(kx) + B sin(ky)]ẑ, (5)

and the parameters A = 0.5196, B = 0.5774, and C = 0.6351. The basic ABC flow is a stationary
(periodic) solution of the Euler equation with maximal helicity. The resulting wave function contains
a tangle whose nodal lines follow the ABC vortex lines. The initial mean intervortex distance is
�(t = 0) ∼ 25ξ . As the flow is prepared by minimizing the energy, most of the energy of the system
is in the incompressible part of the energy and resulting from the vortex configuration.

The ground state for the particles consists in a number of particles (we use Np = 200 and 80) of
the same size and mass, randomly distributed in the computational box. Particles are initially at rest.
This state is prepared using the imaginary-time evolution of Eq. (2). Then, the initial condition for
the simulations is obtained by multiplying the wave function associated with the ABC flow and the
wave function associated with the particle ground state. An example of an initial field containing
particles is displayed in Fig. 1(d).

Because of the presence of a healing layer, the particle boundary is never sharp, independently
of the functional form of the potential Vp. The superfluid field vanishes in the region where
Vp > μ, and at the particle boundary the fluid density passes from zero to the bulk value ρ∞
in approximately one healing length. The potential used to model each particle is a smoothed
hat-function Vp(r) = V0

2 (1 − tanh [ r2−ζ 2

4�2
a

]), where the parameters ζ and �a are set to model the
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FIG. 1. Visualizations of the superfluid vortex tangle. Vortices are represented as isosurfaces in red of the
density field (ρ = 0.15ρ∞), sound is rendered in blue, trapped particles in green, and free particles in purple.
The upper row is without particles, the lower row is with 200 neutrally buoyant particles of radius ap = 4ξ .
(a,d) The ABC initial states. (b,e) The most turbulent regime (t = 1.3TL). (c,f) A late time (t = 8.1TL). TL

denotes the large-eddy-turnover time (see the text).

particle. Their values are listed in Table I. In particular, ζ fixes the width of the potential and it
is related to the particle size, while �a controls the steepness of the smoothed hat-function. The
latter needs to be adjusted in order to avoid the Gibbs effect in the Fourier transform of Vp. Since
the particle boundaries are not sharp, the effective particle radius is defined as ap = (3M0/4πρ∞)

1
3 ,

where M0 = ρ∞L3(1 − ∫ |ψp|2 dx/
∫ |ψ∞|2 dx) is the fluid mass displaced by the particle and ψp

is the steady state with just one particle. Practically, given the set of numerical parameters ζ and
�a, the state ψp is obtained numerically with imaginary-time evolution and the excluded mass
M0 is measured directly. Particles attract each other by a short-range fluid mediated interaction

TABLE I. Simulation parameters.

Run Np ap M ζ �a V0/μ γ /μ

I 0
II 200 4.0ξ 0.125 1.5ξ 1.2ξ 20.0 1.4 × 10−4

III 200 4.0ξ 0.25 1.5ξ 1.2ξ 20.0 1.4 × 10−4

IV 200 4.0ξ 1.0 1.5ξ 1.2ξ 20.0 1.4 × 10−4

V 200 4.0ξ 2.0 1.5ξ 1.2ξ 20.0 1.4 × 10−4

VI 80 10.0ξ 1.0 8.0ξ 2.0ξ 20.0 5.8 × 10−4

VII 200 10.0ξ 0.125 8.0ξ 2.0ξ 20.0 5.8 × 10−4

VIII 200 10.0ξ 0.25 8.0ξ 2.0ξ 20.0 5.8 × 10−4

IX 200 10.0ξ 1.0 8.0ξ 2.0ξ 20.0 5.8 × 10−4
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[33,35], thus we use the repulsive potential V i j
rep = γ (2ap/|qi − q j |)12 in order to avoid an overlap

between them. The functional form of V i j
rep is inspired by the repulsive term of the Lennard-Jones

potential, and the prefactor γ is adjusted numerically so that the interparticle distance 2ap minimizes
the sum of V i j

rep with the fluid-mediated attractive potential [33,35]. We express the particle mass
as Mp = MM0, where M0 is the mass of the superfluid displaced by the particle. Namely, heavy
particles have M > 1 and light particles have M < 1. In Table I all the parameters for the particles
used in the simulations presented in this work are reported. In the following, we will refer to each
simulation specifying the size and the mass of the particles used.

