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Scaling exponents saturate in three-dimensional isotropic turbulence
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From a database of direct numerical simulations of homogeneous and isotropic turbu-
lence, generated in periodic boxes of various sizes, we extract the spherically symmetric
part of moments of velocity increments and first verify the following (somewhat contested)
results: the 4/5ths law holds in an intermediate range of scales and that the second-order
exponent over the same range of scales is anomalous, departing from the self-similar value
of 2/3 and approaching a constant of 0.72 at high Reynolds numbers. We compare to
some typical theories the dependence of longitudinal exponents as well as their derivatives
with respect to the moment order n, and estimate the most probable value of the Hölder
exponent. We demonstrate that the transverse scaling exponents saturate for large n, and
trace this trend to the presence of large localized jumps in the signal. The saturation value of
about 2 at the highest Reynolds number suggests, when interpreted in the spirit of fractals,
the presence of vortex sheets rather than more complex singularities. In general, the scaling
concept in hydrodynamic turbulence appears to be more complex than even the multifractal
description.
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I. INTRODUCTION

Velocity increments across specified separation distances are important theoretical objects in
studies of three-dimensional turbulence [1]. Their properties have been explored in a large number
of papers in the past 80 or so years and the more important results are summarized in [2–6].
Analogues of velocity increments have also found interesting applications in other fields such as
fracture mechanics [7], optical waves [8], and foreign exchange rates in financial markets [9].
Velocity increments in turbulence, and their analogues in other fields such as those just mentioned,
exhibit intense fluctuations, possess fat-tailed distributions, and are typically not space-filling. The
consensus of the results is that the velocity increments depart from classical self-similarity that was
assumed to prevail at the time of the seminal work in [1,10–15]. However, there do exist occasional
claims that departures from self-similarity are artifacts of finite Reynolds numbers, and so will
vanish in the limit of very large Reynolds numbers under ideal circumstances [16–20]. Part of
the reason for these later claims is that the “consensus results” are often based on data at modest
Reynolds numbers, or complicated by remnant anisotropies, or adopt Taylor’s hypothesis (using
time traces as one-dimensional longitudinal cuts through three-dimensional fields), or employ the
so-called extended self-similarity (ESS) or its variants (i.e., plotting various moments of velocity
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increments against the third order), and so on. These factors introduce uncertainties which, though
believed to be benign, are not quantifiable precisely, and so lead to the occasional divergence of
conclusions. But the problem is of tremendous significance to the theory of turbulence [21] to be
left in this ambiguous and inconstant state.

We recently accumulated large databases of homogeneous and isotropic turbulence in large
periodic boxes (as large as 163843 grid points) with good resolution in both space and time [22–24],
which can be used to assess the status of fundamental issues such as self-similarity, intermittency,
and universality. There is an acceptable likelihood of reaching satisfactory conclusions because of
the following. The highest Taylor microscale Reynolds number of these data is 1300, which appears
to be high enough to expect decent scaling (for Eulerian quantities) without the need for ESS or
its variants. There is obviously no need for Taylor’s hypothesis because the data are spatial. We
successfully remove by spherical averaging the residual anisotropies inherited from forcing and
the cubic shape of the simulations box. And the amount of statistically stationary data available is
adequate for high-order moments of velocity increments to converge reliably. Indeed, the analysis
of the data shows that the departures from the estimates based on self-similarity assumptions on
velocity increments are real and do not vanish with increasing Reynolds number. They also show
that, even in isotropic turbulence, there is a persistent difference between the longitudinal and
transverse velocity increments, as was pointed out already in [25,26]. The particular new result,
which we believe is of far-reaching theoretical consequence, is that the scaling exponents of the
transverse increments saturate for high-order increment moments reminiscent of Burgers turbulence
and passive scalars [27–31]. We will briefly examine the reason why. The longitudinal moments
might also saturate, but, if that does happen, it would do so for moments of far higher order—the
ones that cannot be computed reliably.

Section II presents an account of numerical methods and flow parameters, as well as definitions
for later use. The account of numerical methods is necessarily brief because a more detailed
description can be found in [32,33]. Section III presents the bulk of the results and is followed
by discussions and our conclusion in Sec. IV.

