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Herein we numerically examine the relative dispersion of Lagrangian particle pairs
in two-dimensional inverse energy-cascade turbulence. Behind the Richardson-Obukhov
t3 law of relative separation, we discover that the second-order moment of the relative
velocity have a temporal scaling exponent different from the prediction based on the
Kolmogorov’s phenomenology. The results also indicate that time evolution of the proba-
bility distribution function of the relative velocity is self-similar. The findings are obtained
by enforcing the Richardson-Obukhov law either by considering a special initial separation
or by conditional sampling. In particular, we demonstrate that the conditional sampling
removes the initial-separation dependence of the statistics of the separation and relative
velocity. Furthermore, we demonstrate that the conditional statistics are robust with respect
to the change in the parameters involved, and that the number of the removed pairs from
the sampling decreases when the Reynolds number increases. We also discuss the insights
gained as a result of conditional sampling.

DOI: 10.1103/PhysRevFluids.5.054601

I. INTRODUCTION

Relative dispersion has been widely investigated following a pioneering study by Richardson
[1], who observed the superdiffusive manner of separation between two particles in the atmosphere.
The study introduced the diffusion-type differential equation for the probability distribution function
(PDF) of separation, r. A significant part of this equation is that it includes the diffusion coefficient
dependent on r itself. Furthermore, Richardson predicted the celebrated t3 law of the second-order
moment of the relative separation from the PDF, 〈r2(t )〉 ∝ t3, and this is referred to as the
Richardson-Obukhov law. The scaling argument leading to this law [which was developed first for
the three-dimensional (3D) turbulence] can be applicable to two-dimensional (2D) turbulence, as re-
viewed in Ref. [2]. In this study, we restrict our attention to the relative dispersion in 2D turbulence.

The t3 prediction was performed prior to Kolmogorov’s phenomenology for 3D turbulence
proposed in 1941 (K41) [3], and later demonstrated as consistent with the K41 dimensional
analysis [4,5]. With respect to the 2D turbulence, specifically, in the inverse energy-cascade state,
the Richardson-Obukhov law was similarly derived from a 2D analog of the K41, which was
developed by Kraichnan, Leith, and Batchelor [6–8]; hereinafter, the analog is referred to as K41 for
convenience. Specifically, based on the phenomenologies, the second-order moment of the relative
separation in the inertial range can assume the following form:

〈r2(t )〉 �
{〈

r2
0

〉 + S2(r0)t2 (t � tB),

gεt3 (tB � t � TL ),
(1)
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where r0 ≡ |r0| denotes the initial separation of the pairs, ε denotes the energy dissipation rate
or the energy flux in the inertial range, S2(r) = C2ε

2/3r2/3 denotes the second-order longitudinal
velocity structure function, C2 is a constant, tB = r2/3

0 ε−1/3 denotes the Batchelor time, TL denotes
the integral timescale, and g denotes the Richardson constant. Up to the Batchelor time tB, each
particle moves with the initial velocity. Subsequently, the relative separation becomes independent
of r0 and behaves according to the t3 law, exhibiting superdiffusivity (Richardson-Obukhov regime).

With respect to 2D inverse energy-cascade turbulence, the t3 law is observed in laboratory
experiments [9,10] for appropriately selected initial separations. Recently Rivera and Ecke [11,12]
performed experiments by varying initial separations and observed that the power-law exponent
of 〈r2(t )〉 in the inertial range depends on the initial separation r0. They also observed t3-scaling
behavior similar to the Richardson-Obukhov scaling law only for a certain range of initial
separations. The initial separation dependence and existence of special initial separations leading
to the t3 law were observed in 2D direct numerical simulation (DNS) [13] as well. With respect to
the 3D direct energy-cascade turbulence, the situation is similar: the slope of 〈r2(t )〉 as a function
of t varies due to the length of initial separations in laboratory experiments [14]. Recently DNSs in
three dimensions also indicated that the t3 law appears for only a certain selected initial separation
[15–17].

Based on 2D and 3D results, the conclusion at currently achievable Reynolds numbers is that the
time evolution of 〈r2(t )〉 strongly depends on the initial separation. Thus, the Richardson-Obukhov
t3 law emerges only for a selected initial separation, and this is termed the proper initial separation in
the current study (as detailed in Sec. III A). The problem to be solved is the dependence of the t3 law
on the initial separation, specifically, whether the t3 law observed for the special initial separation
is relevant with the K41 or just coincidental. It is known that the initial separation dependence is
alleviated by considering 〈|r − r0|2〉 instead of 〈r2〉. By analyzing 〈|r − r0|2〉 at sufficiently high
Reynolds numbers, Bitane et al. [17,18] introduced the modified scaling law including a subleading
term, 〈|r(t ) − r0|2〉 = gεt3(1 + Ct0/t ) for t � t0, where t0 denotes a timescale of convergence to
Richardson-Obukhov regime, t0 = S2(r0)/2ε, and C denotes a parameter based on r0. It is noted that
C = 0 for r0 = 4η, where η denotes the Kolmogorov length scale. The r0 = 4η is termed “optimal
choice” in their study and can correspond to the proper initial separation. Furthermore, Buaria et al.
[19] suggested an asymptotic state, and this is independent of the initial separations. The same
authors [20] investigated turbulent relative dispersion utilizing diffusing/Brownian particles, i.e.,
particles of various Schmidt numbers (Sc) with white/Brownian noise added to their trajectories.
They found that the initial separation dependence is weaker and Richardson scaling is more robust
for Sc = O(1) than Sc = ∞ (fluid particles).

Several studies [11,13] in the 2D inverse-energy cascade turbulence discussed the proper
initial separation and concluded that the t3-scaling behavior observed only for the special initial
separation is an artifact caused by the finite-size effect of the limited inertial range. Given the
aforementioned reasons, they argued that proper initial separation exists even in the low Reynolds-
number simulations and that the proper initial separation is significantly lower than the smallest
lower bound of the inertial range. In particular, the observed scaling law 〈r(t )2〉 ∝ t3 started to hold
outside of the inertial range, as already noted in Ref. [21]. Subsequently, the t3 law with the proper
initial separation extends into the inertial range. However, details of the finite-size effects, e.g., the
dependence of the t3 law on the width of the inertial range, remains to be clarified.

There is another problem with respect to the proper initial separation. The K41 can be applied to
the two-particle Lagrangian relative velocity and predicts t1 scaling for the second-order moment as

〈v2(t )〉 ∝ εt1, (2)

in the inertial range, where v(t ) denotes the relative velocity. In recent 3D numerical studies [15,17],
the relative velocity is also observed to depend on the initial separation such as relative separation.
Furthermore, it appears that the second-order moment of the relative velocity exhibits a different
scaling exponent from the K41 prediction.
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The long-standing problem of two-particle relative diffusion in turbulence can be the appli-
cability of the K41 to the Lagrangian relative separation and velocity statistics and at least at
presently available Reynolds numbers. It is well known that the K41 scaling does not precisely
hold, particularly for the 3D turbulence due to the intermittency effect. However, the deviation
from the K41 is small with respect to the low-order statistics of the Eulerian velocity such as
the energy spectrum or the second-order structure functions. Thus, the K41 is successful for the
Eulerian velocity. In contrast, the K41 appears to fail in describing the second-order moments of the
relative separation and velocity, which are Lagrangian quantities, to the same extent as the low-order
Eulerian velocity. This large gap between Eulerian and Lagrangian statistics should be filled. It is
possible that the gap is caused by a finite Reynolds-number effect.