Note that although the model (1) is a minimal model for implementing particles in the GP
framework, we cannot add to the system an arbitrary number of particles. Indeed, since particles
have a finite size, they occupy a volume at the expense of the superfluid field, and packing effects
could become important if the filling fraction is too high. Moreover, the potential Vp must be updated
at each time step, which is numerically costly. Finally, note that the the evaluation of the force term
(3) acting on particles requires us to know the value of the fields at intermesh points. When the
number of particles in the simulation is not large, the force fGP

i (qi ) = −(Vp ∗ ∇ρ)[qi] (3) can be
computed with spectral accuracy using a Fourier interpolation. Such a method has been used in
[34–36], where the particle dynamics is extremely sensitive. In this work, the use of a Fourier
interpolation for each particle is numerically unaffordable, due to the large number of particles
involved and the resolutions used. Instead, we use a fourth-order B-spline interpolation method,
which has been shown to be highly accurate with a reduced computational cost [39] and particularly
well adapted for pseudospectral codes. Indeed, the use of a Fourier interpolation to evaluate the
three-dimensional force for Np particles requires ∼3NpNc operations and evaluations of complex
exponentials (Nc = 5123 in the present work). Such a cost quickly becomes too expensive at high
resolutions and/or a large number of particles. On the contrary, B-spline interpolation requires just
one fast Fourier transform of a field per component, and an interpolation using only four neighboring
grid points per dimension [39]. Such a scheme saves a factor ∼Np of computational cost compared
to Fourier interpolation. Note that in the previous discussion, we have not taken into consideration
parallelization issues, where local schemes (B-splines) are much more advantageous than global
ones (Fourier transforms). Nevertheless, some issues with physical quantities at small scales arising
from the B-spline interpolation are discussed in the Appendix.

III. PARTICLES IMMERSED IN A TANGLE OF SUPERFLUID VORTICES

Superfluid turbulence in the context of the GP model has been studied extensively
[9,11,38,40,41]. In general, quantum turbulence develops from an initial state with a vortex
configuration where the incompressible kinetic energy is mainly contained at large scale. During
the evolution, vortex lines move, interact among themselves, and reconnect, creating complex vortex
tangles. Through this process, sound is produced and incompressible kinetic energy is irreversibly
converted into quantum, internal, and compressible kinetic energy. Eventually, the compressible
energy produced in the form of acoustic fluctuations starts to dominate, thermalizes, and acts as a
thermal bath providing an effective dissipation acting on the vortices. As a consequence, vortices
shrink and eventually disappear through mutual friction effects following Vinen’s decay law [19,42].
In particular, it has been shown that the decrease of the incompressible kinetic energy behaves in a
similar manner to decaying classical turbulence [9]. To make a connection with decaying classical
Kolmogorov turbulence, the incompressible energy dissipation or dissipation rate is usually defined
in the context of GP turbulence as

ε = −dE I
kin

dt
. (6)

As in decaying Navier-Stokes turbulence, in GP the most turbulent stage is achieved around the time
when this quantity is maximal. About this time, the classical picture holds and the incompressible
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FIG. 2. (a) Time evolution of the superfluid energy components in the cases with no particles (dashed
line), 200 small particles (dotted line), 200 large particles (solid line), and 80 large particles (dash-dotted
line). (b) Incompressible energy dissipation rate for different numbers of particles with different sizes and
different masses (solid lines). Dash-dotted horizontal lines of the corresponding colors indicate the value of the
maximum of dissipation, obtained averaging over the shaded region. The dissipation is expressed in units of its
maximum εmax in the case without particles.

energy spectrum satisfies the Kolmogorov prediction

E I
kin = Cε2/3k−5/3,

where C is the Kolmogorov constant, the value of which has been found to be close to 1 in GP
turbulence [11,38,41].

The first purpose of this work is to check whether and to what extent the presence of particles
in the system modifies Kolmogorov turbulence. We add to the ABC initial condition a number
of randomly distributed particles and let the system evolve under the dynamics (2) and (3). In
Figs. 1(a), 1(b) and 1(c), the three stages of the evolution (initial condition, turbulent vortex tangle,
and residual filaments in a bath of sound, respectively) are visualized in the case of 200 neutrally
buoyant particles of radius 4ξ . See the supplemental material [43] for movies of this simulation and
others with particles of a different size. Trapped particles by vortices are displayed in green, whereas
free ones are displayed in purple. The algorithm to distinguish a trapped particle from a free one is
based on the circulation around it and it is discussed in Sec. III B.

In Fig. 1 we observe that the building up and decay of the turbulent tangle is not strongly
modified by the presence of particles. Moreover, it can be noticed how during the first stages of the
evolution of the system the majority of particles gets trapped into the vortices. At zero temperature,
as there is no normal component in the flow, no drag is experienced by the particles and their
motion is completely driven by the pressure gradients. As a consequence, they are attracted by
quantum vortices [28,34,44]. During the turbulent regime, violent and strongly nonlinear events
like reconnections dominate the vortex dynamics and the flow evolution. A fundamental question
is whether and how much the hydrodynamical attraction between vortices and particles is sufficient
to keep them attached to the filaments. Indeed, since quantum vortices are actually the main actors
of turbulence in superfluid, if particles are really able to follow them in this regime, it is a good
indication that they are suitable for use as probes.

In the following subsection, we will quantitatively study the effect of particles on quantum
turbulent flows. We will first focus on the large scales of the flow, where Kolmogorov turbulence
takes place. Then the particle dynamics and their statistics will be addressed.