II. NUMERICAL METHOD, FLOW PARAMETERS, AND DEFINITIONS

We solve the incompressible Navier-Stokes equations in three dimensions

∂u/∂t + u · ∇u = −∇p + ν∇2u + f , (1)

by using direct numerical simulations (DNS) on a triply periodic N3 box with edge-length L0,
where u(x, t ) is the solenoidal velocity field (∇ · u = 0), ν is the kinematic viscosity and p is
the kinematic pressure, and f the large-scale forcing in the range r f ∈ (0.2, 0.5)L0 (technically,
in the corresponding wave-number range) [23]. We use the standard pseudospectral scheme with
exponential convergence, and calculate the nonlinear terms in physical space. The time-stepping is
done with an explicit second-order Runge-Kutta integration to evolve the flow to a statistically
stationary state to which all the present results correspond. The results were averaged over a
stationary period of at least ten large-eddy timescales L/u′, where L ≈ 0.2L0 is the so-called integral
scale and u′ is the root-mean-square velocity fluctuation. Both L and u′ are independent of viscosity
or, equivalently, the Reynolds number. We present results in terms of the microscale Reynolds
number Rλ ≡ u′λ/ν, where the Taylor microscale λ is given by u′/

√
〈(∂u/∂x)2〉. The spatial

resolution �x/η, where the grid spacing �x = L0/N and the Kolmogorov scale η ≡ (ν3/ε̄)1/4,
given in terms of the mean energy dissipation rate ε̄, is listed in Table I, along with the other relevant
flow parameters. In Appendix A we verified that the results provided in this paper are consistent with
those from shorter simulations [24] that used finer spatial and temporal resolution.

We define a few parameters for later use in the paper. Consider the two-point velocity increment
at location x across a separation vector r with magnitude r ≡ |r| > 0, δu(x, r) = u(x + r) − u(x).
Define the longitudinal increment δu(x, r) = δu(x, r) · r̂, where r̂ = r/r is the unit vector along
r, and the transverse increment vector δv(x, r) = δu(x, r) − δu(x, r)r̂. The magnitude of the
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TABLE I. Simulation parameters: N3 is the number of grid points, Rλ is the microscale Reynolds number,
(L/η)3 is a measure of the number of degrees of freedom in the three-dimensional field, and �x/η is the ratio
of the grid spacing to the Kolmogorov scale.

N3 Rλ L/η �x/η

2563 140 108 2.1
5123 240 226 2.1
20483 400 446 1.1
40963 650 898 1.1
81923 650 909 0.6
81923 1300 2514 1.5
163843 1300 2522 0.8

transverse increment is denoted as δv(x, r) ≡ |δv(x, r)|. The velocity increment moment, also
known as the structure function, S(n,m)(r) at order n + m, is defined as

S(n,m)(r) ≡ 〈(δu)n(δv)m〉 , (2)

where 〈·〉 denotes space, time, and angle (or spherical) averages [34,35]. The angle averaging is
performed to obtain the isotropic sector of S(n,m)(r) from its SO(3) expansion [36,37], as described
briefly in Appendix B. This step is necessary to eliminate any residual anisotropy effects that may be
present due to the specific method of forcing at low wave numbers and the geometry of the box. At
sufficiently large Rλ, if there exists an inertial range of scales that are smaller than the integral scale L
(where energy injection occurs) and larger than the viscous scales ∼η (where dissipation manifests),
the structure functions in that range are expected to scale as S(n,m)(r) ∼ (r/L)ζ(n,m) , where ζ(n,m) are
the scaling exponents. For later use we note that the self-similar scaling attributed to Kolmogorov
[1] gives ζ k41

n+m = (n + m)/3.

Third-order structure function

We shall first consider the structure function of order 3, for which an exact result was derived
from Eq. (1) in the inertial range (if one exists). This so-called Kolmogorov’s 4/5ths law [12] is
given by

S(3,0)(r) = − 4
5 ε̄r. (3)

Figure 1 shows that, at Rλ = 1300, Eq. (3) is satisfied within error bars in the range r/L ∈
(0.05, 0.4), to the either side of which dissipative and large scale effects manifest to produce
deviations from Eq. (3). The logarithmic local slope of S(3,0) given in the inset of Fig. 3 shows
excellent agreement with the power-law exponent of unity in Eq. (3). The angle-averaged result
shown in Fig. 1 corresponds to the isotropic sector of the SO(3) decomposition of S(3,0)(r) and
extends the inertial range by a factor of 2 over the Cartesian-averaged result for the same data (Fig.
2 of [38]). This dispels the explicit claim of the authors of [20] that the evidence for the 4/5ths law
does not exist.

