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Spatial artificial neural network (ANN) models are developed for subgrid-scale (SGS)
forces in the large eddy simulation (LES) of turbulence. The input features are based on
the first-order derivatives of the filtered velocity field at different spatial locations. The
correlation coefficients of SGS forces predicted by the spatial artifical neural network
(SANN) models with reasonable spatial stencil geometry can be made larger than 0.99
in an a priori analysis, and the relative error of SGS forces can be made smaller than
15%, much smaller than that of the traditional gradient model. In a posteriori analysis,
a detailed comparison is made on the results of LES using the SANN model, implicit
large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic
mixed model (DMM) at grid resolution of 643. It is shown that the SANN model performs
better than the ILES, DSM, and DMM models in the prediction of the spectrum and other
statistical properties of the velocity field, as well as the instantaneous flow structures. These
results suggest that artificial neural network with consideration of spatial characteristics is
a very effective tool for developing advanced SGS models in LES of turbulence.
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I. INTRODUCTION

Large eddy simulation (LES) is a technique to reduce the effective degrees of freedom of
turbulence by modeling the effects of the subgrid-scale flow structures on the dynamics of the
resolved scales [1–6]. LES has been widely applied to study many complex turbulent flows in
aerospace industry, combustion, astrophysics, and engineering problems for several decades [7–15].
Since the pioneering works of Smagorinsky, Lilly, and Deardorff [1–3], LES models have mainly
followed a model-driven approach. These include the dynamic Smagorinsky model [1,7,16,17], the
one-equation eddy viscosity LES model [2,18–22], the dynamic mixed model [23–28], the optimal
model [29–31], implicit-LES (ILES) [32–36], etc. [37–43]. Velocity field at the scales near the filter
width � has been widely used to construct the unclosed subgrid-scale (SGS) terms, including a
variational multiscale Smagorinsky model [37], the locality of energy cascade in turbulence [44–47],
grid-independent LES by explicitly filtering [48,49], a new length scale for modeling subfilter
motions in LES [50].

More recently, various data-driven approaches have been explored to develop more accurate
Reynolds averaged Navier-Stokes (RANS) and LES models [51–76]. Neural network architectures
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with embedded invariance properties in RANS simulations have been developed [54,56,59]. A SGS
stress model for a turbulent channel flow with artificial neural network (ANN) has been developed
by Gamahara et al. [60]. The SGS passive scalar flux has been modeled using an ANN-based optimal
estimation theory [61]. A systematic approach for developing reduced models with memory through
a natural analogy between recurrent neural networks and the Mori-Zwanzig formalism has been
proposed by Ma et al. [64]. Maulik et al. proposed a data-driven closure framework to reconstruct
the unclosed SGS terms through localized grid-resolved information in LES [71,77]. Beck et al.
proposed to learn the SGS force terms using conventional neural network (CNN) architectures for
compressible decaying isotropic turbulence [78]. Xie et al. proposed an ANN model using the first-
and second-order derivatives of the filtered velocity and temperature on local stencil geometry to
model the SGS stress, SGS heat flux, and SGS forces of compressible isotropic turbulence [74,75].
We refer to Ref. [72] for a summary of the recent progresses on data-driven turbulence models.

One of fundamental questions for LES we try to answer is in regard to how to reconstruct the SGS
terms accurately by the filtered flow fields based on the DNS data. For most traditional SGS models,
the filtered flow fields at a single spatial point are used to predict the SGS terms. It was shown that
the relative errors of the single-point models are not small in the a priori tests [74,75]. One of major
reasons is that the single-point models cannot capture the spatial features of subgrid-scale dynamics.
According to previous studies on the spatial locality of kinetic energy cascade in turbulence [44–47],
the flow structures at the scales between �/2 and 2� give a major contribution to the SGS flux of
kinetic energy at the filter scale �. Thus, it is necessary to use the filtered flow fields at the scales
between �/2 and 2� for accurately modeling the SGS terms at the filter width �. It is worth
noting that the flow dynamics at the scale �/2 is critical to achieve a high accuracy of the SGS
model, which has rarely been considered in traditional SGS models. Here, we use ANN methods to
reconstruct the SGS force from the filtered flow fields at different spatial points, in order to capture
the spatial features of SGS dynamics at the scales between �/2 and 2�. We show that much higher
accuracy can be achieved by the new SGS model in the a priori tests, as compared to the traditional
SGS models.

Another fundamental issue for LES we try to address is in regard to how to implement the SGS
models properly in the a posteriori tests. For most traditional LES simulations, the grid scale is
chosen the same as the filter scale, leading to the fact that the numerical errors are comparable to the
SGS modeling errors. It is worth noting that the coupled effects of numerical errors and modeling
errors can cause the instability of LES. SGS models which are highly accurate in the a priori tests
probably lead to the instability in the a posteriori tests, due to the effect of numerical scheme. Thus,
dissipative SGS models such as Smagorinsky model are popular in LES. Here we use the grid scale
smaller than the filter width, to ensure that the errors of LES are mainly from the SGS modeling.
We point out that the numerical dissipation can be added individually to keep both the stability of
LES and the high accuracy of SGS models.

In this paper, we propose a spatial artificial neural network (SANN) framework for reconstructing
the SGS forces. We find that the SGS forces predicted by the SANN models exhibit much higher
accuracy as compared to traditional gradient-based models in a priori analysis. We also study the
accuracy of the proposed SANN model in a posteriori test by examining the spectrum and other
statistical properties of the velocity field. These tests suggest that SANN is a very attractive approach
for developing models of SGS forces.

This paper is organized as follows. Section II briefly describes the governing equations and com-
putational method. Section III discusses DNS database of incompressible turbulence. Section IV
introduces the SANN models for the reconstruction of SGS forces from the filtered flow fields.
Section V presents both a priori and a posteriori results of the SANN models. Some discussions on
the proposed SANN models are presented in Sec. VI. Conclusion are drawn in Sec. VII.
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II. GOVERNING EQUATIONS AND NUMERICAL METHOD

The governing Navier-Stokes equations for incompressible isotropic turbulence are [4,14,15,79]:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ ∂uiu j

∂x j
= − ∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
+ Fi, (2)

where ui is the ith velocity component, p is the pressure divided by the constant density, ν is the
kinematic viscosity, and F is a large-scale forcing to the fluid momentum.