A. The effect of particles on Kolmogorov superfluid turbulence

We shall start our analysis by comparing the temporal evolution of global quantities. In Fig. 2(a)
the time evolution of the different components of the energy is displayed. Times are expressed in
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FIG. 3. (a) Time evolution of the mean intervortex distance for different numbers of particles of different
sizes and different masses. (b) Incompressible energy spectrum for different numbers of particles of different
sizes and different masses. Inset: Compensated incompressible energy spectrum. Solid lines refer to particles of
size ap = 4ξ , dashed lines refer to particles of size ap = 10ξ . The dotted line is the classical scaling εmaxk−5/3.
The spectrum is computed averaging over times in the shaded region.

units of the large-eddy-turnover time defined as TL = L/2vrms, where vrms =
√

2E I
kin(t = 0)/3 is

the root-mean-square velocity associated with the initial vortex tangle, and L/2 is its characteristic
length scale. We compare the case in which no particles are present in the flow to the cases having
particles of different sizes and of relative mass M = 1. The net transfer of incompressible energy
toward compressible, quantum, and internal energy is qualitatively unchanged in the various cases.
The only difference is a slightly lower value of the incompressible energy in the case of large
particles, in favor of the internal energy of the superfluid. Such an effect is more evident if the
number of large particles is increased, and could be related to an increment of the filling fraction
�, namely the fraction of the total volume occupied by the particles. In fact, for Np = 200 particles
of radius ap = 4ξ the filling fraction is � = 0.1%, for Np = 80 particles of radius ap = 10ξ it is
� = 0.8%, and for Np = 200 particles of radius ap = 10ξ we have � = 2.1%. The kinetic and
repulsion energies of the particles, as well as the particle-vortex interaction EGP

P , are negligible
compared with the other energies throughout the duration of the simulations (data not shown).

The dissipation rate of the incompressible kinetic energy is reported in Fig. 2(b) for particles of
different masses and different sizes. The dissipation increases in the early stages when the energy
begins to be transferred to the smaller scales, it reaches a maximum when all the scales are excited,
and then it starts to decay since no forcing is sustaining the turbulence. We observe that the evolution
of the dissipation is clearly not significantly modified by the presence of particles. In particular, the
value of the maximum of dissipation, which is the signature of the most turbulent state reached by
the tangle, is slightly lower only in the case in which many large particles are moving in the system.
In particular for this case, it is about 90% of εmax, the value measured in the case with no particles.
The shaded region in Fig. 2(b) represents the most turbulent time of the simulations. We consider
that in this short stage the system is in a quasisteady state, and we perform the temporal average of
certain physical quantities in order to improve statistical convergence.

Another important quantity that is not affected much by the interplay between tangle and
particles is the mean intervortex distance �, whose time evolution is reported in Fig. 3(a). The
mean intervortex distance is then estimated as � = √

V/Lv, where Lv is the total vortex length in the
system. This latter is estimated using the method introduced in [9], where Lv is shown to be related
to the proportionality constant between the incompressible momentum density J I(k) of the flow and
the spectrum of a two-dimensional point-vortex J2D

vort (k):

Lv

2π
=

∑
k J I(k)∫

J2D
vort (k) dk

. (7)
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FIG. 4. Closeup of the superfluid vortex tangle at the early stage of the simulation (upper row: t = 0.27TL)
and during the turbulent regime (lower row: t = 1.1TL) for the cases with no particles [left column (a),(d)],
small particles [central column (b),(e): ap = 4ξ ], and large particles [right column (c),(f): ap = 10ξ ]. Vortices
are represented as isosurfaces of the density field (ρ = 0.15ρ∞) and rendered in red, sound is rendered in blue,
trapped particles in green, and free particles in purple.

The spectra of momentum densities are the angle average of the norm in Fourier space of the
momentum density J = ρvs, and the incompressible part is obtained projecting onto the space of
divergence-free fields. We have checked the validity of this formula by using the vortex filament
tracking method described in [45] at some checkpoints.

In the turbulent regime, where the dissipation gets its maximum, the total length of the entangled
vortices is also larger by a factor 4 compared to the initial condition, and the distance between the
filaments is minimum. The value �min ∼ 14ξ of the intervortex distance in this regime will be used as
a characteristic small length scale of the Kolmogorov turbulent regime. Such length is smaller than
the diameter of the largest particles considered (2ap = 20ξ ), but nevertheless this has no appreciable
repercussions on the behavior of the observables studied. Furthermore, as shown in Fig. 3(c), the
scaling of the incompressible energy spectrum E I(k) averaged around the maximum of dissipation
is unaltered by particles in the system. Figure 3(b) displays the incompressible energy spectrum. It
is apparent that the scaling of the spectrum is always compatible with classical turbulence at scales
larger than the intervortex distance, and the way in which the energy is accumulated at smaller
scales is not modified by the particles. In the inset of Fig. 3(b), the spectrum is compensated by
the Kolmogorov prediction E I(k) = Cε

2/3
maxk−5/3 for classical hydrodynamic turbulence. The dotted

horizontal black line shows that the value of the constant C in the Kolmogorov law is a number of
order 1 for superfluid turbulence.