III. RESULTS

A. Second-order structure function and the intermittency exponent

Before examining the structure functions of order 2, it is instructive to test the incompressible
relation in isotropic turbulence at scale r,

S(0,2)(r) = 2S(2,0)(r) + r
d

dr
S(2,0)(r). (4)
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FIG. 1. Compensated third-order isotropic longitudinal structure function versus scale r on log-linear
scales. The maximum value of [−S(3,0)(r)/( 4

5 )ε̄r] = 0.99 ± 0.01. Inset shows the logarithmic local slope
ζ(3,0)(r) = d[log|S(3,0)(r)|]/d[log r]. Dashed line at unity, in both the main figure and the inset, is the exact
result of Kolmogorov [see Eq. (3)].

Figure 2 displays g(r), the ratio of the right-hand side to the left-hand side of Eq. (4), calculated
along the three Cartesian directions and using the isotropic sector (filled circle) of the second-order
structure function. The remnant anisotropy from the cubic grid geometry and large-scale forcing
render velocity increments along different directions anisotropic to different degrees, resulting in
g(r) different from unity even at moderately small scales. But the angle averaging, which retains
only the isotropic sector, guarantees that g(r) = 1 at almost all scales, as the figure clearly shows. If

FIG. 2. Ratio of the right-hand side to the left-hand side of Eq. (4), g(r) versus scale r at Rλ = 1300,
computed on a 81923 periodic box. Open symbols correspond to scale separation along the Cartesian directions
r̂ = (1, 0, 0) (triangle), r̂ = (0, 1, 0) (diamond), and r̂ = (0, 0, 1) (square); filled circle is the isotropic sector
from the SO(3) decomposition of the structure functions. If isotropy holds at scale r, we expect g(r) = 1, which
is marked by the dashed line at unity; the data follow this expectation approximately for r/L > 5 × 10−3,
corresponding roughly to r/η > 10. Inset shows that the logarithmic local slopes of S(2,0) and S(0,2) for the
isotropic sector are equal to each other in the range r/L ∈ (0.02, 0.2). The numerical value of 0.72 marked by
the dot-dashed line is discussed in the text and the next figure.
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FIG. 3. (a) Scaling of the second-order structure function normalized by 2u′2 such that S(2,0)(L)/2u′2 ≈ 1,
where u′ is the root-mean-square velocity fluctuation. For clarity, the curves for Rλ = 650 and 240 are shifted
below by a factor of 10 and 100, respectively. Least-square fits in the inertial range are shown. Dashed lines with
slope 2 are shown at smallest scales to verify viscous scaling. (b) Relative deviation of the second-order inertial
range exponent from the Kolmogorov value of 2/3 versus the logarithm of the microscale Reynolds number
Rλ. Dashed line at zero corresponds to Kolmogorov scaling of 2/3. Vertical bars indicate the standard error
due to temporal variations in the least-square fits. The exponents approach a constant ζ2,0 = 0.72 ± 0.004
corresponding to a constant, Rλ-independent correction at higher Rλ.

the longitudinal and transverse second-order structure functions display power-law behaviors in the
inertial range, Eq. (4) implies that the exponents ζ(2,0) and ζ(0,2) must be equal. The inset of Fig. 2
verifies this expectation.

Since the second-order exponents ζ2,0 = ζ0,2, as shown in the inset of Fig. 2, it suffices to
examine more closely the longitudinal structure function (say), as is done in Fig. 3. The second-order
structure function displays proper power laws in the expected scale range (see inset of Fig. 2). The
deviation of the exponent from the self-similar Kolmogorov exponent, obtained by least-squares, is
plotted in Fig. 3(b) as a function of ln(Rλ). The correction increases for lower Rλ but saturates at
higher Rλ at a constant value of about 0.72, about 8% higher than 2/3.