The Taylor microscale Reynolds number Reλ is defined by [4,79]

Reλ = urmsλ√
3ν

. (3)

Here the root-mean-square (rms) value of the velocity magnitude is defined by urms = √〈uiui〉,
where 〈〉 stands for a spatial average. The dissipation rate ε is defined by ε = 2ν〈Si jSi j〉, where
Si j = 1

2 (∂ui/∂x j + ∂u j/∂xi ) is the strain rate tensor. The Taylor microscale is defined by [79]

λ =
√

5ν

ε
urms. (4)

The Kolmogorov length scale η and the integral length scale LI are defined, respectively, as

η =
(

ν3

ε

)1/4

, LI = 3π

2(urms)2

∫ ∞

0

E (k)

k
dk, (5)

where E (k) is the spectrum of kinetic energy per unit mass, namely
∫ ∞

0 E (k)dk = (urms)2/2.
The physical variables can be separated into a resolved large-scale component and a subfilter

small-scale component by a filtering operation f̄ (x) = ∫
D f (x′)G(x, x′; �)dx′, where an overbar

denotes a filtered variable, G is the filter kernel, D is the overall domain, and � is the filter width
[5,9,80]. The incompressible filtered Navier-Stokes equations for the resolved variables can be
written as [5,6,9,81]:

∂ ūi

∂xi
= 0, (6)

∂ ūi

∂t
+ ∂ ūiū j

∂x j
= − ∂ p̄

∂xi
− ∂τi j

∂x j
+ ν

∂2ūi

∂x j∂x j
+ F̄i. (7)

The SGS term appearing on the right-hand sides of Eq. (7) is defined by

τi j = uiu j − ūiū j, Mi = ∂τi j

∂x j
, (8)

where τi j is the SGS stress and Mi is the SGS force.
We numerically simulate the incompressible homogeneous isotropic turbulence by a pseudospec-

tral code in a cubic box of (2π )3 using a uniform grid with periodic boundary conditions [79]. Time
marching is performed by a second-order two-step Adams-Bashforth scheme. Full dealiasing is
implemented using the two-thirds rule [82]. Force is only applied to the velocity field through fixing
the total kinetic energy in the first two wave-number shells [83].

III. DNS DATABASE OF INCOMPRESSIBLE TURBULENCE

The DNS data are obtained from direct numerical simulation of a forced incompressible isotropic
turbulence at the Taylor Reynolds number Reλ close to 250. We summarize the detailed numerical
parameters and statistics of the turbulent velocity field at a uniform grid of 10243 in Table I [84].
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TABLE I. Numerical simulation parameters and statistical quantities for 10243 grid resolution.

Reso. Reλ η/�x LI/η λ/η ν urms ωrms ε

10243 259 1.01 233 31.7 0.001 2.29 26.3 0.69

The kinematic viscosity ν equals 0.001. The resolution parameter η/�x is close to 1.01 in numerical
simulations, where �x denotes the grid length in each direction. Consequently, the resolution
parameter kmaxη ≈ 2.11 Here the largest wave number kmax is kmax = N/3 = 2π/3�x, and N is
the number of grids in each direction. The rms values of vorticity magnitude are calculated as
ωrms = √〈ωiωi〉. A resolutions of kmaxη � 2.1 is enough for the convergence of the kinetic energy
spectrum at different wave numbers [79,85].

We use a top-hat filter to obtain the filtered flow variables and the corresponding SGS force Mi

in this study, which is calculated in one dimension by [74,80,84,86]

f̄i = 1

2n

⎛
⎝ fi−n/2 + 2

i+n/2−1∑
j=i−n/2+1

f j + fi+n/2

⎞
⎠, (9)

where the filter width is � = n�x. Filter width � = 32�x is used in the present study as shown
in Fig. 1, which corresponds to the filter size of �/η ≈ 32 and covers the inertial range; 10% of
the turbulent kinetic energy resides in the SGS flow field for �/�x = 32. LESs are performed on
643 grid resolution with filter width � = 32�x in a posteriori test. Here the grid size of LES is
h�

LES = �/2.

IV. THE STRUCTURE OF THE SANN MODEL

We consider a fully connected ANN as shown in Fig. 2. Different layers are connected by
neurons, where a layer l receives and operates inputs X l−1

j from layer l − 1 and then establishes

Δ Δ

FIG. 1. Velocity spectrum from direct numerical simulation of a forced incompressible isotropic turbu-
lence. Diamond represents filter width �/�x = 32.
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FIG. 2. Schematic diagram of the ANN’s network structure.

outputs X l
i by the activation function [62,87,88]. The transformation from layer l − 1 to layer l is

calculated as follows:

X l
i = σ

(
sl

i + bl
i

)
, (10)

sl
i =

∑
j

W l
i jX

l−1
j , (11)

where σ is the activation function, W l
i j is the weight, and bl

i is the bias parameter. W l
i j are initialized

using glorot-uniform, and bl
i are initialized to be zero. The ANN consists of four layers (input layer,

two hidden layers, and output layer). The neuron numbers of four layers between the set of inputs
and final output layer are M : 1024 : 512 : 1, respectively. M is the number of neurons of the input
layer, while the output layer consists of a single neuron associated with the component of the SGS
force Mi. Meanwhile, two hidden layers are activated by a Leaky-Relu activation function:

σ (a) =
(

a, if a > 0

0.2a, if a � 0

)
. (12)

Linear activation σ (a) = a is applied to the output layer. The reasonable W l
i j and bl

i are determined
by the training stage of ANN. The loss function is defined as 〈(X L − Mi )2〉, where 〈〉 represents the
spatial average over homogeneous directions (i.e., the entire domain for isotropic turbulence) [60].
It measures the difference between the output and the real SGS force Mi. We use back-propagation
to minimize the loss function using the Adam optimizer with learning rate of 0.001 [89].

We show the hyperparameter configuration of the ANN model in Table II. The ANN is trained
with four layers of neurons M : 1024 : 512 : 1, the hidden layers are activated by the Leaky-Relu
function, and the output layer is activated by the linear function. The network is trained by the Adam
algorithm [89] for 1000 iterations, with the batch size being 1000 for determining the final network
until the learning rate is minimal.

TABLE II. Hyperparameter configuration of the ANN model.

Layer Activation Activation Loss Learning
structure (hidden layer) (output layer) fuction Optimizer rate Epoch

M:1024:512:1 Leaky-relu Linear MSE Adam 0.001 1000

054606-5



CHENYUE XIE, JIANCHUN WANG, AND WEINAN E

TABLE III. The number of input variables M and GPU time for 1000 epoches of ANN training associated
with different Rs and Rg for the SANN model.