The only appreciable difference observed between the case with and without particles is that in
the early stages of the evolution, the trapping of particles perturbs the vortex filaments and excites
Kelvin waves. A comparison between the volume renderings can be seen in the upper row of Fig. 4.
Such perturbations propagate during the evolution of the tangle. At the times when turbulence is
developed, the details of the vortex configurations are completely different (see the lower row of
Fig. 4). Nevertheless, the statistical properties of the system in this regime remain unchanged. We
stress that the intervortex distance in quantum turbulence experiments lies typically in the range
10–100 μm, which is equal to or slightly larger than the particle size [24,25,27]. In this sense,
the simulations presented here are compatible with the experimental parameters. They thus support
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FIG. 5. (a) Fraction of trapped particles as a function of time for different numbers of particles of different
sizes and different masses. Inset: The same for longer time in the case of 200 neutrally buoyant particles of size
ap = 4ξ . (b) Comparison between the fraction of multiply trapped particles as a function of time for neutrally
buoyant particles. (c) Volume rendering of large particles (ap = 10ξ ) multiply trapped by quantum vortices.
Vortices are rendered in red, sound in blue, particles in green. (d) Probability density function of the continuous
time spent by particles inside vortices for different species of particles. The dotted blue line corresponds to the
same simulation of blue circles (particles with size ap and mass M = 1) but averaged over the full simulation
times). Inset: Absolute value of the circulation around a single particle of size ap = 4ξ and mass M = 1 as a
function of time. The PDF is computed averaging over times in the shaded region.

the belief that active particles have effectively no influence on the typical development and decay
of quantum turbulence. This numerical fact helps to validate past and future experiments that use
particles as probes of superfluids.

On the other hand, because of the lack of a Stokes drag in the system, particles cannot be treated
as simple tracers of the superfluid velocity vs. Nevertheless, if they remain trapped inside the vortices
they can track the evolution of the vortex filaments, which are the structures that effectively become
turbulent. With the purpose of characterizing this scenario, in the next subsection we investigate the
motion of particles once they are immersed in a tangle of quantum vortices.

B. Motion of particles in the superfluid vortex tangle

Looking at the time evolution of the vortex tangle (see Fig. 1 and movies in the supplemental
material), the first thing that is apparent is how particles quickly get trapped into vortex filaments.
This dynamics is expected and it has been studied in the case in which vortices move slowly [34].
It is a consequence of the pressure gradients. However, it is less obvious if such behavior remains
dominant when turbulence take place and reconnections become frequent.

We study the evolution of particles and compute whether they are free or trapped by vortices.
The temporal evolution of the fraction of trapped particles is displayed in Fig. 5(a) for all runs.
This measurement is made by computing the circulation � = ∮

C vs · dx of the superfluid velocity vs
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along contours C encircling each particle, and counting for which particles it is different from zero.
Specifically, we compute the circulation along many parallel square contours of side 2(ap + �x )
around each particle, where �x is the grid spacing. If the circulation around at least one of these
contours is different from zero, the particle is considered as trapped [46]. For practical reasons,
due to the parallelization of the numerical code, we consider only contours perpendicular to the z
axis of the computational box. As a consequence, the protocol is not able to grasp vortices that are
crossing the particles exactly on a plane perpendicular to the z axis. This means that our estimation
of the fraction of trapped particles is effectively a lower bound. However, it should be noticed that
this pathological situation is an extremely rare situation that does not change the conclusions of our
analysis.

In the initial condition the particles are placed randomly in the computational box. It happens
then that some of them are already positioned inside a vortex. In the case of particles with a
size comparable to the intervortex distance, the majority of particles are in this situation. In the
first stages of the evolution of the flow, the number of trapped particles increases rapidly until
it becomes stationary always at times much smaller than one TL. The time needed to reach a
stationary state depends slightly on the mass of the particles, as well as the fraction of trapped
particles once a steady regime is reached. The steady value of N trap

p /Np is between 80% and 90%
for small particles (2ap < �), while on average the totality of particles of size 2ap ∼ � is found
to be trapped by vortices, independently of the filling fraction. When the system reaches the most
turbulent regime (indicated by the shaded region), the fraction of trapped particles does not undergo
any appreciable changing. In the inset of Fig. 5(a), N trap

p /Np is also shown for late times in the case of
small particles of relative mass M = 1. It manifestly remains stable. This means that even when the
density of vortex lines is decaying (along with the intensity of turbulence), the particles stay trapped
inside vortices. Note that in this work we are dealing with homogeneous and isotropic decaying
quantum turbulence at low temperature. We mention that the fraction of trapped particles measured
in thermal counterflow simulated by means of the VF method is lower that the one observed
here [31].

The circulation around each superfluid vortex filament is equal to a single quantum of circulation
κ . As a consequence, measuring the circulation along a closed line C allows us to count the number
of filaments in the region delimited by the line, provided that the quanta of circulation around every
filament have the same sign. This is true also if the vortices are trapping particles, because their
topological nature does not change. In Fig. 5(b) we show again the fraction of trapped particles, but
now separating the number of particles trapped by multiple vortices. It turns out that at least the
5–10 % of the particles with size 2ap ∼ � are always attached to at least two different filaments.
Sometimes even more vortices pass simultaneously through the same particle, as can be visualized
in the volume plot of Fig. 5(c).