B. Isotropy and fourth-order quantities

Exact dynamical equations derived for isotropic structure functions of even orders [39,40]
contain mixed-order structure functions and structure functions of pressure and velocity increments.
The equation for the longitudinal structure functions of order 2n is given by

∂S(2n,0)

∂r
+ 2

r
S(2n,0)

= (2n − 1)

r
S(2n−2,2) − (2n − 1)〈PL(δu)2n−2〉 + ε̄[1 − cos(r/r f )]anS(2n−3,0), (5)

where an = 2(2n − 1)(2n − 2)/3 and PL ≡ [∇p(x + r) − ∇p(x)]. r̂ is the longitudinal pressure
gradient structure function. Similar equations relating the transverse and mixed structure functions
are also known [39–41]. The pressure contributions were initially thought to be small in the inertial
range [39,41], which led to the result that the scaling exponents for a given order were equal, i.e.,
ζ(2n,0) = ζ(2n−2,2) = ζ(0,2n) for 2n � 4.
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FIG. 4. (a) Examination of isotropy of moment order four. Ratio of the right-hand side to the left-hand side
of Eq. (6), f (r) versus r for Rλ = 1300. Open symbols correspond to scale separation along Cartesian directions
r̂ = (1, 0, 0) (triangle), r̂ = (0, 1, 0) (diamond), and r̂ = (0, 0, 1) (square); filled circles are for the isotropic
sector from the SO(3) decomposition of structure functions. If isotropy holds at scale r/η 
 1, we should
have f (r) = 1 (marked by the dashed line), as the filled circles show to be true with no ambiguity beyond
r/η = 10, marked on the abscissa for reference. (b) Ratio of the logarithmic derivatives of the fourth-order
structure functions relative to the second-order structure functions versus r for the same data. The self-similar,
intermittency-free value for this ratio is 2. Thus, even when isotropy is guaranteed, departures from the self-
similar Kolmogorov-scaling prevail.

To examine isotropy persuasively we substitute 2n = 4 in Eq. (5) to yield the following exact
isotropic relation valid for r/η 
 1:

∂S(4,0)

∂r
+ 2

r
S(4,0) = 3

r
S(2,2) − 3〈PL(δu)2〉. (6)

Here the large-scale contributions drop out because S(1,0) = 0. Figure 4(a) shows the ratio f (r) of
the right-hand side to the left-hand side of Eq. (6), calculated along the three Cartesian directions
and for the isotropic sector (filled circle) of the fourth-order structure functions. The isotropic sector
does indeed satisfy Eq. (6) beyond r/η = 10 exceedingly well. This result ensures isotropy at order
four for S4,0 and S2,2 for all r/η > 10.

We now examine the scaling exponents ζ(n,m)(r) = d[log S(n,m)(r)]/d[log r] for order four and
assess the contributions of pressure. Figure 4(b) compares the ratios ζ(4,0)/ζ(2,0) and ζ(2,2)/ζ(2,0),
which are essentially constant in the inertial range (approximately in the region 0.1 < r/L < 1),
suggesting that S(4,0) and S(2,2) display power laws over this region. Also shown for comparison is
the ratio ζ(0,4)/ζ(0,2), noting that ζ(2,0) = ζ(0,2) due to incompressibility [see Fig. 2(b)]. The exponents
ζ(4,0) and ζ(2,2) show nontrivial differences in this range which indicate that the pressure contribution
to Eq. (6) is not negligible—at least for this Reynolds number.

C. Further comments on pressure contributions

To ascertain the role of pressure in Eq. (5) we plot in Fig. 5 the ratio of the pressure term to
that of the longitudinal structure function for orders 2n = 4, 6, and 8 at Rλ = 1300; here Q2n =
−(2n − 1)r〈PL(δu)2n−2〉/S(2n,0). With increasing order, the ratio Q2n increases in the intermediate
scale range, with the gap between successive orders decreasing, perhaps suggesting that they level
off to some nonzero value for some high orders not accessible to measurement today. A similar
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FIG. 5. The nondimensional quantity Q2n, which is the ratio of the pressure contribution in Eq. (5) to the
longitudinal structure function, plotted against r/L for orders 2n = 4 (circle), 6 (triangle), and 8 (diamond) at
Rλ = 1300. The inset shows Q4 versus r/η at three different Reynolds numbers: Rλ = 400 (cross), Rλ = 650
(plus), and 1300 (circle). The pressure contributions that cause the differences between S4,0 and S2,2 seem to
decrease with increasing Rλ as indicated by the arrow in the inset, but this appears to happen, if at all, very
slowly (consistent with [42]).