(Rs, Rg) (0,1) (2,1) (2,2) (2,4) (2,8) (1,4) (3,4) (4,4)

M 9 117 225 441 873 225 657 873
GPU(h) 8.1 11.2 13.4 17.1 27 12.9 21.4 29

We train three ANNs to reconstruct each independent component of the SGS force Mi. The
final output X L can be obtained from the input layer X 1

j of filtered flow fields based on a series of
iterations of the bias parameters and the weights. The SGS force Mi is the derivative of τi j and can
be approximated as [81,90,91]:

Mi = ∂τi j

∂x j
= �2

12

(
∂2ūi

∂x j∂xk

∂ ū j

∂xk
+ ∂ ūi

∂xk

∂2ū j

∂x j∂xk

)
+ O(�4). (13)

Since higher-order derivatives in Eq. (13) can be approximated by divided differences of the first-
order derivative, the first-order derivative of the velocity is used as the input features for the ANN.
The velocity derivatives at different spatial points are combined to model the effect of the spatial
structure of the flow field. An ANN is then trained to establish a functional relation between input
variables and the SGS forces. Since the flow dynamics at the scales near the filter width � is very
important for effective and successful ANN learning due to the multiscale characteristics of the SGS
formulation and the locality of energy cascade in turbulence [37,44–47,92–94], different spatial
stencils of input features are designed in our ANN architecture in order to improve the accuracy of
LES models.

Considering that the set of input features of the SANN model depends on the input spatial stencil
width �s and the grid length �g in each dimension, we use the ratio of the input spatial stencil
width �s to the filter width � (Rs = �s/�), and the ratio of the filter width � to the grid length �g

(Rg = �/�g) to represent the structure of the input spatial stencil. We consider the input variables
of ANN for six spatial directions from the spatial location (l, m, n) as follows:{

∂ ūl,m,n
i

∂xp
,
∂ ūl±q1,m,n

i

∂xp
,
∂ ūl,m±q2,n

i

∂xp
,
∂ ūl,m,n±q3

i

∂xp

}
,

{q1, q2, q3} ∈ {1, 2, . . . , RsRg}, (14)

where the indices l , m, and n correspond to discrete spatial locations associated with the grid length
�g, p = 1, 2, 3 is the subscript of the Cartesian coordinate, and i = 1, 2, 3 is the subscript of the
filtered velocity component. The total number of spatial points is N = 6RsRg + 1. Each sample of
our training data thus consists of M = 9N = 9(6RsRg + 1) inputs of filtered variables. The SANN
model associated with the parameters Rs and Rg is abbreviated as SANN(Rs, Rg). The number of
input variables associated with different Rs and Rg are shown in Table III for the SANN model.
For example, the input set with Rs = 2, Rg = 2 is abbreviated as SANN(2,2), which has 225 input
variables: M = 225.

We consider the input variables for 26 spatial directions from the location (l, m, n) as follows:

∂ ūl+iqh,m+ jqh,n+kqh
i

∂xp
, qh = 1, 2, . . . , RsRg,

{i, j, k} ∈ {−1, 0, 1}, i2 + j2 + k2 	= 0. (15)

The SANN model associated with the parameters Rs and Rg for 26 directions is abbreviated as
SANN-D26(Rs, Rg). The number of input variables associated with different Rs and Rg are shown
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TABLE IV. The number of input variables M and GPU time for 1000 epoches of ANN training associated
with different Rs and Rg for the SANN-D26 model.

(Rs, Rg) (0,1) (2,1) (2,2) (2,4) (2,8) (1,4) (3,4) (4,4)

M 9 477 945 1881 3753 945 2817 3753
GPU(h) 8.1 17.6 32.2 57.8 184 29.0 87.4 171.7

in Table IV for the SANN-D26 model. For example, the input set with Rs = 2, Rg = 2 can be
abbreviated as SANN-D26(2,2), which has 945 input variables: M = 945.

In order to increase the robustness of the ANN training, all input variables XI and output variables
XO are normalized by their rms values X rms

I and X rms
O , respectively, which is similar to the previous

data-driven strategies [52,56,61,62].

ZI = XI/X rms
I , (16)

ZO = XO/X rms
O . (17)

Since the real SGS forces are unknown in LES, the rms values of SGS forces reconstructed from
the gradient model are used in normalizations of the output variables for the ANN.

We use cross validation to prevent overfitting of the SANN model, using data that have not been
trained for. In this research, the LES is performed at grid resolution of 643 (h�

LES = �/2) with filter
width � = 32�x. Considering that a coarse-graining procedure involves the selection of every 16th
grid point in each direction for the DNS data with the grid resolution of 10243, 163 different data
sets of 643 coarse grid points can be obtained. The total data for ANN training are 16 × 643 grid
points by randomly choosing from the 163 different data sets; 70% of data is for training, 30%
for testing. Finally, the Adam optimizer with learning rate of 0.001 is used to update W l

i j and bl
i

of the ANN. The learning curve of the training and testing loss for the proposed SANN model is
shown in Fig. 3, which is trained for a long duration (2000 epochs) with batch size being 1000.
The training and testing loss show similar behavior and correlate closely after 500 global iterations,
which implies that the learning process is reasonable. The final ANN is selected for 1000 iterations
to reconstruct SGS forces accurately. Furthermore, we use four GPU cores (NVIDIA Tesla K80
GPU) for parallel training of neural networks in this research. The GPU time for 1000 epoches of
ANN training associated with different Rs and Rg for the SANN and SANN-D26 models are listed
in Tables III and IV. As the number of input variables M increases, GPU time increases.

Μ Μ

FIG. 3. Learning curves of the proposed SANN model of unclosed SGS force M1: (a) SANN(2,2) and
(b) SANN-D26(2,2).
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V. TEST RESULTS OF THE SANN MODEL

In this section, we test the ability of our proposed SANN models to produce reliable, repeatable
predictions by learning from the training data for the forced isotropic turbulence at Reλ ≈ 250.
Both a priori and a posteriori tests are conducted to study the performance of the SANN models.
In the a priori test, the correlation coefficients and relative errors of the predicted SGS forces are
compared for �/�x = 32 in the inertial range. The multiscale and local characteristics of the SGS
models SANN(Rs, Rg) are analyzed by changing two parameters (Rs, Rg). In the a posteriori test,
results of the large eddy simulations with the SGS model SANN(2,2) at grid resolution of 643

(hLES = �/2,� = 32�x) are compared with the ILES, DSM, and DMM models and filtered DNS
database. It is shown that the proposed SANN model can predict the spectra and statistics of the
filtered DNS data with high accuracy in LES.