In this study, we numerically examine two-particle relative diffusion in 2D energy inverse-
cascade turbulence with either normal viscosity or hyperviscosity. The main reason for selecting
the 2D system is that detailed numerical studies (e.g., a large number of particle-pair samples and
long-time integration) are more feasible. Furthermore, the Eulerian velocity is intermittency free
[22,23] and, consequently, corresponds to “an ideal framework to examine Richardson scaling in
Kolmogorov turbulence,” as noted in Ref. [13]. Thus, we can factor out the intermittency effect
on the deviation of the Lagrangian statistics from the K41 prediction when we analyze 2D results.
Evidently, limitations exist while selecting the 2D system. As aforementioned, there are common
problems in the Richardson-Obukhov law in 2D and 3D systems. However, their nature is not
necessarily identical. Careful discussion and further investigations are required while applying our
results in this study to the 3D case. Nevertheless, insights obtained here in two dimensions can be
useful in addressing the 3D problem.

We conduct our numerical study as follows. First, we develop a conditional sampling to remove
the initial-separation dependence. We demonstrate that the conditioned 〈r2(t )〉 curves of various
initial separations collapse on the unconditioned curve starting from the proper initial separation.
From the robustness, we infer that the t3 law of the proper initial separation is consistent with the
K41. We then discuss the generality of the conditional sampling, namely, the dependence of the
conditioned results on the parameters of the conditional sampling. Finally, we examine the scaling
behavior of the relative velocity with and without the conditional sampling in detail.

The two main results obtained in 2D energy inverse-cascade turbulence are that (1) relative
velocity deviates from the K41 scaling, i.e., scaling law (2), although the relative separation obeys
the Richardson-Obukhov t3 law, and (2) relative velocity is self-similar (intermittency free). Both
suggest that the K41 does not hold for second-order statistics of relative velocity.

Section II presents the details of our 2D numerical study. Section III A introduces a working
hypothesis and describes the proper initial separation. In Sec. III B we describe our conditional
sampling and discuss what can be inferred from conditional statistics on the relative separation.
Section IV presents statistics on the relative velocity with and without conditional sampling.

II. NUMERICAL SIMULATION METHOD

We mainly consider pair-dispersion statistics in a statistically steady, homogeneous, and isotropic
2D inverse-energy cascade turbulent velocity field u(x, t ). In the velocity field, we perform a set of
DNSs of the 2D incompressible Navier-Stokes equation in a doubly periodic square of side length,
2π . We integrate the equation in the form of vorticity, ω(x, t ) = ∂xuy(x, t ) − ∂yux(x, t ), which is

∂ω

∂t
+ (u · ∇)ω = (−1)h+1ν�hω + α�−1ω + f . (3)

The setting and our numerical method are identical to those used in Refs. [24,25]. Here ν denotes
the (hyper)viscosity coefficient and α denotes the hypodrag coefficient. The order of the Laplacian
of the (hyper)viscosity, h, is set to 8 or 1. The forcing term, f (x, t ), is given in terms of the Fourier
coefficients, f̂ (k, t ) = k2εin/[n f ω̂

∗(k, t )], where f̂ denotes the Fourier transform of the function
f (x, t ). The energy input rate is denoted by εin, and n f denotes the number of the Fourier modes
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TABLE I. Parameters of numerical simulations: N2, δx = 2π/N , δt , ν, h, α, k f , εin, ε, σε , L, urms, Reα ,
and N2

p denote the number of grid points, grid spacing, size of the time step, (hyper)viscosity coefficient, order
of the Laplacian of the (hyper)viscosity, hypodrag coefficient, forcing wave number, energy input rate of the
forcing, mean of the resultant energy flux in the inertial range, standard deviation of the resultant energy flux,
integral scale, root-mean-square velocity, infrared Reynolds number, and number of the Lagrangian particles,
respectively.

N2 δx δt ν h α k f εin ε σε L urms Reα N2
p

10242 0.006 0.002 1.8 × 10−38 8 35 249 0.1 0.019 2.9 × 10−4 0.38 0.5 40 20482

20482 0.003 0.001 4.664 × 10−43 8 35 496 0.1 0.019 2.9 × 10−4 0.37 0.5 80 20482

40962 0.0015 0.001 1.13 × 10−47 8 35 997 0.1 0.018 2.6 × 10−4 0.36 0.5 160 20482

20482 0.003 0.004 7.666 × 10−6 1 3.005 200 3.027× 5.28× 3.35 × 10−5 0.47 0.076 39 20482

10−4 10−5

in the following forcing wave-number range. We select the coefficients, f̂ (k, t ), as nonzero only in
high wave numbers, k, satisfying k f − 1 < |k| < k f + 1. Thus, the energy input rate is maintained
as constant in time. Numerical integration of Eq. (3) is performed via the pseudospectral method
with the 2/3 dealiasing rule in space and the fourth-order Runge-Kutta method in time. Table I lists
the parameters of simulations used in the study.

In the 2D energy inverse-cascade turbulence, the energy pumped in at the small scale is
transported to larger scales with a constant flux on average in the inertial range. To measure this
flux, we use the standard method to calculate the energy flux function in the Fourier space. As
shown in Figs. 1(a) and 1(c), the flux becomes wave number independent in the intermediate wave
numbers. We consider the range of the wave numbers as the inertial range. Strictly speaking, a
flat region is absent in Fig. 1(c) due to normal viscosity. The energy flux in the inertial range is
equal to the energy dissipation rate taken out by the large-scale hypodrag, ε = ∫ ∞

0 2αk−2E (k) dk,
where E (k) denotes the time-averaged energy spectrum. This corresponds to a standard method to
numerically realize a statistically steady state of 2D energy inverse-cascade turbulence in a periodic
domain. A statistically steady state is judged from behavior of energy as a function of time. The
typical wave number of the hypodrag is dimensionally estimated as (α3/ε)1/8, which is termed the
frictional wave number, kα . Here we use the infrared Reynolds number, Reα ≡ k f /kα , as proposed
by Vallgren [26] in order to quantify the span of the inertial range. At the end of Sec. IV, we simulate
a statistically quasi-steady state [6] by solving Eq. (3) without the hypodrag.

Subsequently, we demonstrate that the Eulerian statistics on the velocity field are consistent
with the established picture of the 2D inverse energy-cascade turbulence. As shown in the inset of
Figs. 1(a) and 1(c), the energy spectra in the inertial range is consistent with the K41 and more
precisely with the Kraichnan-Leith-Batchelor phenomenology. Figures 1(b) and 1(d) show that the
PDFs of the longitudinal velocity increments, δul (r, t ) = [u(x + r, t ) − u(x, t )] · r/r, at various r in
the inertial range collapse well to the Gaussian distribution irrespective of r, and this is in agreement
with Ref. [23]. Here l f = 2π/k f denotes the forcing length scale.