examination of ratios r〈PL(δu)2n−2〉/S(2n−2,2) shows the same qualitative behavior. The conclusion
is that the pressure effects between longitudinal and mixed structure functions increase upscale (see
the green diamonds in Fig. 5) and with increasing order (though perhaps less rapidly), leading to
the persistent differences observed in Fig. 4(b) between ζ(4,0) and ζ(2,2). The inset compares the
nondimensional ratio Q4 at three different Reynolds numbers against scale r normalized by η, for
purposes of examining the Reynolds number dependence of pressure contributions. The ratio Q4

decreases slowly with increasing Reynolds number causing the exponents to come closer [38,43].
It follows that, for a given finite Reynolds number, the pressure contributions differentiate between
the exponents ζ(2n,0) and ζ(2n−2,2). On the other hand, it is well known that the pressure effect on the
transverse structure functions is markedly smaller [41,44] and, in fact, decreases upscale, causing
the mixed and the transverse exponents ζ(2,2) and ζ(0,4) to approach each other at smaller scales, as
seen in Fig. 4(b).

D. Saturation of higher-order exponents

We summarize in Fig. 6 the exponents for integral orders. Focusing first on the longitudinal
exponents ζ(n,0), the data extend to n = 12 for Rλ = 650 but had to be truncated at n = 10 for
Rλ = 1300 for reasons of statistical convergence; a brief assessment of the convergence of moments
is presented in the next section. The longitudinal data for the two Reynolds numbers shown agree
with each other for n < 8, beyond which they begin to differ modestly; we are not certain that
the differences represent genuine Reynolds-number effects and will not focus on those modest
differences here. The longitudinal exponents appear to closely follow the model by Yakhot [39,47]
(almost up to order 10) while they increasingly deviate from the She-Leveque model [45] and the
p-model [46] at higher orders. (The data differ also from an interesting model by [48] but we do
not show this comparison here because the model does not preserve the concavity property of the
exponents.)

Also shown in the figure are the even-order exponents for transverse structure functions. These
exponents agree with the longitudinal data for moment orders approximately up to n = 4. Beyond
that, for higher orders, focusing first on Rλ = 650, the transverse exponents show a tendency to
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FIG. 6. Scaling exponents of longitudinal structure functions ζ(n,0) and even-order transverse structure
functions ζ(0,2n) as functions of moment order at Rλ = 1300 (open symbols) and Rλ = 650 (filled symbols).
Dash-dot curve is the model prediction by Yakhot [39], solid curve is the She-Leveque model [45], while the
dashed line is the p-model by Meneveau and Sreenivasan [46]. Dotted line is the intermittency free, self-similar
result of Kolmogorov [1]. Error bars indicate 95% confidence intervals. The transverse exponents saturate at
ζ T
∞ ≈ 2.2 at Rλ = 650, while they seem to saturate at about 2 at Rλ = 1300.

saturate to a value ζ T
∞ of about 2.2. For the higher Rλ, the tendency to saturate begins at lower

moment order (perhaps 6), and the saturation value appears to be about 2 giving ζ T
∞ ≈ 2.

The saturation of transverse exponents suggests that there must be some huge excursions in
transverse increments, unlike in the longitudinal counterparts, that imprint their characteristics on
high-order structure functions. This is clearly seen in the traces provided in Fig. 7. In turbulence,
the nonlinear effects that steepen gradients are balanced by the effect of pressure that mitigates it.
What we have seen is that the pressure effect on transverse velocity increments is weak, giving
rise to steeper structures in those signals. Thus, transverse exponents saturate and exhibit a greater
degree of intermittency than longitudinal increments [44,49]. Since the pressure effect seems to
fade very slowly at a fixed order with increasing Rλ (see inset in Fig. 5), it is possible that the
longitudinal exponents may also saturate in the limit Rλ → ∞. Indeed, Yakhot’s model predicts
that even longitudinal exponents eventually saturate at 7.66 as n → ∞, but its verification is beyond
the capabilities of the present data (or the foreseeable ones since a simple extrapolation suggests
that it would require Reynolds numbers beyond those occurring on Earth). Indeed the estimation
of scaling exponents at large orders, requiring immense amounts of data, may be affected by the
spurious effects of the sort discussed in [50]. What appears certain from the Rλ-trend in Fig. 6 is
that the higher-order transverse exponents saturate.