A. A priori tests

We evaluate the performance of the SGS models SANN(Rs, Rg) by calculating the correlation
coefficient C(R), the relative error Er (R), and the root-mean-square value D(R) of SGS forces.
C(R), Er (R), and D(R) are defined, respectively, by

C(R) = 〈(R − 〈R〉)(Rmodel − 〈Rmodel〉)〉
(〈(R − 〈R〉)2〉〈(Rmodel − 〈Rmodel〉)2〉)1/2

, (18)

Er (R) =
√

〈(R − Rmodel )2〉√
〈R2〉

, (19)

D(R) =
√

〈(R − 〈R〉)2〉, (20)

where 〈·〉 denotes averaging over the volume. We consider two types of gradient models to compare
with the SGS models SANN(Rs, Rg) [25,27]:

(1) : Mi = �2

12
αi, αi = ∂

∂x j

(
∂ ūi

∂xk

∂ ū j

∂xk

)
, (21)

(2) : Mi = Ciαi, Ci = 〈Miαi〉
〈αiαi〉 . (22)

The first model is the gradient model, which is abbreviated as VG1. The second model is the gradient
model with coefficient Ci determined from DNS data by least square method, which is abbreviated
as VG1m.

In this research, we consider a fully connected ANN as shown in Fig. 2. There is no additional
constraint to the ANN architecture. The back propagation method is used to minimize the loss
function, which is defined as the difference between the output and the real SGS force [〈(X L −
Mi )2〉], where 〈·〉 represents the spatial average over homogeneous directions (i.e., the entire domain
for isotropic turbulence) [60]. The network is trained by the Adam algorithm [89] for 1000 iterations,
with batch size being 1000 for determining the final network until the learning rate is minimal.
All the weights corresponding to the added inputs are activated. The weights in different hidden
layers are different from the previous levels. More details about the characteristics of the weights of
different hidden layers will be further studied in the next step.

In an a priori analysis, the total dataset for different SANN(Rs, Rg) and SANN-D26(Rs, Rg)
models are 16 × 643 grid points; 70% of dataset is for training, 30% for testing. The SANN(Rs, Rg)
and SANN-D26(Rs, Rg) models are trained by the Adam optimizer with learning rate of 0.001 for
1000 epochs with batch size being 1000. The correlation coefficient (C), relative error (Er), and
root-mean-square value (D) of M1 for the SANN and SANN-D26 models with different Rs and Rg

of the training and testing datasets are shown in Tables V–X.
In order to analyze the impact of the network architecture of neurons, the ANN is trained with

four layers of neurons M : 1536 : 768 : 1 and five layers of neurons M : 1024 : 512 :: 256 : 1, which

054606-8



MODELING SUBGRID-SCALE FORCES BY SPATIAL …

TABLE V. Correlation coefficient (C), relative error (Er), and root-mean-square value (D) of M1 for
different SANN models at the filter width � = 32�x with Rs = 2 and Rg = 2.

C VG1 VG1m SANN(2,2) SANN(2,2)-D SANN(2,2)-L SANN(2,2)-R SANN(2,2)-SP

Train 0.738 0.738 0.989 0.994 0.991 0.990 0.980
Test 0.738 0.738 0.978 0.986 0.980 0.979 0.970
Er VG1 VG1m SANN(2,2) SANN(2,2)-D SANN(2,2)-L SANN(2,2)-R SANN(2,2)-SP

Train 0.713 0.674 0.163 0.112 0.140 0.144 0.200
Test 0.713 0.674 0.220 0.171 0.203 0.206 0.245

SANN SANN SANN SANN
D DNS VG1 VG1m SANN(2,2) (2,2)-D (2,2)-L (2,2)-R (2,2)-SP

Train 1.41 0.718 1.04 1.40 1.40 1.40 1.41 1.40
Test 1.41 0.718 1.04 1.39 1.39 1.39 1.40 1.40

are abbreviated as SANN-D and SANN-L (SANN-D26-D and SANN-D26-L), respectively. The a
priori results of the SANN, SANN-D and SANN-L (SANN-D26, SANN-D26-D and SANN-D26-
L) models are summarized in Tables V and VI. The SANN-D, SANN-L and SANN models show
similar correlation coefficients and relative errors, indicating that the learning accuracy does not
increase with the increase of the number of neurons and hidden layers, and the nearly convergent
results have been achieved with the enough numbers of neurons.

In order to illustrate the rationality of the SANN model with Leaky-Relu activation function used
in this research, we consider several different SANN models with hidden layers, which are activated
by two other activation functions without normalization: (i) rectified linear (ReLU) function

TABLE VI. Correlation coefficient (C), relative error (Er), and root-mean-square value (D) of M1 for
different SANN-D26 models at the filter width � = 32�x with Rs = 2 and Rs = 2.

C VG1 VG1m SANN-D26(2,2)

Train 0.738 0.738 0.995
Test 0.738 0.738 0.989
SANN-D26(2,2)-D SANN-D26(2,2)-L SANN-D26(2,2)-R SANN-D26(2,2)-SP

0.996 0.995 0.995 0.986
0.991 0.989 0.989 0.981
Er VG1 VG1m SANN-D26(2,2)

Train 0.713 0.674 0.102
Test 0.713 0.674 0.151
SANN-D26(2,2)-D SANN-D26(2,2)-L SANN-D26(2,2)-R SANN-D26(2,2)-SP

0.887 0.096 0.126 0.171
0.132 0.146 0.169 0.200
D DNS VG1 VG1m SANN-D26(2,2)

Train 1.41 0.718 1.04 1.41
Test 1.41 0.718 1.04 1.40
SANN-D26(2,2)-D SANN-D26(2,2)-L SANN-D26(2,2)-R SANN-D26(2,2)-SP

1.41 1.40 1.39 1.40
1.39 1.39 1.39 1.39
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TABLE VII. Correlation coefficient (C), relative error (Er), and root-mean-square value (D) of M1 for
different models (VG1, VG1m, and SANN models) at the filter width � = 32�x with same Rs (Rs = 2).