To obtain the Lagrangian statistics, we employ a standard particle-tracking method. The flow is
seeded with a large number of tracer particles, i.e., N2

p , in the velocity field. The particles are tracked
in time via integrating the advection equation,

d

dt
xp(t ) = u(xp(t ), t ), (4)

where xp(t ) denotes the particle position vector. The numerical integration of Eq. (4) is performed
using the Euler method. The velocity value at an off-grid particle position is estimated by the fourth-
order Lagrangian interpolation of the velocity calculated on the grid points.
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FIG. 1. (a) Time-averaged energy flux �(k) for Reα = 40 (red line), Reα = 80 (blue line), and Reα = 160
(green line). Ranges between the two gray dotted lines correspond to the inertial ranges as determined by the
plateau regions of the energy flux in the Fourier space. The inset shows the time-averaged energy spectrum
E (k) for Reα = 40 (red line), Reα = 80 (blue line), and Reα = 160 (green line). (b) Normalized PDFs of
the longitudinal velocity increments for Reα = 40 (red) and Reα = 80 (blue) at various separations, r/l f =
1.1, 1.5, 2.2, 3.2, 4.8, and 7.1. Here l f = 2π/k f is the forcing scale and longitudinal velocity increment, δul ,
normalized by the second-order moment and is denoted by s: s = δul/

√〈δu2
l 〉. The dotted line denotes the

Gaussian distribution with zero mean and unit variance. The inset shows the second-order longitudinal structure
function, S2(r) for Reα = 40 (red) and Reα = 80 (blue). The dashed line represents the K41 scaling, r2/3, for
S2(r). (c) Same as (a) except for the normal viscous case (h = 1). (d) Same as (b) except for the normal viscous
case (h = 1).

The relative separation, r(t ), is defined by r(t ) = x1(t ) − x2(t ), where x1 and x2 denote
the positions of a particle pair. The particles are initially seeded on square grid points where
the grid spacing corresponds to r0. The statistics on the relative separation are calculated for
the nearest-neighbor particles at the initial time. In this study, we vary the initial separation r0

while maintaining the same total number, N2
p , of the particles for each r0. For small values of

r0 (which are typically lower than the Eulerian grid size δx), the initial particles do not cover
the whole periodic domain. We verify that the inhomogeneity of the initial positions of the
particles does not affect Lagrangian statistics that are examined here by comparing results with
different initial particle positions covering different parts of the periodic domain. In addition to the
separation, r(t ), our focus is on the longitudinal relative velocity of particle pairs as defined by
vl (t ) ≡ [u(x1(t ), t ) − u(x2(t ), t )] · r(t )/r(t ).

We next discuss how long we track the particles. We continue the tracking until all the particle
pairs leave the inertial range. We observe that this time typically concerns 10 large-scale eddy
turnover times (L/urms) for the hyperviscous Reα = 40 case and approximately 20 turnover times
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for the hyperviscous Reα = 80 case. With respect to each r0, we perform the simulation of the
duration twice.

The largest resolution simulation (N2 = 40982) as listed in Table I is used only for confirming
self-similarity of PDF of vl (t ) in Sec. IV. We define the Lagrangian average 〈·〉 as 〈A〉 =

1
Nadj

∑Nadj

i=1 Ai, where A denotes any Lagrangian quantity and Ai denotes a realization of A by the
ith particle pair. Nadj = 2Np(Np − 1) denotes the number of pairs of particles which adjoin each
other at the initial time.

In the following sections, we mainly use hyperviscosity rather than normal viscosity for DNSs,
because the hyperviscosity extends the inertial range for a given spatial resolution. However, it
is known to affect the statistics at the transition between the inertial and dissipation ranges [27].
Thus, it is possible that the hyperviscosity affects particle-pair statistics. Therefore, we perform
hyperviscous and normal-viscous simulations and confirm that the hyperviscosity does not affect
the particle-pair statistics.

III. INITIAL SEPARATION DEPENDENCE OF RELATIVE DIFFUSION STATISTICS
AND CONDITIONAL SAMPLING

A. Proper initial separation

At the Reynolds numbers currently available in experiments and numerical simulations, the time
evolution of 〈r2(t )〉 depends on the initial separation. Hence, it is not possible to conclude whether it
obeys the Richardson-Obukhov prediction 〈r2(t )〉 ∝ εt3 (for, e.g., Refs. [17,28] for the 3D case and
Refs. [9,13] for the 2D inverse energy-cascade case). The same is applicable to the second-order
moment of relative velocity, 〈v2

l (t )〉 for which the K41 dimensional analysis yields 〈v2
l (t )〉 ∝ εt

(for, e.g., Ref. [15] for the 3D case). In the 2D simulation at moderate Reynolds numbers, the
initial-separation dependence is clearly confirmed for both 〈r2(t )〉 shown in Figs. 2(a) and 2(c) and
〈v2

l (t )〉 shown in Fig. 2(b) and 2(d) where t f = (l2
f /ε)1/3 denotes the forcing timescale. We examine

the results by varying the initial separations below the forcing scale, namely, r0 < l f . Thus, the
initial separations are in the scales lower than the inertial range. If we set the initial separation in the
inertial range, the graphs of 〈r2(t )〉 and 〈v2

l (t )〉 are located (they are not shown) above the curves
plotted in Fig. 2. Thus, we normalize all quantities by l f and t f unless there is some particular
reason. This is because l f and t f approximately define the lowest length and timescale of the inertial
range, respectively.

The data with the initial-separation dependence indicates that it is possible to select a special
value corresponding to r0 for which 〈r2(t )〉 becomes consistent with the Richardson-Obukhov
law 〈r2(t )〉 = gεt3. Further, we include the Richardson constant, g, which is nondimensional and
possibly universal. We show the squared separation of the special case in the inset of Fig. 2(a) as
a logarithmic local slope. However, it should be noted that (even for the special case) agreement
of the squared velocity with the K41 prediction, 〈v2

l (t )〉 ∝ εt is not as good as that of the squared
separation. This is observed in the inset of Fig. 2(b).