Once a particle is trapped by a vortex, it can experience violent events, for instance during vortex
reconnections. In such circumstances, such a particle could be detached and expelled from the vortex
until it will eventually get trapped by another vortex of the tangle. We compute the probability
density function (PDF) of the continuous time intervals �ttrap spent by the particles inside the
vortices regime. The PDFs for particles of different sizes and masses are displayed in Fig. 5(d).
For all the species of particles examined, the probability distribution seems to follow roughly a
power-law scaling in time ∼(�ttrap)−α , with α ∼ 1.67. The PDF certainly vanishes much slower
than an exponential decay at large �t trap, which would typically result from a standard escape
problem over energy barriers. We checked that the intermittency of the circulation and the shape
of the trapping time PDF are not characteristic of the most turbulent regime, since they persist also
at the late times of the simulations [see the dotted blue line in Fig. 5(d)]. Therefore, many particles
spend a time at least of the order of the simulation time (∼10TL) inside a vortex filament, i.e., the
typical escape time from the vortices is virtually infinite. This observation is exemplified in the
inset of Fig. 5(d), where the evolution of the circulation around a single-small neutral particle is
reported (the qualitative behavior is the same for the other particles). It is also clear that the time
spent by the particles with zero circulation around them (namely free from vortices) is short. Since
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FIG. 6. Frequency spectrum of the particle velocity for particles of different masses and different sizes,
compensated with the prediction for the Lagrangian spectrum in classical turbulence ∝ ε/ω2: (a) small particles
with ap = 4ξ ; (b) large particles with ap = 10ξ . The dash-dotted gray line is the frequency spectrum of a
single small particle trapped in a straight vortex slightly perturbed. Dotted lines of corresponding colors are the
prediction for the particle natural frequency �p. The dashed red line is the scaling due to vortex reconnection
or Kelvin waves ∝ |ω|−1. The dashed golden line is the spectrum evaluated at late times in the simulation
(6TL < τ < 7TL).

we established that particles immersed in a tangle spend most of the time inside vortex filaments, in
the following we study their motion once they get trapped.

At large scales, the vortex tangle seems to behave as a classical hydrodynamic turbulent system.
Therefore, the first natural question is whether the particles can trace such large-scale fluctuations.
In classical turbulence, it is well known that the Lagrangian velocity spectrum scales as

〈|v̂p(ω)|2〉 = Bεω−2, (8)

where B is a constant of order unity and v̂p(ω) is the Fourier transform of the Lagrangian
particle velocity vp(t ) [47,48]. Such scaling is valid in the inertial range 2π/TL � ω � 2π/τη,
where τη is the Kolmogorov timescale. In our case, we build an analog of the Kolmogorov
time scale under the assumptions that the dissipation rate εmax is the only important physical
parameter in the classical turbulence regime and that the Kolmogorov turbulent cascade ends
at the intervortex distance �min. Therefore, we define the smallest timescale of the classical
turbulence regime as τ� = (�2

min/εmax)1/3, and we expect classical turbulent phenomenology to
hold for times τ� � t � TL. In Fig. 6, the measurement of the frequency spectrum of the particle
velocity 〈|v̂p(ω)|2〉 = 〈| ∫ q̇(t )e−iωt dt |2〉 during the turbulent regime is shown for different species
of particles, compensated with the classical scaling εmaxω

−2. Note that the average that defines
the spectrum is meant over different realizations. In numerics we average over all the particle
trajectories during the turbulent regime. At frequencies ω < τ�/2π , the spectra approach a plateau
of value 1, confirming that particles sample well the flow and their behavior is described by the
standard classical turbulence picture at large scales. Note that the classical temporal inertial range
of our simulations is pretty small, since TL ∼ 5τ�. For comparison, we also present the velocity
spectrum of a particle of size ap = 4ξ and mass M = 1, computed in a temporal window at much
later times, when Kolmogorov turbulence has decayed and only a few vortices are left. Note that a
ω−2 scaling of the Lagrangian velocity spectrum has also been observed in numerical simulations
of the vortex filament model [49], although not in the Kolmogorov inertial range and not related to
the energy dissipation rate nor to Kolmogorov turbulence.

As expected, in our simulations no Kolmogorov scaling is observed at small timescales. Indeed,
one of the most striking features of quantum turbulence is the crossover between the classical
Kolmogorov regime and the physics taking place at scales smaller than the mean intervortex
distance. Unlike classical turbulence (see, for instance, [47]), there is still a nontrivial scaling at
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timescales shorter than τ�. Such a difference is a consequence of the quantum nature of the system,
here manifested by the presence of quantized vortices.