C VG1 VG1m SANN(0,1) SANN(2,1) SANN(2,2) SANN(2,4) SANN(2,8)

Train 0.738 0.738 0.544 0.981 0.989 0.992 0.992
Test 0.738 0.738 0.517 0.964 0.978 0.985 0.985
Er VG1 VG1m SANN(0,1) SANN(2,1) SANN(2,2) SANN(2,4) SANN(2,8)

Train 0.713 0.674 0.839 0.195 0.163 0.124 0.125
Test 0.713 0.674 0.859 0.266 0.220 0.174 0.173
D DNS VG1 VG1m SANN(0,1) SANN(2,1) SANN(2,2) SANN(2,4) SANN(2,8)

Train 1.41 0.718 1.04 0.80 1.39 1.40 1.41 1.41
Test 1.41 0.718 1.04 0.78 1.38 1.39 1.40 1.40

σ (a) = (
a, if a > 0
0, if a � 0) (SANN-R) and (ii) softplus activation function σ (a) = log(1 + ea)(SANN-

SP). The SANN model with the two different activation functions are abbreviated as SANN-R and
SANN-SP, respectively. The a priori tests of the SANN-R, SANN-SP models are summarized in
Tables V and VI. All the models with different activation functions show similar results, suggesting
that the SANN models are not very sensitive to the choice of the activation function.

Tables V–X show correlation coefficients, relative errors and root-mean-square values of M1

for different models in both training and testing sets after the training process of ANN with filter
width �/�x = 32. The small difference of the results of training and testing sets show that: the
ANN training process is not overfitting. Each component of the SGS force Mi is trained separately
without physical constraint.

Tables VII and VIII show the C, Er , D, of M1 for the SGS models SANN(Rs, Rg). The relative
errors of the VG1 and VG1m models are more than 60%. The correlation coefficient is close to
55%, and the relative error is close to 0.80 for the local ANN model with RsRg = 0, which means
that single point input features cannot accurately reconstruct the Mi. The correlation coefficients
increase and the relative errors decrease for the SANN(2,Rg) models with the increase of Rg as
shown in Table VII. Moreover, the performance of the SGS models SANN(Rs, Rg) with the same
Rg = 4 for different Rs are compared in Table VIII. When the stencil width increases, the SANN
models perform much better than the VG1 and VG1m models. The correlation coefficients can be
made larger than 0.99 and the relative errors less than 0.15.

TABLE VIII. Correlation coefficient (C), relative error (Er), and root-mean-square value (D) of M1 for
different models (VG1, VG1m, and SANN models) at the filter width � = 32�x with same Rg (Rg = 4).

C VG1 VG1m SANN(0,1) SANN(1,4) SANN(2,4) SANN(3,4) SANN(4,4)

Train 0.738 0.738 0.544 0.988 0.992 0.994 0.995
Test 0.738 0.738 0.517 0.977 0.985 0.988 0.989
Er VG1 VG1m SANN(0,1) SANN(1,4) SANN(2,4) SANN(3,4) SANN(4,4)

Train 0.713 0.674 0.839 0.155 0.124 0.109 0.109
Test 0.713 0.674 0.859 0.214 0.174 0.156 0.152
D DNS VG1 VG1m SANN(0,1) SANN(1,4) SANN(2,4) SANN(3,4) SANN(4,4)

Train 1.41 0.718 1.04 0.80 1.40 1.41 1.41 1.41
Test 1.41 0.718 1.04 0.78 1.39 1.40 1.40 1.40
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The results for C, Er , and D of M1 for the SGS models SANN-D26(Rs, Rg) with 26 directions
are shown in Tables IX and X. With the same Rs, Rg, the SANN-D26 models with 26 directions
show significant advantage over the SANN models with 6 directions. The relative errors of the
SGS models SANN-D26(Rs, Rg) can be made less than 12% with reasonable Rs and Rg, which are
much smaller than those of VG1 and VG1m models. The root-mean-square value of SGS force M1

predicted by VG1 reaches 70% of that of DNS, while the SANN-D26 models predict rms value
of SGS force M1 very close to that of DNS data in the a priori test. The spatial stencil of the
filtered velocity gradient with reasonable Rs, Rg can provide a good approximation of the SGS
forces. By considering more information near the filter width, the ANN model can build a better
relation between filtered flow variables and the unclosed SGS terms.

B. A posteriori tests

We evaluate the performance of the SGS model SANN(2,2) with Rs = 2 and Rg = 2 at grid
resolution of 643 (hLES = �/2, � = 32�x) [92–94]. The filter width � is usually proportional to
the grid size h�

LES: The filter grid ratio (FGR = �/h�
LES) is typically chosen to be equal to 1 or 2

[95,96]. The value FGR = 2 used in this work is a reasonable value to ensure that the differences
between LES results and filtered DNS results are mainly due to the SGS models [48–50,92–94].
Furthermore, the a posteriori tests of the SANN(4,2) model with more input features are shown
in Appendix A. In order to show that the SANN model can be applied to other conditions, the
a posteriori studies of the SANN models applied to homogenous shear turbulence are shown in
Appendix B.

In a posteriori tests, we implement the SGS model of SANN(2,2) with the weight W l
i j and bias

parameter bl
i in the ANN of neurons 225 : 1024 : 512 : 1. A physical constraint is added to the

output of the SANN(2,2) model by Mupdated
i = Mi − 〈Mi〉 since the average of Mi in the whole

domain equals zero in the conservation equations. This is reasonable since the ratio |〈Mi〉/Mrms
i | is

less than 5%, where 〈Mi〉 is the spatial average of Mi, and Mrms
i is the rms value of Mi.

Simulation of ILES based on a numerical viscosity without explicit modeling has been carried
out as comparison [32–36]. We introduce a dissipative numerical method with higher numerical
dissipation for larger wave numbers:

ū = ū − �t · CI
0

(
k
kc

)n

ū, kc = 4π

3�
, (23)

where n = 4 and CI
0 = 3. Further more, simulations using the DSM, DMM, and SANN(2,2) models

based on ILES are also carried out. The ratio of the computational cost of different SGS models
with the same grid resolution is found to be: No-model : DSM : DMM : SANN(2, 2) = 0.4 : 1 :
1.5 : 256. The SANN(2,2) model requires most computational cost because of matrix operations in
neural network. The ratio of the time steps in LES and DNS is �tLES/�tDNS = 8, where �tLES and
�tDNS are the time steps for LES and DNS, respectively. We mainly focus on the spatial closure
since the time discretization error of a practical LES is small and can be neglected.