Given the apparent failures of the K41, in this study, we still argue that a certain bulk of the
particle pairs starting from each initial separation r0 shown in Fig. 2 obey the Richardson-Obukhov
law of the squared separation even at the moderate Reynolds numbers. Thus, we perform conditional
sampling of particle pairs. The qualitative condition is that we remove particle pairs which keep
separating too fast. In the following section, we demonstrate that this type of a conditional
average 〈r2(t )〉c becomes independent of the initial separation and that 〈r2(t )〉c is the same as
the unconditioned 〈r2(t )〉 commencing from the special initial separation (see Fig. 4 below).
Hence, the conditional sampling recovers the Richardson-Obukhov law, 〈r2(t )〉c = gεt3, including
the Richardson constant and flux. Thus, we term the special initial separation the proper initial
separation, which we denote as r (p)

0 .
Evidently, our conditional sampling is contrived. It has several tuning parameters as we will

specify them. We determine their values empirically by ensuring that 〈r2(t )〉c ∝ t3 holds. In order
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FIG. 2. (a) Mean-squared separation for the hyperviscous case with Reα = 40 as a function of time
for various initial separations. Here t f = (l2

f /ε)1/3 denotes the forcing timescale. The ranges between the
two horizontal lines correspond to the inertial range determined by the region of the mean exit time that
is proportional to r2/3, which is discussed later. Inset: the logarithmic local slope for the special initial
separation, r0 = 0.088l f ∼ r (p)

0 , where ε denotes the mean energy flux in the inertial range. The gray dashed
line corresponds to the Richardson scaling exponent, 3. (b) Mean-squared relative velocity for various initial
separations. Inset: the logarithmic local slope for the special initial separation, r0 = 0.088l f . The gray dashed
line corresponds to the Kolmogorov scaling exponent, 1. (c) Same as (a) except for the normal viscous case.
(d) Same as (b) except for the normal viscous case.

to demonstrate the extent to which it is contrived, we examine the manner in which conditional
statistics change by varying tuning parameters. Furthermore, we demonstrate that the number
of removed pairs decreases when the Reynolds number increases. The details of the conditional
sampling are given in the next subsection.

B. Conditional sampling via mean exit time

Figure 2(a) plots nine cases of the different initial separations. To develop the conditional
sampling, we first focus on initial separations that satisfy r0 > r (p)

0 , where r (p)
0 denotes the proper

initial separation. Thus, we consider three cases from above in Fig. 2(a). Our estimate of the
proper initial separation is empirical: we examine the compensated plot of the unconditional
moment 〈r2(t )〉 as shown in Fig. 2(a) by changing r0. Subsequently, we select r0 for which the
compensated plot exhibits the widest plateau. We evaluate the proper initial separation in this
manner as r (p)

0 = 0.088l f , 0.101l f , and 0.121l f for Reα = 40, 80, and 160, respectively.
With respect to the initial separations r0 > r (p)

0 , the graphs of the mean-squared separation 〈r2(t )〉
are situated above the graph starting from r (p)

0 as shown in Fig. 2. This indicates that it is necessary
to remove particle pairs that separate too fast to recover the t3 scaling. Now we pose two questions
on the conditional sampling: (A) Is it possible to instantaneously determine whether it is excessively
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FIG. 3. (a) Mean exit time for the hyperviscous cases with Reα = 40 (dash-dotted line) and Reα = 80
(solid line). Black solid line denotes r2/3 power law. The ranges between the two gray dashed lines denote the
inertial range estimated with the exit time at Reα = 40 and Reα = 80. (b) The PDFs of exit time normalized
by the mean at Reα = 40 (red) and 80 (blue) for j = 0 to 6. Black dashed line and solid line denote longtime

asymptotic forms for the PDF of exit times, P(TE )〈TE 〉 ∼ C
∑N

i=1 j2,iJ ′
2( j2,i ) exp [− j2

2,i
12

ρ2/3−1
ρ2/3

t
〈TE 〉 ] [13], at N =

1 and N = 3, respectively. Here C denotes the normalized factor, J2 denotes the Bessel function, and j2,i denotes
the ith zero point of J2 and ρ = 1.1.

fast, i.e., exhibiting excessively large r(t )? and (B) How can we draw a line between excessively fast
pairs and not excessively fast pairs, i.e., the threshold level between the two sets? We handle both
the questions with exit-time statistics that are proved to be effective tools in the study of relative
diffusion.

The exit time concerns the first passage time. The first passage time of the separation r(t ) for
a given value R is defined by the first instance when the separation r(t ) becomes equal to R (for
the first passage time of a general stochastic process, see, e.g., Ref. [29]). We express the first
passage time as TF (R). To define the exit time, it is necessary to set the domains. We denotes the
domain as a series R0, R1, R2, . . .. The exit time of the jth zone Rj−1 � r(t ) < Rj is then defined
as T ( j)

E = TF (Rj ) − TF (Rj−1) where Rj = rsρ
j with parameters rs and ρ > 1 for j = 1, 2, . . .. In

the relative diffusion problem, exit-time statistics are introduced to solve the finite-size problems
[11,13,30,31]. By selecting thresholds Rjs in the inertial range, it is possible to exclusively extract
information of the inertial range. It is known that exit-time statistics are insensitive to the Reynolds
number (for, e.g., Ref. [32]). It is also known that the mean exit time is consistent with the K41
prediction, 〈T ( j)

E 〉 ∝ R2/3
j when Rj is in the inertial range. Furthermore, the scaling behavior holds

independent of the initial separations [13,28]. In our simulation with rs = 1.3l f and ρ = 1.1, the
K41 scaling of the mean exit time is observed for 1 � j � 7 for the hyperviscous Reα = 40 case
and 1 � j � 14 for the hyperviscous Reα = 80 case as shown in Fig. 3. Typical value of ρ as used
in the previous studies corresponded to 1.1 or 1.2 [11,13,30–32] and the properties of exit-time
statistics as mentioned above do not change in the range of ρ.

Now we describe how we address the two questions of conditional sampling with the exit time.
For the first question (A), we assume that it is not possible to instantaneously determine excessively
fast pairs. This is performed over certain consecutive zones in the inertial range. We express the
number of the zones by NQ [at the end of Sec. III B, we change the parameter NQ and discuss
question (A)].

With respect to the second question (B), evidently small exit time T ( j)
E corresponds to pairs

separating fast. Hence, to remove the excessively fast pairs, we set an upper threshold, τ , in terms
of the exit time over the zones j = 1, 2, . . . , NQ. Hence, if the exit time of the particle pair satisfies

T ( j)
E〈

T ( j)
E

〉 � τ (5)
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in all of the zones, j = 1, 2, . . . , NQ, then this type of a pair is removed from the Lagrangian
average. It should be noted that the threshold τ is independent of j. The condition implies that the
removed pairs spend a short time when compared to the average in any of the NQ zones. Thus, the
removed pair separate too fast in all of the monitored zones. Conversely, the remaining pairs in the
conditional sampling generally spend a sufficiently long time such that T ( j)

E /〈T ( j)
E 〉 > τ . However,

they can become excessively fast in several (but not all) of the NQ zones. It should be noted that the
conditional sampling includes two parameters: NQ and τ .

Our physical picture of the conditional sampling is as follows: The pair separation r(t ) is given by
the time integral of the relative velocity from time 0 to t . The accumulating nature of r(t ) suggests
that it is necessary to consider the history of a pair in conditional sampling. We consider it in terms
of the NQ zones starting from the lowest scale of the inertial range. An actual value of NQ will
be determined empirically. With respect to τ , it is noted that the right part of the PDF of the exit
time is given by the Richardson PDF of the separation, P(r, t ) ∝ ε−1t−3 exp[−(const)ε−1/3t−1r2/3],
which denotes the self-similar solution to the Richardson’s diffusion (Fokker-Plank) equation [13].
The correspondence of the PDFs shown in Fig. 3(b) indicates that the pairs in the left part in the
exit-time PDF should be removed in the conditional sampling, thereby leading to the criterion (5).
This picture is only qualitative in nature.