When a particle is trapped by a vortex, the superfluid flow turns around it. As a consequence,
while the particle moves, it experience a Magnus force. This lift force is simply expressed as
FMagnus = 3

2ρ∞ap� × (q̇ − vs ), where the circulation vector � is oriented along the vortex filament,
and the superfluid velocity vs contains the contributions of the mean flow and the vortex motion
[36,50]. The Magnus effect induces a precession of the particle about the filament with the
characteristic angular velocity

�p = 3

2

ρ∞ap

Meff
p

�, (9)

where the particle effective mass Meff
p = Mp + 1

2 M0 = (M + 1
2 )M0 takes into account the added

mass effect due to the mass of the superfluid displaced by the particle M0. As mentioned in
[36], for current experiments with hydrogen particles in superfluid helium, this frequency is of
order 10–100 Hz. If the Magnus force is the main force acting on a trapped particle, the Newton
equation Meff

p q̈ = FMagnus implies the following expression for the frequency spectrum of the
particle velocity:

〈|v̂p(ω)|2〉 = �2
p

�2(ω − �p)2
〈|� × v̂s(ω)|2〉. (10)

Independently of the external superfluid velocity, the expression (11) predicts that the spectrum
〈|v̂p(ω)|2〉 must be peaked around the natural frequency of trapped particles ω = �p. Such behavior
has been studied in detail in the case of particles trapped inside slightly perturbed straight vortex
filaments [36]. The spectrum of this simple configuration is also reported for comparison in Fig. 6(a)
for a small particle of relative unit mass. A clear bump in the frequency spectrum, corresponding
to �p, is still visible when particles are immersed in a complex quantum vortex tangle. For the
large particles, the presence of a peak is less evident because the natural frequency is lower, and
therefore a longer sampling (in time) would be necessary to resolve it properly (2π/�p = 0.7TL for
the particles of size ap = 10ξ and mass M = 1). Moreover, as large particles are multiply trapped
by many vortices, the resulting motion is certainly more complex than a precession with a single
characteristic angular frequency of one single vortex. The broadness of the peak around the Magnus
frequency for the small particles in Fig. 10(a) could also be related to this fact.

At small timescales, a different scaling of the velocity spectrum is observed for the light
particles, now in agreement with 〈|v̂p(ω)|2〉 ∝ |ω|−1. This behavior is consistent with the fact
that at scales smaller than the intervortex distance, the typical velocities of a superfluid turbulent
tangle are supposed to scale as vfast (t ) ∝ √

κ/|t − t0|, because the circulation becomes the only
relevant physical parameter, and the motion of vortices is dominated by their mutual advection and
reconnections. In this scenario, if particles are sufficiently light to be able to follow the fast vortex
dynamics, we can substitute 〈|v̂p(ω)|2〉 ∼ v̂2

fast (ω) ∝ κ|ω|−1. Another effect that could contribute
to the same result is the attraction of particles by the vortices, since the scaling in time of the
particle-vortex distance is the same as that of vortex reconnection [34]. Note that for the heaviest
particles, such fast scaling is absent since their reaction is probably too slow to be sensible to the
fast fluctuations of the tangle.

C. Particle velocity and acceleration statistics

Unlike classical turbulence, where the statistics of the one-point particle velocity v is known
to be Gaussian [1], experiments in superfluid helium using hydrogen and deuterium particles as
tracers have reported long tails, with a v−3 power-law scaling in their velocity distribution [24–26].
Such scaling has been related to the singular velocity field of quantized vortices [51,52]. At low
temperatures, as Stokes drag is negligible, particles should not move with the superfluid flow
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FIG. 7. (a) Probability density function of the single-component particle velocity, for different species of
particles. The dotted golden line is the Eulerian velocity field ∇φ, corresponding to the simulation without
particles at the time 1.4 TL . The data for the particles are averaged in time between t = 1.2TL and 1.6TL . Inset:
Standard deviation of the particle velocity as a function of the particle mass. (b) The same as (a) but with the
velocities normalized by the standard deviation σv . Dotted lines are Gaussian, dash-dotted line is a power-law
scaling |vi|−3.

and such scaling can be understood as a consequence of quantum vortex reconnections sampled
by trapped particles [7,24]. Furthermore, in Ref. [25], by using particle tracking velocimetry in
counterflow turbulence, it was shown that while varying the sampling scale, the velocity PDFs
continuously change from Gaussian statistics to power-law tails, the crossover taking place at scales
of the order of the intervortex distance. In this final subsection we present measurements of particle
velocity and acceleration statistics within the GP-P model.

We start the discussion by presenting the Eulerian velocity field. Formally, the velocity of
the superfluid is simply given by ∇φ. This field contains the density fluctuations, as well as the
divergence of the vortex velocity flow close to its core. This divergence leads to the well-observed
v−3 scaling of velocity PDF [51,53,54]. The PDF of ∇φ is displayed in Fig. 7. We turn now to
analyze the particle velocity PDFs. We compute the velocity PDFs for all runs in the turbulent
regime. Data are filtered with a Gaussian convolution in order to smooth out the noisy oscillations
at frequencies ω < ωnoise = 50 (2π/τ�) (see Appendix). In Fig. 7 the PDF of the single-component
velocity is plotted for all the species of analyzed particles. In Fig. 7(a), velocities are expressed
in terms of the speed of sound c, whereas in Fig. 7(b) they are normalized by their root-mean-
squared values. The root-mean-squared values are displayed in the inset of Fig. 7(a) as a function
of the mass for the two particle sizes. It is apparent from Fig. 7(b) that the particle statistics
exhibits a Gaussian distribution. Note that Gaussian velocity statistics was also observed in thermal
counterflow simulations of the vortex filament method with tracers particles [30]. The absence of
power-law tails could be a consequence of weak statistical sampling of large velocity fluctuations
due to the low number of particles present in the system and/or by compressible effects of the GP
model. We will comment more about this in Sec. IV.