Based on the equilibrium hypothesis, the DSM model reproduces the global exchange of energy
between the resolved and unresolved scales by mimicking the drain of energy associated with the
turbulence energy cascade. In the DSM model, the SGS stress can be written as follows [1,5,7,9,17]:

τi j − δi j

3
τkk = −2C2

s �2|S̄|
(

S̄i j − δi j

3
S̄kk

)
, (24)

where � is the characteristic SGS length scale, which is equal to the filter width. C2
s can be

calculated dynamically as follows:

C2
s = 〈Li jMi j〉

〈MklMkl〉 , (25)
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FIG. 4. Spectrum of velocity for LES at grid resolutions of 643 (hLES = �/2) with the filter width � =
32�x.

where Li j = ̂̄uiū j − ˆ̄ui ˆ̄u j, αi j = −2�2|S̄|(S̄i j − δi j

3 S̄kk ), βi j = −2�̂2| ˆ̄S|( ˆ̄Si j − δi j
ˆ̃Skk/3), and

Mi j = βi j − α̂i j . An overbar denotes the filter at grid scale �x, a hat represents a test filter coarser
than the grid filter, and a hat over the overbar denotes a filter at scale �̂ = 2�.

DMM model has been developed based on a combination of a scale-similarity part and an eddy-
viscosity part [23,25], which not only has the high correlation coefficient of scale similarity part, but
also guarantees sufficient dissipation with eddy-viscosity part. The coefficients in the DMM model
can be determined by a dynamic procedure based on the Germano identity [8],

Li j = Ti j − ̂̄ρτi j, (26)

where an overbar denotes the filter at the scale �, a hat represents a test filter coarser than the grid
filter, and a hat over the overbar denotes a filter at scale �̂ = 2�, Ti j = ûiu j − ˆ̄ui ˆ̄u j is the stress
at scale �̂, and Li j = ̂̄uiū j − ˆ̄ui ˆ̄u j is the resolved stress tensor. We can obtain a square error by
replacing τi j and Ti j with the model stresses τmod

i j and T mod
i j for Li j :

Emod = 〈(
Li j − Lmod

i j

)2〉
, (27)

where Lmod
i j = T mod

i j − τ̂mod
i j . By assuming that the coefficients are scale invariant and minimizing

the right-hand side of (27), we get a set of equations for the coefficients, including the SGS terms at
scale � and �̂ [27,28]

τmod
i j = C1h1,i j + C2h2,i j, (28)

T mod
i j = C1H1,i j + C2H2,i j, (29)

where h1,i j = −2�2|S̄i j |(S̄i j − 1
3δi j S̄kk ), h2,i j = ̂̄uiū j − ˆ̄ui ˆ̄u j , H1,i j = −2�̂2| ˆ̄Si j |( ˆ̄Si j − 1

3δi j
ˆ̄Skk ), and

H2,i j = (
−→
ˆ̄ui ˆ̄u j − �̄̂ui

�̄̂u j ), where an overrightarrow represents filtering at scale 4�. These give

C1 =
〈
N2

i j

〉〈Li jMi j〉 − 〈Mi jNi j〉〈Li jNi j〉〈
N2

i j

〉〈
M2

i j

〉 − 〈Mi jNi j〉2 , (30)

C2 =
〈
M2

i j

〉〈Li jNi j〉 − 〈Mi jNi j〉〈Li jMi j〉〈
N2

i j

〉〈
M2

i j

〉 − 〈Mi jNi j〉2 , (31)

where Li j = ̂̄uiū j − ˆ̄ui ˆ̄u j , Mi j = H1,i j − ĥ1,i j , and Ni j = H2,i j − ĥ2,i j .
The performances of the SGS model SANN(2,2) are evaluated by calculating the spectrum and

statistical properties of the velocity. The spectrum of the velocity field is displayed in Fig. 4 for
the DNS, filtered DNS (fDNS) data and LES computations with the ILES, DSM, DMM, and
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Δ Δ Δ

FIG. 5. Structure functions of the velocity for LES at grid resolutions of 643 (h�
LES = �/2) with the filter

width � = 32�x: (a) S2, (b) S4, (c) S6.

SANN(2,2) models. There is a long inertial region with a k−5/3 scaling of velocity spectrum for
DNS flow field. LES results deviate slightly from the results of fDNS. In particular, the errors of the
spectrum predicted by LES models increase as k increases since it is hard to model the dynamics
at scales near the largest resolved wave number. The spectrum of the velocity field predicted by
the “ILES” is obviously higher than that of the filtered DNS data at large wave numbers. The
spectra of velocity predicted by the DSM and DMM models show a bump, where the spectra at
low wave numbers with k � 10 are too energy-rich, while near the cut-off wave number the spectra
are damped too strongly. In contrast, the velocity spectrum predicted by the SGS model SANN(2,2)
nearly overlaps with that of the filtered DNS data.

We also evaluate the performance of the LES models by comparing many statistical properties
[14,15,97,98]. The longitudinal structure functions of velocity is defined by

SL
n (r) ≡

〈∣∣∣∣ δr ū

ūrms

∣∣∣∣n〉
, (32)

where δr ū = [ū(x + r) − ū(x)] · r̂, is the longitudinal increment of the velocity for the separation
r. Here r̂ = r/|r|. The rms velocity ūrms has been used to normalize the longitudinal structure
functions.

We compare the normalized structure functions of the velocity in Fig. 5. All models [“ILES,”
DSM, DMM, and SANN(2,2) models] accurately predict the structure functions at large separations.
At small separations, traditional LES models including ILES, DSM, and DMM do a poor job. In
contrast, the structure functions predicted by the SGS model SANN(2,2) are in good agreement
with the filtered DNS data at grid resolution of 643 (h�

LES = �/2), suggesting that the SANN model
can predict small scale fluctuations of turbulence accurately. This is consistent with the results of
the velocity spectrum at high wave numbers near the filter width.

The probability density functions (PDFs) of the normalized velocity increment are shown in
Fig. 6. We normalize the velocity increment by the rms value of velocity ūrms. All the PDFs are
nearly symmetrical and their tails become longer as r increases. The PDFs of all the models are in
reasonable agreement with fDNS at large separations. The PDFs predicted by ILES are much wider
than those of fDNS at small separations. The PDFs predicted by SANN(2,2) are much closer to
those of fDNS, compared to other LES models.