We then describe the determination of parameter values in practice. In the case of Reα = 40,
the inertial range is covered by seven zones. Hence, we set the number of the monitored zones to
NQ = 7. Subsequently, we tune the threshold τ values based on the initial separation r0 to recover
the Richardson-Obukhov law by examining whether the compensated plot 〈r2(t )〉c/(εt3) exhibits
a plateau. We empirically determine that the τ values correspond to 0.40, 1.2, 3.4, and 4.6 for the
initial separations r0/l f = 0.12, 0.24, 0.48, and 0.71, respectively. Given the parameters, we present
the results of the conditional average of the squared separations in Fig. 4(a). With respect to the
hyperviscous Reα = 80 case, the inertial range is covered by 14 zones. However, we demonstrate the
result with the same NQ = 7 as that in the lower Reynolds number case to enable a better comparison
in Fig. 4(b). The thresholds are observed as τ = 0.25, 0.50, 1.4, and 3.0 for the same set of the
initial separations r0/l f = 0.12, 0.24, 0.48, and 0.71, respectively. In the normal-viscous case, NQ =
7 and the thresholds correspond to τ = 0.45, 1.05, 2.4, and 4.4 for the initial separations r0/l f =
0.20, 0.29, 0.39, and 0.68, respectively.

As shown in Fig. 4, the conditioned curves 〈r2(t )〉c collapse in the inertial range and beyond the
unconditioned curve for proper initial separation. It should be noted that the width of the collapsed
region increases as we increase Reα . When we compare τ between the two Reynolds number cases
for the same normalized initial separation r0/l f , it approximately decreases by a factor of 1/2. The
fraction of the remaining pairs in the conditional sampling corresponds to 41% for Reα = 40% and
65% for Reα = 80. Qualitatively, the increase in the fraction is interpreted as follows. We assume
that we compare each pair’s distance r(t ) at the same time t for the two Reynolds numbers. Given
the wider inertial range at higher Reα , pairs with larger separation r(t ) (i.e., pairs separating fast) are
tolerated in the higher Reα case to recover the Richardson-Obukhov law. The increase in the fraction
supports the working hypothesis that a certain bulk of particle pairs obey the Richardson-Obukhov
law even at moderate Reynolds numbers.

We then examine changes in the results of the conditional sampling when we vary parameters NQ

and τ for various initial separation r0. For the purpose of simplicity, we limit ourselves to the two
hyperviscous cases with Reα = 40 and 80. With respect to the reference exit-time statistics, we do
not change the parameters rs = 1.30l f and ρ = 1.1. At Reα = 40, we use NQ = 7 as the number of
monitored zones independent of the initial separation r0. The NQ zones, R1 = rsρ � R � R7 = rsρ

7,
cover almost the entire inertial range. We consider the initial separations satisfying r (p)

0 < r0 < rs.
We then reduce NQ to 6, 5, 4, 3, 2, and 1 although we use the same set of τ determined with
NQ = 7. The results indicate that further tuning of τ for the change in NQ is not necessary. The
reduction of NQ does not alter the behavior of 〈r2(t )〉c as shown in Fig. 4(a). The same is applicable
to the higher Reα = 80 case shown in Fig. 4(b). In this case, we change NQ to 14, 13, . . . , 1
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FIG. 4. Conditionally sampled second-order moments of relative separations. The initial separations
exceed the proper initial separation r (p)

0 . (a) Conditional sampling for the hyperviscous Reα = 40 case starting
from various initial separations. (b) Conditional sampling for the hyperviscous Reα = 80 starting from various
initial separations. (c) Conditional sampling for the viscous Reα = 39 case starting from various initial
separations. Inset shows the logarithmic local slopes of the conditionally sampled 〈r2(t )〉. Black solid curve
shows the second-order moment of the relative separation without any conditional sampling starting from the
proper initial separation, r0 = r (p)

0 . The gray dashed line denotes t3 power law. The range between the two
horizontal gray solid lines denotes the inertial range estimated with the exit time.

although we use the same τ for each NQ. Therefore, the result of the conditional sampling is
robust relative to changes in the parameters. An important result obtained in the examination is
that NQ = 1 is sufficient. This answers question (A) on the conditional sampling, namely, it is not
possible to instantaneously determine if a given pair is excessively fast [consequently exhibiting
excessively high r(t )]. However, it can be performed in terms of the exit time of the first zone
in the inertial range. Thus, it is possible to locally remove excessively fast pairs to recover the
Richardson-Obukhov law in space at the entry of the inertial range. Evidently, this is not locally in
time. This implies that evolution of a pair in the inertial range is somewhat monotone after the entry.
As shown in the next section, this is observed as a self-similar evolution of the relative velocity.

Other methods are developed to remove the initial separation dependence. For the purpose of
comparison, we apply two methods used for 3D turbulence [17–19] to 2D data without utilizing
conditional sampling. A method involves subtracting the initial-separation vector r0 from the
separation vector r(t ). In Fig. 5(a) we plot 〈|r − r0|2〉/(εt3) of our data for the Reα = 80 case with
the hyperviscosity. The Richardson-Obukhov law appears as a plateau in the region t/tB � 1 or
t/t0 � 1. Although the range of t/tB in our data is comparable to that in the 3D study [19], the
degree of collapse of our 2D data is worse than that of the 3D result. The other method involves
extracting the possibly subdominant t3 term in r(t ) with a suitable exponentiation and temporal
finite difference. In Fig. 5(b) we plot the cubed local slope (CLS), {(d/dt )[〈r2(t )〉1/3]}3

/ε [19], of
our 2D data. The Richardson-Obukhov law appears as a plateau in the CLS in t/tB � 1. However,
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FIG. 5. (a) Mean-squared separations for the hyperviscous case with Reα = 40 (dashed line) and Reα = 80
(solid line), although the initial separation is subtracted for various initial separations. This is compensated by
the scaling εt3. Inset shows the same plots as the main panel although the horizontal axis is compensated by the
Bitane timescale, t0 = S2(r0)/2ε. Gray line denotes the scaling law, 〈r(t ) − r0〉 = gεt3(1 + Ct0/t ) as suggested
by Bitane et al. [18]. Here C = 0.6. (b) Cubed-local slopes of 〈r2(t )〉 for various initial separations at the
hyperviscous Reα = 40 (dashed line) and Reα = 80 (solid line). In panels (a) and (b), the time is normalized
with the Batchelor time, tB = r2/3

0 〈ε〉−1/3. In the inset of panel (a), the time is normalized with Bitane time,
t0 = S2(r0)/2ε.

the degree of the collapse for the 2D result is worse. The discrepancy between the 2D and 3D
cases can be ascribed to the difference in the physics of turbulence in two and three dimensions.
Conversely, the plateau is unclear irrespective of the dimensions. This can be due to finite Reynolds
number effects. However, in order to evaluate the effects, it is necessary to add the tuning parameter
to the Richardson-Obukhov law. A physical meaning of the tuning parameter is obscure in many
cases. Although the scaling law suggested by Bitane et al. [18] approximately corresponds to data
for finite Reynolds number at small time, t � t0, by tuning the parameter, C, it does not correspond
to the data at large time, t � t0. Hence, it is necessary to add another tuning parameter for large time.
Furthermore, the cause for the difference between 〈r2(t )〉 and 〈|r(t ) − r0|2〉 is not clarified. Hence,
it is insufficient to investigate only statistical moments of all particle pairs. Thus, it is necessary
to investigate the PDF of particle pairs. We should consider extreme events of particle pairs that
can affect even lower moments such as 〈r2(t )〉. It is intrinsically necessary to consider conditional
statistics on a special part of particle pairs.