We would like to remark here that high-frequency fluctuations are strongly sensitive to numerical
artifacts. In the Appendix, inspired by the experimental results of Ref. [25], we have computed
the velocity PDFs of the velocity fluctuations filtered at a given frequency ωc. The frequency was
varied from values lower to larger than 2π/τ�. For one simulation we have compared two different
interpolation methods to evaluate the force term in Eq. (3) needed to drive the particles. It turns out
that for the fourth-order B-spline method, the velocity PDFs start to develop tails while the filtering
scale is varied, eventually leading to a v−3 scaling. However, when using Fourier interpolation,
which is an exact evaluation (up to spectral convergence of the pseudospectral code) of the force
term, the PDFs do not develop any tail and remain Gaussian. We have decided to keep this example
with spurious numerical effects in the Appendix, as it might be useful for future numerical studies
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FIG. 8. (a) Probability density functions of the single-component particle acceleration. (b) Probability
density functions of the norm of the particle acceleration. The dotted line is a Gaussian, the dashed line is a χ3

distribution, and the dash-dotted line is an exponential tail e−|a|/σ|a| . Inset: Probability density functions of the
natural logarithm of the norm of the particle acceleration. The dashed golden line is a log-normal distribution.

and data analysis of similar problems. We have checked that the results presented in the paper are
independent of the interpolation scheme.

We turn now to study the acceleration statistics. As displayed in Fig. 8(a), the PDF of the
acceleration presents some deviations from a Gaussian distribution at large values. The norm of
the acceleration has also an exponential tail for |a| > σ|a|, as displayed in Fig. 8(b). The core of
the PDF in this case is a χ3 distribution, which is expected for the norm of a vector with Gaussian
components. In classical Lagrangian turbulence, the norm of the particle acceleration is observed
to obey a log-normal distribution [55]. In the inset of Fig. 8(b), we compare our data with such
distribution. For the lightest and smallest particle, the small accelerations appear to be more probable
than in the classical case. Note that, as pointed out in [55], small values of the acceleration are very
sensible to experimental (numerical) errors. By contrast, the large accelerations are less probable
than a log-normal distribution. This observation is compatible with classical numerical calculations
in the framework of the viscous vortex filament model, in which it has been shown that, because of
inertia, solid particles undergo less rapid changes of velocity than fluid particles [56].

Finally, in Fig. 9, we show the two-point correlator of the particle acceleration, defined as

ρa(t ) = 〈ai(t0)ai(t0 + t )〉 − 〈ai(t0)〉〈ai(t0 + t )〉
σa(t0)σa(t0 + t )

. (11)

FIG. 9. Acceleration two-point correlator, plotted vs time normalized by the dissipation timescale τ� (a),
and by the Magnus natural frequency 1/�p. (b) Markers indicate the time of acceleration decorrelation ta.
Inset: ta normalized by 1/�p as a function of the particle relative mass.
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In classical Lagrangian turbulence, the decorrelation time ta [such that ρa(ta) = 0] is related to
the Kolmogorov timescale ta = 2τη [57]. This is not the case in quantum turbulence. Figure 9(a)
displays the autocorrelation ρa(t ) for all the simulations. It is apparent that the acceleration
decorrelates much faster than τ�, the equivalent of the Kolmogorov timescale in our system. This
fact is a consequence of the myriad of physical phenomena taking place at smaller scales. As most
particles are trapped by vortices, they oscillate at the Magnus frequency �p in Eq. (9). If time is
normalized by �p (9), then ta�p becomes of order 1, at least for the heaviest particles [see Fig. 9(b)
and the inset therein]. For the lightest particles, the decorrelation time is even lower, meaning that
they are sensible to other mechanisms, such as reconnection events between vortex filaments and
Kelvin wave excitations at even smaller scales.

IV. DISCUSSION

In this work, we used the Gross-Pitaevskii model to study free decaying quantum turbulence at
zero temperature in the presence of finite-size active particles. We considered different families of
spherical particles having sizes smaller than and of the order of the mean intervortex distance. We
first performed a standard analysis of the observables commonly used for studying Kolmogorov
turbulence, such as the energy decomposition, the temporal evolution of mean energy, the rate of
incompressible kinetic energy, and the mean intervortex distance. Although particles are active and
get captured by vortices generating Kelvin waves, there is not a significant impact at scales larger
than the intervortex distance, where Kolmogorov turbulence takes place. Monitoring the motion of
the particles in the system, we confirmed their tendency to remain trapped into vortex filaments
during the evolution of the tangle, with intermittent episodes of detachment and recapture. This
behavior is independent of the vortex line density. We also found that particles can be easily captured
simultaneously by several quantum vortices.