E. Statistical convergence of moments and tails of probability density functions

The statistical convergence of the higher-order moments of the longitudinal and transverse
increments is confirmed by the rapid decay towards both tails of the moment integrands as shown in
Fig. 8. The integrands of moment orders 10 for Rλ = 1300 and Rλ = 650 are shown in Fig. 8, each
at the lower end of the inertial range. The integrands peak well before the tail contributions decay,
ensuring statistical convergence of the moments.

Saturation of transverse exponents at higher orders implies that present in the transverse velocity
increments are jumps δv � u′, which implies that the tails of the probability density function
P(δv) ∝ rζ T

∞ . Figure 9 verifies that this is indeed the case with P[δv(r̂)]r−ζ T
∞ collapsing for δv > 3u′,
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FIG. 7. Velocity fluctuation components u(x, y0, z0) ≡ u · r̂1, r̂1 = (1, 0, 0) and v(x, y0, z0) ≡ u · r̂2, r̂2 =
(0, 1, 0) are shown in panels (a) and (b) as functions of the spatial coordinate x for fixed (y0, z0) in a cube with
side L0 computed at a resolution 81923, Rλ = 1300. Panels (c), (d) show the longitudinal and transverse velocity
difference traces corresponding to panels (a), (b) respectively with r = rr̂1, for r/L0 = 0.004 (r/η = 47) as
functions of the spatial co-ordinate x. Traces in all panels are normalized by their respective standard deviations.
Occasional spikes in transverse increments (see near x/L0 ≈ 0.39) do not appear in the longitudinal increments.
Also compare the traces themselves in (a) and (b) for the same spatial position.

across the inertial separations. In contrast, the compensated probability density functions of the
longitudinal increments do not collapse in this fashion even for Rλ = 1300.

(a)

(b)

FIG. 8. Tenth-order integrand of normalized longitudinal velocity increment (circle) X ≡ δu/〈δu2〉1/2 and
normalized transverse increment (square) X ≡ δv(r̂)/〈δv(r̂)2〉1/2 [v · r̂ = 0 with r̂ = (1, 0, 0), (0, 1, 0), and
(0,0,1)] at r/η ≈ 100 (approximately the ultraviolet end of the inertial range). (a) The calculations for Rλ =
1300 are on a 81923 grid and (b) those for Rλ = 650 on a 40963 grid. The integrands are normalized by
respective moments such that the areas under each curve sum up to unity.
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(a)

(b)

FIG. 9. Probability density function P of the transverse velocity increment δv(r̂) [v · r̂ = 0 with r̂ =
(1, 0, 0), (0, 1, 0), and (0,0,1)], in the inertial range, normalized by the root-mean-square velocity fluctuation,
compensated by r−ζT∞ , where ζ T

∞ is the transverse saturation exponent from Fig. 6. (a) Rλ = 1300: ζ T
∞ = 2.05,

(b) Rλ = 650: ζ T
∞ = 2.2. The compensated tails of P collapse supporting the saturation of transverse exponents.

F. Exponent derivatives

We now consider the derivatives of absolute values of structure functions of various orders.
Define for longitudinal quantities the local slope of order-n as

ξ(n,0)(r) ≡ d

d log r
[log〈|δu|n〉] , (7)

whose constancy in the inertial range yields the longitudinal scaling exponent at order n. Clearly,
ξ(2n,0) = ζ(2n,0), but the two may differ for odd orders. Differentiating Eq. (7) with respect to n we
get the exponent derivative

dξ(n,0)(r)

dn
= d

d log r

[ 〈|δu|n log |δu|〉
〈|δun|〉

]
. (8)

In particular, the exponent-derivative for n = 0 is

dξ(n,0)(r)

dn

∣∣∣
n=0

= d

d log r
[〈log |δu|〉] . (9)

Figure 10 plots the zeroth-order derivative as a function of scale at three different Reynolds
numbers. In the viscous limit r/η → 1 all curves approach unity, which one expects from Taylor
series expansion. In the inertial range the curves approach a scale-independent plateau, which is
the order derivative corresponding to n = 0. Intermittency exists even at order zero (as was noted
already in [51]) and is seen to saturate at 0.39 ± 0.001 for Rλ � 600. In the multifractal model [52]
this number corresponds to the most probable Hölder exponent, h∗(n = 0) at which the fractal set
D(h) attains its maximum D[h∗(0)] = 3.