Figure 7 shows the comparison of the PDFs of the normalized vorticity ω̄/ω̄rms
fDNS (ω̄ = √

ω̄iω̄i)
for LES with different SGS models. The PDF of ω̄/ω̄rms

fDNS is skewed toward the positive side. The
PDF predicted by ILES is substantially higher than that of fDNS for large vorticity. Meanwhile, the
PDF tail predicted by the DMM is significantly shorter than that of fDNS. The DSM and SANN(2,2)
models are in reasonable agreement with fDNS for the tail of PDF. The SANN(2,2) model performs
better than other models on capturing the peak of the PDF.

The temporal evolution of the instantaneous coherent structures are examined by plotting the
instantaneous normalized vorticity contours of ω̄/ω̄rms

fDNS. LES with different SGS models are
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δ Δ δ Δ

δ Δ δ Δ

FIG. 6. PDFs of the normalized increments of the velocity for LES at grid resolutions of 643 (h�
LES =

�/2) with the filter width � = 32�x: (a) δr ū/ūrms(r = �), (b) δr ū/ūrms(r = 2�), (c) δr ū/ūrms(r = 4�),
(d) δr ū/ūrms(r = 8�).

simulated with the same initial condition by using an instantaneous flow field of the filtered DNS
data. We display the normalized vorticity contours of fDNS and LES with different SGS models
[DSM, DMM, SANN(2,2)] at the same instant t/τ = 6.17 in Fig. 8 where τ ≡ LI/urms is the large

ω ω ω ω

FIG. 7. PDFs of the normalized vorticity ω̄/ω̄rms
fDNS for LES at grid resolutions of 643(h�

LES = �/2) with the
filter width � = 32�x.
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FIG. 8. Contours of the normalized vorticity ω̄/ω̄rms
fDNS on an arbitrarily selected x-y slice, at t/τ = 6.17 for

LES at grid resolutions of 643 (h�
LES = �/2) with the filter width � = 32�x: (a) fDNS, (b) DSM, (c) DMM,

and (d) SANN(2,2).

eddy turnover time. Localized vortical structures at high vortex intensity are clearly seen in fDNS.
One can see that some vortical structures are missing in the predicted flow fields by the DSM and
DMM models. In contrast, the results of the SANN(2,2) model are very close to those of the fDNS.

Besides, the a posteriori tests of the SANN(4,2) model with more input features in Appendix A
show that the SANN(4,2) model produces best agreement with the velocity spectrum of the filtered
DNS data, similar to the results of the SANN(2,2) model. The a posteriori studies of the SANN
models applied to homogenous shear turbulence are shown in Appendix B. It is found that the
spectrum of the velocity recovered by the SANN(2,2) model is closest to the filtered DNS data of
the homogenous shear turbulence.

VI. DISCUSSION

Forced canonical isotropic turbulence is one of standard examples for developing new SGS
models of LES [14,15,99,100], where the Kolmogorov k−5/3 scaling of velocity spectrum in inertial
range of turbulence can be observed clearly. One of important assumptions for LES modeling is
that the statistical properties and flow structures of fully developed turbulence share some universal
features in the inertial range where the effect of large-scale anisotropy is weak [4]. This assumption
makes it easier to develop SGS models for the fully developed turbulent regions. We will try
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to model the effects of boundary conditions for LES of wall-bounded turbulence in the ANN
framework in a follow-up study. Another important characteristics of LES is that the SGS force
and SGS stress exhibit complex spatial structures that are very irregular and diverse in the inertial
range of turbulence. This fact is one of major reasons for that the relative errors of the traditional
SGS models are not small in the a priori tests. One advantage of the rich spatial structures of SGS
terms is that the possibility of data overfitting in the ANN framework is suppressed.

It is worth noting that the spatial features of filtered flow fields are important for developing
an accurate SGS model. The spatial locality of kinetic energy cascade was identified for both
incompressible turbulence and compressible turbulence [44–47], indicating that the flow structures
at the scales between �/2 and 2� dominate the kinetic energy flux at the scale �. The relative errors
of single-point SGS models are not small in the a priori tests, partly due to the fact that these models
cannot accurately capture the spatial characteristics of energy cascades. The filtered flow fields at
different spatial points should be incorporated to accurately reconstruct the SGS terms. Due to the
complex and irregular nature of turbulence, it is difficult to explicitly specify the dependence of SGS
flux of kinetic energy on the flow dynamics at different scales by using simple forms of analytical
functions. We have shown that the ANN method is a powerful tool which can efficiently learn
the high-dimensional and nonlinear relations between the SGS terms and the filtered flow fields at
different spatial scales. It has been demonstrated that the relative errors of proposed SANN models
are much smaller than traditional SGS models in the a priori tests.

We have observed that the SGS models which are highly accurate in the a priori tests can lead
to the instability in the a posteriori tests if the grid scale is equal to the filter width, while the same
SGS models can give convergent and accurate results in the a posteriori tests using the fine grids
with the same resolution as the DNS. In order to suppress the effect of numerical errors and achieve
highly accurate results in the posteriori tests, we use the grid scale which is smaller than the filter
width. Moreover, we add the numerical dissipation individually to keep the stability of LES, rather
than using the dissipative SGS models such as the Smagorinsky model. The numerical dissipation
is necessary to mimic the flux of kinetic energy to smaller scales which cannot be resolved at the
LES grids. It is expected that as the grid scale becomes smaller and the filter width is fixed, the
effects of numerical scheme and numerical dissipation decrease, and the flow fields of LES using
accurate SGS models can be convergent. We have shown that the statistical properties of the LES
using SANN models are very close to those of the filtered DNS data, while the statistics of LES
using traditional SGS models deviate substantially from the filtered DNS data at the scales close
to the filter width. If no SGS model is used in coarse-grid numerical simulations with artificial
dissipations (implicit LES), then the results cannot be easily convergent as the grid scale becomes
smaller: The velocity spectrum will become longer and finally convergent to that of the DNS field.
It is worth noting that the degree of freedom for the filtered DNS field is much smaller than that of
the DNS field. Thus, we can achieve convergent results of LES using the explicit SGS models more
easily, as compared to the implicit LES.