We also studied turbulence from the Lagrangian point of view. In particular, we computed the
power spectra of the particle velocities. At large scales the particle dynamics is compatible with
that of Lagrangian tracers in classical turbulence, while at short timescales the Magnus precession
around the filaments caused by the vortex circulation is dominating the motion. Such information
can be extracted consistently both in the frequency spectrum of the velocity and in the decay time
of the correlation of the acceleration. Furthermore, if particles are light enough, faster frequencies
are also excited. This suggests (as intuitively expected) that light particles can be more sensitive to
the small-scale fluctuations of the flow.

Finally, we investigated the particle velocity statistics. The distribution of the particle velocity
is Gaussian, in contrast with the power-law scaling |vi|−3 recently observed in superfluid helium
experiments [24,25]. There are several reasons why power-law tails are absent in our simulations.
First, since the simulation of each particle has an important numerical cost, the number of particles
is restricted only to a couple of hundred. Due to this issue, vortex reconnections might be unlikely
sampled by the sparse distribution of particles. Note also that, as particles have a finite size,
increasing their number keeping the size of the system constant will increase substantially the filling
fraction. In this case, turbulence could even be prevented by the presence of particles. Although
interesting, this limit is beyond the scope of this work. Secondly, the GP model is compressible,
and particles moving at large velocities are slowed down by vortex nucleations. This certainly
reduces large velocity fluctuations, perhaps limiting the development of power-law tails. It would
be interesting to address such issues in generalized GP models, including a roton minimum and
high-order nonlinearities. Moreover, our simulations are by definition at zero temperature, and
particles do not follow the singular superfluid velocity field because of the lack of viscosity in
the system. Indeed, in the GP model the pressure gradients that drive the particle dynamics are
always regular because of the vanishing density at the vortex cores, unlike other models such as
the vortex filament method. As a consequence, the divergence of the superfluid velocity along the
vortex lines cannot be experienced by the particles. Conversely, at finite temperature the superfluid
and the normal component can be locked thanks to mutual friction. In this case, since particles
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would sample the normal fluid velocity because of Stokes drag, they might be able to sample the
1/r flow around a quantum vortex. Finally, we observed that fast velocity fluctuations are highly
sensitive to interpolation and filtering methods that could even lead to power-law tails. These tails
are completely spurious, and special care is needed while analyzing numerical or experimental data.
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APPENDIX: NUMERICAL ARTIFACTS ON THE PARTICLE VELOCITY STATISTICS:
COMPARISON BETWEEN B-SPLINE AND SPECTRAL INTERPOLATION METHODS

As explained in the main text, we evaluate the force fGP
i = −(Vp ∗ ∇ρ)[qi] (3) at the particle

position qi using a B-spline interpolation method [39] at each time step. Such a method is precise
and computationally cheap, but it turns out to present some issues that we have to take care of.
To check the reliability of the method, we rerun a simulation using Fourier interpolation for one
species of particles in the time window corresponding to the turbulent regime. Fourier interpolation
is exact in the sense that it uses the information of the full three-dimensional field, which is resolved
with spectral accuracy (i.e., discretization errors are at most exponentially small with the number
of discretization points). The numerical cost of this method is that of one Fourier transform (per
particle). In Fig. 10 the velocity and acceleration spectra computed using B-spline and Fourier
interpolation methods are compared. Clearly, the B-spline interpolation introduces nonphysical fast
oscillations, but at the frequencies ω < ωnoise = 50(2π/τ�) the behavior of the spectra is unchanged.
Nevertheless, some differences in the features of particle statistics are still visible at fast timescales
once the noise is filtered out.

We use a Gaussian convolution to perform a filtering of the velocity time series for each particle
in the frequency window ωc < ω < ωnoise, where ωc is a variable infrared cutoff frequency. Then
we compute the PDF of the filtered velocity for different values of ωc. Such PDFs are shown in
Fig. 11 comparing the simulations in which Fourier and B-spline interpolation are used for the same
species of particle. Surprisingly, only in the latter case do we observe power-law tails for the fast
oscillation distributions. Such PDFs are similar to the ones observed experimentally [24,25], but in
the present case they are just a consequence of numerical artifacts.

FIG. 10. Velocity spectra (a) and the acceleration spectra (b) for particles of size ap = 10ξ and mass M =
0.13, evolved using B-spline interpolation (blue lines) and spectral Fourier interpolation (green lines). The
spectra are averaged over particles and over the times 1.3TL < t < 1.5TL .

054608-17



UMBERTO GIURIATO AND GIORGIO KRSTULOVIC

FIG. 11. Probability density function of the velocity filtered in the frequency window ωc < ω < ωnoise

for different values of ωc. Data refer to particles of size ap = 10ξ and mass M = 0.13. The dotted line is a
Gaussian distribution, and the dash-dotted line is a power-law scaling 0.002(vi − 〈vi〉)−3. The data are averaged
over particles and over the times 1.3TL < t < 1.5TL . Different PDFs are shifted for visualization. (a) Particle
force interpolated with the B-spline method. (b) Particle force interpolated with the Fourier method.
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