The exponent derivatives for n � 0 for both the absolute longitudinal and even-order transverse
increments at Rλ = 650 [Eq. (8)] are summarized in Fig. 11. The derivatives decrease monotonically
with the order since the exponents are concave in n due to the Hölder inequality, with the
longitudinal and transverse derivatives differing from order 4 or so onward, with the latter dropping
more steeply than the former. In the multifractal terminology, this means that the dominant Hölder
exponent hmin(n) of the transverse increment is smaller than that of the longitudinal increment from
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FIG. 10. Exponent derivative of the absolute longitudinal structure function exponent ξ(n,0) at n = 0 versus
scale r at three different Reynolds numbers. The r → 0 asymptote is 1 as expected. The inertial range plateau
marked by the solid line yields dξ(n,0)/dn|n=0 ≈ 0.39 from a least-squares fit for Rλ = 1300. Horizontal dotted
line at 1/3 is the corresponding Kolmogorov value. Arrow shows the degree of anomaly at order 0 which is
close to 18%.

order 4 onwards, rendering the transverse increments to be more intermittent than the longitudinal
counterparts. The transverse-order derivative reaches zero at order 12 (consistent with the earlier
finding about the saturation) whereas that of the longitudinal exponent continue to possess a positive
slope, which decreases with increasing order, roughly reaching the asymptotic hmin(n → ∞) of the
She-Leveque model [45]. These conclusions are entirely consistent with Figs. 4(b) and 6. Since
negative scaling exponents for incompressible flows are ruled out in the multifractal model [2], we

FIG. 11. Order derivative of the absolute longitudinal ξ(n,0) and even-order transverse ξ(0,2n) structure
function exponents versus moment order at Rλ = 650. Dotted line at 1/3 is the intermittency-free result
of Kolmogorov [1]. The dash-dot curve is that of Yakhot [39] while the solid curve corresponds to the
She-Leveque model [45]. The horizontal solid line at 1/9 marks the asymptotic order derivative of the
She-Leveque model, while the dashed line at zero corresponds to the saturation of exponents, which is also
the asymptotic order-derivative for the Yakhot model.
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note that the most dominant Hölder exponent hT
min(n → ∞) = 0 corresponding to the saturation

of transverse exponents, suggesting the physical presence of shock-like structures in the transverse
increment field, as seen in Fig. 7(d).

IV. DISCUSSION AND CONCLUSION

At the time of the seminal works of Kolmogorov [10–15,53], it was thought that fluid turbulence
comprises scales that progressively degenerate in structural integrity, essentially becoming more
isotropic as the energy cascade proceeds. On the basis of this scale invariance the second-order
velocity structure function was deduced to scale as r2/3—or, equivalently, the energy spectrum as
k−5/3, where k is the wave number. Its proper experimental verification [54] had to wait many
years, which also sowed the seeds for the incompleteness of the self-similar theory. Subsequently,
a number of works starting from [55] revised this earlier picture and it is now well known that
turbulent structures of moderate scale tend be less space filling and intermittent, far from being
spherical, causing departures from self-similarity [47,56–61]. However, a few workers in the recent
past [19,20] wondered if the deviations from self-similarity should be attributed to insufficiently
high Reynolds numbers, and noted that many measurements and simulations do not satisfy the
4/5ths law convincingly enough.

Using a DNS database that spans over a decade in Rλ with the highest Rλ = 1300, and by
establishing statistical isotropy by decomposing the structure functions in the SO(3) basis, we
showed that the 4/5ths law holds to within statistical errors (Fig. 1). We used SO(3) to remove
the lingering effects of anisotropies due to forcing at large scales and the cubic configuration
of the computational domain. We explicitly demonstrated that the second-order exponents depart
from the Kolmogorov value of 2/3 and approach a constant value of 0.72 ± 0.004 at higher
Reynolds numbers. This result soundly demonstrates (the small effect of) intermittency even at
the level of the energy spectrum. The fact that the second-order inertial range exponent possesses a
constant positive value which initially increases with the Reynolds number has important theoretical
implications [62].