So far, we restricted the conditional sampling for the cases of r0 > r (p)
0 . For lower initial

separations, r0 < r (p)
0 , we can also recover t3 scaling with the same conditional statistics. However,

we found that the results indicate the condition for the threshold, τ , changes from the inequality (5)
to

τ1 � T ( j)
E〈

T ( j)
E

〉 � τ2, (6)

where τ1 = 0. For example, we empirically determine (τ1, τ2) = (0.16, 7.5), (0.2, 1.0), and
(0.18, 0.50) for initial separations r0/l f = 0.024, 0.049, and 0.073, respectively, at Reα = 40.
Although t3 scaling law is recovered via conditional sampling, the Richardson constant, g =
〈r2(t )〉c/εt3, for the conditional data is extremely sensitive to the initial separations (figure not
shown). The sensitivity considerably differs from the cases of r0 > r (p)

0 . This indicates that for r0 <

r (p)
0 cases, we fail to construct conditional statistics that remove the initial separation dependence.

We infer that in these cases the bulk of particle pairs do not obey the Richardson-Obukhov law in
the aforementioned cases. The initial separations are extremely small such that the pairs experience
effects from the dissipation range and the small-scale forcing is longer than that of the cases with
r0 > r (p)

0 . Hence, two parameters are required for conditional sampling. We do not focus on cases
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FIG. 6. Second-order (left panels) and first-order (right panels) moments of the longitudinal relative
velocity for conditionally sampled data starting from various initial separations and for the unconditioned
data starting from the proper initial separation, r (p)

0 . Inset: Logarithmic local slope. (a), (b) Reα = 40 with
hyperviscosity, (c), (d) Reα = 80 with hyperviscosity, (e), (f) Reα = 39 with normal viscosity. Dashed line
denotes t1.23 and t0.7 scalings for second- and first-order moments, respectively.

with r0 < r (p)
0 in the remainder of the paper. However, the failure implies that r (p)

0 corresponds to the
border line of the initial separation, beyond which the bulk of the particle pairs becomes consistent
with the Richardson-Obukhov law.

IV. SCALING OF THE RELATIVE VELOCITY

A. Conditional sampling

Using the conditional sampling described in the previous section, we show conditional averages
of the squared longitudinal relative velocity, 〈v2

l (t )〉c in Fig. 6. Conditional velocity statistics
exhibit a collapse similar to that of the conditional separations. Hence, the second- and first-order
conditional moments, 〈v2

l (t )〉c and 〈vl (t )〉c, respectively, starting from various initial separations

054601-12



NON-KOLMOGOROV SCALING FOR TWO-PARTICLE …

10−1 100

t/tf

1.0

1.1

1.2

1.3

1.4

1.5

lo
g.

lo
ca

l
sl

op
e

of
〈v

2 l
〉(a)

Reα = 40

Reα = 80

Reα = 160

10−1 100

t/tf

0.50

0.55

0.60

0.65

0.70

0.75

0.80

lo
g.

lo
ca

l
sl

op
e

of
〈v l

〉

(b)
Reα = 40

Reα = 80

Reα = 160

FIG. 7. Reα dependence of the logarithmic local slope of (a) 〈v2
l (t )〉 and (b) 〈vl (t )〉 for unconditioned data

at the proper initial separation, r (p)
0 at Reα = 40, 80, and 160. Gray dashed lines correspond to (a) 1.23 and

(b) 0.70, respectively.

become almost identical to the unconditioned moments starting from the proper initial separation.
However, the degree of collapse of the velocity data is worse at the hyperviscous Reα = 40 and
normal viscous Reα = 39 although it improves at Reα = 80 with hyperviscosity. The results indicate
that the second-order conditional moment 〈v2

l (t )〉c and conditional average 〈vl (t )〉c deviate from
their K41 power-law predictions, t1 and t1/2, respectively. This contrasts with the conditional relative
separation 〈r2

l (t )〉c that is driven as consistent with the K41 prediction or the Richardson-Obukhov
law.

We observe the deviation from the Kolmogorov scaling exponents and then measure the
exponents from the logarithmic local slopes of 〈v2

l (t )〉 and 〈vl (t )〉 shown in the insets of Fig. 6.
At large times, the converging behavior of the local slopes to that of the proper initial separation
is observed. However, a plateau is absent in the converged part. We then assume that at higher
Reα , the converged part corresponds to plateau and that the level of the converged (hypothetical)
plateau is identical to that of the proper initial separation. We then plot the logarithmic local slopes
of the data starting from the proper initial separation with three Reα in Fig. 7. We observe that
increases in Reα widen the plateau and that the levels of the plateaus do not approach the K41 scaling
exponents, which correspond to the bounds of vertical axis in Fig. 7. Furthermore, it should be noted
that the differences between the neighbor levels decreases when Reα increases. This indicates that
asymptotic exponent values are present. As shown in Fig. 7, given our assumptions of the converged
behavior, we infer that the scaling exponents of the velocity statistics are

〈vl (t )〉 ∝ t0.7, (7)〈
v2

l (t )
〉 ∝ t1.23. (8)

The scaling exponents are visually determined from Fig. 7. The values increase with increases
in Reα .

Furthermore, by normalizing with temporal scaling in Eq. (7), the time evolution of the PDF of
the conditionally sampled vl becomes self-similar as shown in Fig. 8(b). Here Pc(A, t ) corresponds
to the conditional PDF for a quantity, A. The collapse among different instances does not appear
perfect. The collapse around the peak is important because the probability in the tails decays faster
than the exponential decay (we compare the degree of the collapse around the peak of the scaled
PDF to that of the PDF in the inset). Conversely, the unconditional vl scaled with the same scaling in
Eq. (7) does not exhibit the self-similar evolution as shown in Fig. 8(a). Even if we scale the relative
velocity with t a/2, where the exponent a is measured from 〈vl (t )2〉 ∝ t a shown in Fig. 2(b) for each
r0, the head parts of the PDFs do not collapse each other as shown in the inset of Fig. 8(a). This
implies that the evolution becomes self-similar only for conditionally sampled relative velocity with
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FIG. 8. (a) PDFs of the rescaled longitudinal relative velocity, ζ (t ) = vl (t )/t0.7 for unconditioned data at
different instances t/t f = 1.0, 1.5, 2.0, 2.5, 3.0 for Reα = 80 with hyperviscosity. Here the initial separation
corresponds to r0 = 0.48l f , which is different from the proper initial separation. It should be noted that ζ

is nondimensionalized as it is divided by l f /t1.7
f . Inset: PDFs without rescaling of the longitudinal relative

velocity for the unconditioned data with the initial separation r0 = 0.48l f . (b) Same as (a) except for the
conditionally sampled data. (c) Same as (a) except for Reα = 39 with normal viscosity at different instances
t/t f = 0.9, 1.4, 1.8, 2.3, 2.7. Here the initial separation corresponds to r0 = 0.39l f . (d) Same as (c) albeit for
conditionally sampled data.

scaling relations (7). We obtained similar results for the normal viscous case as shown in Figs. 8(c)
and 8(d). It should be noted that in the instances plotted in Fig. 8, the conditional separation, 〈r2(t )〉c,
is forced to agree with the Richardson-Obukhov law. The self-similar evolution of the PDF of vl (t )
also holds for unconditioned data starting from the proper initial separation as shown in Fig. 9 for
three cases of Reα with hyperviscosity.