VII. CONCLUSIONS

In this work, we propose a framework of SANN for the SGS forces in large eddy simulation
of turbulence. The proposed SANN models depend on two parameters Rs and Rg. As Rs and Rg

increase, the accuracy of the SANN models increase. The correlation coefficients can be made
larger than 0.99 and the relative errors smaller than 15% for the SANN models with reasonable
Rs and Rg in the a priori test, which are more accurate than traditional gradient models. In an a
posteriori analysis, the performances of the SANN(2,2) model are compared with that of the ILES,
DSM, and DMM models in the prediction of the spectra and statistical properties of velocity field,
as well as the instantaneous flow structures. The velocity spectra predicted by the DSM and DMM
models are typical tilted: They are damped too strongly near the cut-off wave number and are too
energy rich at low wave numbers. In contrast, SANN(2,2) predicts the spectrum accurately, and it
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FIG. 9. Spectrum of velocity for LES at grid resolutions of 643(hLES = �/2) with the filter width � =
32�x.

also accurately reconstructs the PDFs of velocity increment and the vorticity. In addition, turbulence
structures predicted by the SGS model SANN(2,2) are also close to those of the fDNS data.

Several issues require further investigation. These include the physical mechanism for the
complex spatial correlation between the filtered flow fields and the SGS terms, the interpretability,
efficiency and universality of the neural network models, and the spatial-temporal characteristics of
the SGS dynamics.
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APPENDIX A: THE A POSTERIORI TEST OF THE SANN(4,2) MODEL

In order to analyze the effect of the input features on the SANN models, an a posteriori study of
the SANN(4,2) model applied to LES of turbulence with grid resolution 643 (� = 2hLES) has been
compared in this section. The SANN(4,2) model contains more input features than the SANN(2,2)
model. Figure 9 shows the spectrum of velocity for different SGS models. The SANN(4,2) model
performs better than other models.

APPENDIX B: THE A POSTERIORI TEST OF SHEAR FLOW

In order to provide more promising results that the ANN model can be applied to more complex
conditions, we apply the SANN(2,2) model to LES of weakly compressible homogeneous shear
turbulence (HST) at Taylor microscale Reynolds number Reλ ≈ 108 and Mt = 0.20 [101–103].

Based on the dimensionless governing equations for the compressible HST [101–103], the
filtered dimensionless Navier-Stokes equations for the resolved variables can be expressed as
follows [6,80,81,86]:

∂ρ̄

∂t
+ ∂ (ρ̄ũ j )

∂x j
+ Sx2

∂ρ̄

∂x1
= 0, (B1)
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TABLE XI. Numerical simulation parameters and statistical quantities for compressible homogeneous
shear turbulence [102].

Resol. Re M Reλ Mt η/�x

512 × 256 × 256 220 0.10 108 0.20 0.79

∂ (ρ̄ũi )

∂t
+ ∂ (ρ̄ũiũ j + p̄δi j )

∂x j
− 1

Re

∂σ̃i j

∂x j
− F̄i + Sx2

∂ (ρ̄ũi )

∂x1
+ Sρ̄ũ2δi1 = −∂ρ̄τi j

∂x j
+ 1

Re

∂ (σ̄i j − σ̃i j )

∂x j
,

(B2)

∂ Ẽ
∂t

+ ∂[(Ẽ + p̄)ũ j]

∂x j
− 1

Re

∂ (σ̃i j ũi )

∂x j
− 1

α

∂

∂x j

(
κ̃

T̃

x j

)
+ �̄ − ũ jF̄ j + Sx2

∂ Ẽ
∂x1

+ ρ̄Sũ1ũ2 = RE ,

(B3)

RE = −ũi
∂ (ρ̄τi j )

∂x j
− 1

(γ − 1)γ M2

∂ρ̄Qj

∂x j
− �dil

+ 1

Re
εν + ũi

Re

∂ (σ̄i j − σ̃i j )

∂x j
+ 1

α

∂

∂x j

(
κ

∂T

∂x j
− κ̃

∂T̃

∂x j

)
, (B4)

p̄ = ρ̄T̃ /(γ M2), (B5)

where the Favre filtering is applied [104]: f̃ = ρ f /ρ̄, where ρ denotes the fluid density, and
f represents the velocity component or temperature. The resolved total energy Ẽ is defined by
Ẽ = p̄

γ−1 + 1
2 ρ̄(ũ j ũ j ) [6,81], the filtered viscous stress is σ̃i j = 2μ̃S̃i j − 2

3 μ̃δi j S̃kk , where S̃i j =
1
2 (∂ ũi/∂x j + ∂ ũ j/∂xi ), and μ̃ and κ̃ are calculated from Sutherland’s law.

The SGS terms appearing on the right-hand sides of Eqs. (B1)–(B5) are defined as

τi j = ũiu j − ũiũ j, Qj = ũ jT − ũ j T̃ , �dil = pSkk − p̄S̃kk, εν = σ jiSi j − σ̃ jiS̃i j, (B6)

Mi = ∂ρ̄τi j

∂x j
, MT = ∂ρ̄Qj

∂x j
, (B7)

where τi j is the SGS stress, Qj is SGS heat flux, �dil is SGS pressure-dilatation, εν is SGS viscous
dissipation, Mi is the SGS force, and MT is the divergence of SGS heat flux. We model the SGS force
Mi and the divergence of SGS heat flux MT , and neglect other unclosed terms [22,74,81,86,106].

The compressible homogeneous shear turbulence is solved by a hybrid scheme [83], which
combines an eighth-order compact finite-difference scheme [105] for smooth regions and a seventh-
order weighted essentially nonoscillatory scheme [107] for shock regions. The hybrid scheme can
be combined with Rogallo’s method to simulate the compressible HST [101–103]. The governing
equations of compressible HST are solved with periodic boundary conditions in a rectangular
domain with side lengths Lx = 4π, Ly = Lz = 2π [102,103]. A uniform thermal cooling � is
employed to sustain the internal energy in a statistically steady state [83]. The simulation parameters
for the HST are summarized in Table XI.

In the a posteriori tests of the HST, the SANN(2,2) model trained in the incompressible
homogenous isotropic turbulence is used to reconstruct Mi(i = 1, 2, 3) with grid resolution of
128 × 64 × 64 (hLES = �/2, � = 8�x) [92–94], meanwhile, MT is modeled by the DSM model
[74,86,106]. Further more, simulations using the DSM and DMM models are also carried out. The
ratio of the time steps in LES and DNS is �tLES/�tDNS = 8. Figure 10 shows the spectrum of
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FIG. 10. Spectrum of velocity for LES at grid resolutions of 643 (hLES = �/2) with the filter width � =
32�x.

velocity for different SGS models. The spectrum of the velocity predicted by the SANN(2,2) model
is closest to the filtered DNS data of HST. Thus, the proposed SANN(2,2) model can recover the
spectrum more accurately than the other models for homogeneous shear turbulence.
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