We obtained further results. We confirmed under convincing conditions that intermittency
increases with increasing order for longitudinal, transverse, and mixed structure functions, but
showed, quite importantly, that the transverse exponents differ from longitudinal ones for orders
greater than about 4. This result was already obtained [25,26], but was called into question
from symmetry arguments [63] by stating that longitudinal and transverse structure functions mix
different scaling functions and may obscure pure scaling. Be that as it may, the present results show
that they are different when they scale. This result suggests the very notion of scaling in turbulence
is more complex than traditionally thought.

Lastly, perhaps the most important among the new results, is the finding that the transverse
exponents saturate for large moment orders. If there is a mixing of scaling functions, the transverse
exponents will control the scaling for very small scales (effectively, very large Reynolds numbers),
so the result is fundamentally important. For the highest Reynolds number we considered here,
ζ T
∞ ≈ 2. In the fractal terminology, dimension 2 indicates the presence of surfaces. It is also the

codimension of cliffs with unity fractal dimension in the transverse velocity field. The saturation
of the exponents suggests that they are controlled by the large jumps that occur in the transverse
velocity gradients (Fig. 7). Transverse increments over inertial distances can be obtained by
suitably integrating transverse gradients that characterize vorticity. Thus, a consistent and plausible
physical picture is the likely prevalence of two-dimensional vortex sheets across which jumps in
the transverse velocity field, of the sort seen in Fig. 7(d), might arise. Unfortunately, the direct
identification of sheet-like structures in high Reynolds number flows, whose existence is suggested
by the saturation of exponents reported here, is a challenging task. This is an ongoing project and
will be reported in the future.

The saturation of transverse exponents is the first such confirmation in the general case of
homogeneous isotropic turbulence. This raises the possibility that saturation of velocity exponents
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is an endemic feature of turbulence at high Reynolds numbers. If this is so, phenomenological
small-scale models will have to account for their explicit presence.
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APPENDIX A: NUMERICAL RESOLUTION

To examine the effects of finite spatial and temporal resolution of the DNS we compared the
velocity structure functions from simulations at two different resolutions up to order 12 at Rλ =
650. The finer DNS has a spatial resolution �x of almost half the Kolmogorov length scale η and
a timestep �t which is 6% of the Kolmogorov timescale τη ≡ (ν/ε̄)1/2 [24]. In comparison, the
coarser DNS has a grid spacing of almost η and a timestep which is 40% of τη. Figure 12 compares
the longitudinal and transverse structure functions from two simulations at order 12 at Rλ = 650.
In the range r/η → 0, the exponents obtained from a Taylor-series expansion show that only the
structure functions from the finer DNS are reliable. Notwithstanding the small-r result, in the inertial
range, the structure functions from both simulations show excellent agreement, as seen in Fig. 12,
with the same inertial range exponents obtained from least-square fits.

FIG. 12. Twelfth-order isotropic velocity structure functions versus r/η at Rλ = 650 in the (a) longitudinal
and (b) transverse directions normalized by the velocity fluctuation u′. The two curves in each panel correspond
to curves from two DNS at different spatial and temporal resolutions, (circle) �x/η = 1.11, �t/τη = 0.41,
(square) �x/η = 0.55, �t/τη = 0.06. In the inertial range (100 < r/η < 1000) the structure functions at this
order (and below) from both DNS collapse onto each other with the same exponent that is marked by the
solid lines (a) ζ(12,0) = 2.7 ± 0.04, (b) ζ(0,12) = ζ T

∞ = 2.2 ± 0.1; however, only the finer DNS yields the exact
r/η → 0 exponent shown by the dashed lines.
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APPENDIX B: HOW TO ELIMINATE RESIDUAL ANISOTROPY
THAT MAY BE PRESENT IN THE DATA

The scalar structure function S(n,m)(r) at order n + m can be expanded using the orthonormal
spherical harmonics Yp,q(r̂) as

S(n,m)(r) =
∞∑

p=0

p∑
q=−p

Sp,q
(n,m)(r)Yp,q(r̂) , (B1)

where the index p labels the different anisotropic sectors, while the index q distinguishes different
degrees of freedom within a given sector. In particular, by projecting S(n,m)(r) onto the isotropic
harmonic Y0,0(r̂) = 1/

√
4π , the isotropic component S(n,m)(r) is calculated

S(n,m)(r) = 1

4π

∫
S(n,m)(r)d , (B2)

where d is the elemental solid angle with
∫

d = 4π . The numerical quadrature used to calculate
S(n,m)(r) from Eq. (B2) is described in [35].
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