FIG. 9. Evolution of PDFs of the rescaled longitudinal relative velocity, ζ (t ) = vl (t )/t0.7, of the uncondi-
tioned pairs starting from the proper initial separation, r (p)

0 . The PDFs are for (a) Reα = 40, (b) Reα = 80, and
(c) Reα = 160.
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FIG. 10. (a) Mean separation rate, 〈r(t )vl (t )〉c for conditioned data at various initial separations and for
unconditioned data at the proper initial separation, r (p)

0 for Reα = 40 with hyperviscosity. Dashed line denotes
t2 scaling. Inset: The logarithmic local slopes of the data shown in the outset. Dashed line denotes t2 scaling.
(b) Same as (a) but for Reα = 80 with hyperviscosity.

Now, we obtain two evidently incompatible results via conditional sampling and selecting the
proper initial separation. The second-order moment of the separation, r(t ), obeys the K41 scaling
(although this is enforced). Conversely, the statistics of relative velocity, vl (t ), deviate from the
K41 scaling although its evolution is self-similar. As a soft argument in favor of the compatibility
between the two results, we examine the mean of the product r(t )vl (t ). It should be noted that it
is directly related to the evolution of the mean-squared separation as d〈r2(t )〉/dt = 2〈r(t )vl (t )〉,
and thus it is termed the separation rate. As shown in Fig. 10(a), the conditional mean separation
rate obeys 〈r(t )vl (t )〉c ∝ t2 as expected given that we enforced the Richardson-Obukhov law. The
same t2 scaling also holds for the unconditioned mean separation rate starting from the proper
initial separation (figure not shown). Evidently r(t ) and vl (t ) are statistically dependent, and this is
also evident from the kinematics. Hence 〈r(t )vl (t )〉c = 〈r(t )〉c〈vl (t )〉c. This indicates that 〈vl (t )〉c ∼
t0.7 does not affect the t2 law of the mean separation rate. We observe that the mean separation
rate differs from scaling 〈r(t )〉c〈vl (t )〉c ∼ t3/2+0.7 = t2.2, as shown in the insets of Figs. 10(a) and
10(b), if we consider proper initial separation data as the truly asymptotic data. Therefore, non-
Kolmogorov scaling 〈vl (t )〉c ∼ t0.7 is not ruled out due to the dependence despite the Richardson-
Obukhov law 〈r2(t )〉c ∼ t3 or, equivalently, the scaling of its time derivative 〈r(t )vl (t )〉c ∼ t2.

B. Quasi-steady-state simulation

The non-K41 scaling of the relative velocity as shown in Fig. 6 is not convincing due to the
limited scaling range. Here we increase the scaling range by using the quasi-steady state of the
inverse energy-cascade turbulence [6].

Specifically, we solve the Navier-Stokes equation, Eq. (3), without the hypodrag term, i.e., α = 0
by maintaining the other parameters as identical to those in Table I with hyperviscosity (h = 8).
With respect to averaging, we generate 10 random initial data with flat energy spectra extending up
to the truncation wave number kmax = (N + 2)/3 with kinetic energy corresponding to 0.010. Over
the 10 runs, we take the ensemble average. We perform the simulation with the three resolutions
corresponding to N = 1024, 2048, and 4096. We use the statistically quasi-steady velocity field
obtained in time 24.0 � t � 26.5 for advecting the particle pairs. In the time window, the energy
spectrum shows the k−5/3 scaling extending down to approximately k = 1, and the energy grows
linearly in time as εt . Here we do not use conditional sampling and consider only the particle pairs
starting from the proper initial separation estimated as r (p)

0 = 0.60 × (2π/N ) for each resolution,
which amounts to 0.145l f . The value exceeds those of the statistically steady state, r (p)

0 = 0.078l f

at Reα = 39 with normal viscosity and, r (p)
0 = 0.089l f at Reα = 40, r (p)

0 = 0.104l f at Reα = 80, and
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FIG. 11. (a) Second-order moments of the relative separations, 〈r2(t )〉, starting from the proper initial
separations in the quasi-steady simulations with resolution N = 1024, 2048, and 4096. Dashed lines denote
t3 scaling. Inset:the logarithmic local slope of 〈r2(t )〉. (b) Same as (a) except for the second-order moments of
the longitudinal relative velocity, 〈v2

l (t )〉. Dashed line denotes t1.2 scaling. Inset: the logarithmic local slope of
〈v2

l (t )〉.

r (p)
0 = 0.122l f at Reα = 160 with hyperviscosity. This indicates that r (p)

0 is affected by the cutoff
scale of the inertial range because small-scale quantities are expected to be identical to steady-state
simulations.

Figure 11(a) shows 〈r2(t )〉 satisfying the t3 scaling law for longer duration than statistically
steady-state cases. In Fig. 11(b) we present 〈v2

l (t )〉 that confirms the non-K41 power-law scaling
observed in the statistically steady-state simulations. In more precise terms, from the logarithmic
local slope in the inset of Fig. 11(b), we estimate that the scaling exponent is approximately 1.2.
This is consistent with the relation (8). We note that the slopes in the inset of Fig. 11(b) do not
exhibit well-developed plateaus.

To summarize Sec. IV, we find the non-K41 scaling law of the relative velocity, vl (t ) ∝ t0.7, and
self-similar evolution of the PDFs of vl (t ) in the two selected ensembles of the particle pairs. An
ensemble corresponds to pairs starting from the proper initial separation r (p)

0 . The other ensemble
corresponds to the conditional sampling of the pairs starting from r0 > r (p)

0 . For both ensembles, the
Richardson-Obukhov law, 〈r2(t )〉 = gεt3, is designed to hold.

V. CONCLUDING REMARKS

In the 2D inverse energy-cascade turbulence, we developed conditional sampling to recover the
Richardson-Obukhov law by using the relation between the exit-time PDF and Richardson PDF. The
conditional squared separation obeys the Richardson-Obukhov law, 〈r2(t )〉c = gεt3, irrespective of
the initial separation r0. It is noted that we mainly considered r0 > r (p)

0 . The fraction of the particle
pairs remaining in the conditional sampling increased with increases in Reα . This supports our
assumption that a bulk of the particle pairs for various initial separations at the moderate Reynolds
numbers are in agreement with the Richardson-Obukhov law. As Reα → ∞, deviation in 〈r2(t )〉
from the Richardson-Obukhov law gεt3 is likely to vanish. This leads to a conclusion similar to
that in a study of the Richardson-Obukhov law in three dimensions [19]. Furthermore, conditional
sampling indicated that the relative velocity exhibits a different temporal scaling from the prediction
of the K41. The results are also obtained for the normal viscous and hyperviscous cases. Therefore,
we conclude that the hyperviscosity does not affect the statistical properties of particle pairs.

Evidently, it is always possible to devise conditional sampling to obtain any desired result. To
avoid the pitfall, we showed that the conditional statistics are weakly dependent on the parameters,
number of the monitored zones NQ, and the thresholds of the exit time τ . An important finding is that
NQ = 1 is sufficient. This implies that the deviation from the Richardson-Obukhov law is caused in
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the dissipation range and by the forcing. It implies that a major deviation is not produced later in the
inertial range. The latter implication can result from the intermittency-free Eulerian velocity field of
the 2D inverse energy-cascade turbulence.

However, the implications can overlook the behavior of pairs starting from the proper initial
separation for which the deviation is negligible. The results indicated that the self-similar evolution
of the longitudinal relative velocity is a common feature between the conditionally sampled pairs
and unconditional pairs staring from r (p)

0 . This self-similarity is not observed in the unconditional
pairs starting from r0 > r (p)

0 . It should be noted that the self-similarity emerges only with the non-
K41 power law of the equal-time relative velocity correlation, namely the relation (8). Furthermore,
the self-similarity among the PDFs of various instances indicates that the non-K41 scaling differs
from the intermittency observed in the Eulerian velocity increments of 3D turbulence. We argued
that the non-K41 velocity scaling is not immediately ruled out by the enforced Richardson-Obukhov
law.

The non-K41 power-law scaling obtained here, 〈v2
l (t )〉 ∝ t1.23, exhibits an exponent that differs

from the K41 prediction, 〈v2
l (t )〉 ∝ εt . This can be qualitatively explained by the following behavior

of the two-time correlation function of the Lagrangian relative velocity, 〈δv(s1) · δv(s2)〉, where
δv(t ) = v(t |a + r0) − v(t |a). We use DNS data starting from the proper initial separation and plot
the correlation function in the 2D space (s1, s2). This type of a plot is presented for the 3D case in
Ref. [33]. The two-time correlation is characterized by two functional forms as follows: one along
the diagonal line and the other along the line perpendicular to the diagonal line. The preliminary
study suggests that the two functional forms exhibit distinct self-similar functions. Specifically, we
speculate that the self-similarity of the latter one along the line normal to the diagonal line leads
to the deviation from the K41 scaling of the relative velocity. Thus, the non-K41 behavior of the
velocity can be ascribed to the temporal correlation, which is ignored in the K41 argument [34,35].
A future study will detail the two-time correlation.

The results obtained with the enforced Richardson-Obukhov law lead us to conclude that
self-similarity of the relative velocity with the non-K41 scaling plays an indispensable role in the
Richardson-Obukhov law of the squared separation. The condition is fulfilled for the pairs starting
from the proper initial separation, r (p)

0 . An explanation for this is absent. It can be cautiously stated
that quantitative aspects of the proper initial separation depend on the forcing because r (p)

0 < l f .
We qualitatively discuss the characteristics of the special particle pairs initially separated by r (p)

0
with respect to conditional sampling. The conditional sampling classifies particle pairs into three
groups as follows: (1) removed particles for r0 > r (p)

0 , (2) removed particles for r0 < r (p)
0 , and

(3) unremoved particles. It should be noted that we here include the result of the conditional
sampling for r0 < r (p)

0 . We argue that the nature of each group can be different. For r0 > r (p)
0 , the

power-law exponent of the unconditional 〈r2(t )〉 is lower than the Richardson-Obukhov exponent 3
as shown in Fig. 2(a). In the conditional sampling, we remove particle pairs in which the exit time
per the mean is lower than the threshold, τ . Subsequently, the power-law exponent of 〈r2(t )〉c rises
to 3. This implies that the removed pairs for r0 > r (p)

0 lower the power-law exponent of 〈r2(t )〉.
A physical interpretation can be as follows. The removed pairs in the group (1) typically either

hardly expand and consequently stay at around the initial separation or exit from the inertial range
and then behave as standard Brownian particles while the unremoved particle pairs are still in the
inertial range. Conversely, for r0 < r (p)

0 , the power-law exponent of 〈r2(t )〉 is larger than 3 as shown
in Fig. 2(a). In the conditional sampling, we remove the particle pairs in which the exit time per
the mean is within the interval, [τ1, τ2]. Subsequently the power-law exponent of 〈r2(t )〉c decreases
to 3. This implies that the removed pairs for r0 < r (p)

0 increase the power-law exponent of 〈r2(t )〉.
A physical interpretation is as follows. The removed pairs for r < r (p)

0 in the group (2) typically
expand anomalously fast through the inertial range while the unremoved particle pairs are still in the
inertial range. The pairs in the group (3), namely, the unremoved pairs in the conditional sampling
regardless of the initial separation, are typically those that satisfy the Richardson-Obukhov law. The
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results indicated that the fraction of the pairs belonging to the groups (1) and (2) significantly depend
on the initial separation. The groups (1) and (2) are potentially related to the extreme events [36,37].
We now return to the proper initial separation. It is inferred that the effects of the two removed
groups on 〈r2(t )〉 are balanced at the proper initial separation. Hence, the Richardson-Obukhov law
recovers for r (p)

0 without the conditional sampling because contamination from the two groups is
canceled. Additionally, the canceling also supports the dependence of the proper initial separation
on the width of the inertial range mentioned in Sec. IV B, i.e., r (p)

0 increases with Reα . The number
of particle pairs in the group (1) that exit the inertial range relatively fast and separate based on
the t2 law decreases inversely with the width of the inertial range, and the value of r (p)

0 should be
increased to cancel the anti-effects of groups (1) and (2) on the scaling exponent.

We observed the non-Kolmogorov scaling law of the Lagrangian velocity. Evidently an important
question is whether or not the deviation from the K41 exponent persists when the Reynolds
number increases. The trend shown in Fig. 7(a) indicates that the deviation persists. However, it
is not possible to eliminate the possibility that the Kolmogorov scaling law 〈v2

l (t )〉 ∝ t prevails
at significantly higher Reynolds numbers. To address the question, an approach that differs from
numerical simulation such as Lagrangian two-point closure theory is preferable.

Our conditional sampling method can be easily adopted to 3D turbulence. However, the insights
gained in 3D should significantly differ from those obtained here in the 2D inverse energy-cascade
turbulence. Physics of the 2D energy inverse-cascade turbulence considerably differs from that of
the 3D turbulence although the scaling argument using the dissipation rate (i.e., the mean energy
flux) leads to the same prediction of scaling exponents of various statistics. The main difference is
that it is necessary to add the forcing at a small scale for the 2D case. This implies that Lagrangian
particles in 2D turbulence are more directly affected by the forcing than those in 3D turbulence. A
future study will present a detailed analysis of the 3D problem.
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