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The growth rate of material interfaces is an important proxy for mixing and reaction rates
in fluid dynamics and can also be used to identify regions of coherence. Estimating such
growth rates can be difficult, since they depend on detailed properties of the velocity field,
such as its derivatives, that are hard to measure directly. When an experiment gives only
sparse trajectory data, it is natural to encode planar trajectories as mathematical braids,
which are topological objects that contain information on the mixing characteristics of the
flow, in particular through their action on topological loops. We test such braid methods on
an experimental system, the rotor-oscillator flow, which is well described by a theoretical
model. We conduct a series of laboratory experiments to collect particle tracking and
particle image velocimetry data, and we use the particle tracks to identify regions of
coherence within the flow that match the results obtained from the model velocity field.
We then use the data to estimate growth rates of material interface, using both the braid
approach and numerical simulations. The interface growth rates follow similar qualitative
trends in both the experiment and model, but have significant quantitative differences,
suggesting that the two are not as similar as first seems. Our results shows that there are
challenges in using the braid approach to analyze data, in particular the need for long
trajectories, but that these are not insurmountable.
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I. INTRODUCTION

Characterization of material mixing in fluid flows is an active research area at the intersection of
mathematics, engineering, and physics. Two common types of analysis are (1) to quantify the overall
amount of stirring and mixing that occurs in the system and (2) to identify structures that enhance
or reduce material mixing. The earliest examples of a systematic mathematical approach to these
problems uses techniques from nonlinear dynamics that rely on having the fluid velocity field as a
continuous, often differentiable, function of space and time [1–4]. (See, for example, Refs. [1,5–11]
for comprehensive reviews.) By now, these techniques have been sufficiently adapted and refined to
be applicable to data from real fluid flows that, for example, arise in and around living organisms
[12–15], govern ecological processes [16–18], and arise in engineered systems and technological
processes [19–23].

Quantification of mixing typically focuses on characterizing the amount of stirring by chaotic
advection [2], which in turn relates to the role that stretch-and-fold and stretch-and-stack mecha-
nisms play in mixing of material [1,5,6,24,25]. The strength of these mechanisms is computed by
estimating local rates of exponential stretching of the material [26,27] over a timescale associated
with folding or stacking. Alternatively, chaotic advection can be quantified by studying norms of
scalar fields advected in the flow [28–30]. A review of associated topics with additional references
can be found in Ref. [11].

The search for structures that enhance or prevent mixing typically focuses on features of the flow
that remain coherent over relevant timescales and organize transport by, for example, attracting,
repelling, or containing the material. The most well known of such structures are the Lagrangian
coherent structures [31], which are distinguished low-dimensional barriers to transport, and almost-
coherent sets [32], which are regions in which the transport is contained. In all cases, the true
challenge remains to define the objects of interest so that they encompass all relevant physical
phenomena, and to propose and implement an algorithm that identifies them, especially in transient
or aperiodic flows [31,33–37]. The detection of coherent structures offers especially significant
applications to geophysical flows, where these techniques have been used to understand climate
change and plan responses to ecological catastrophes [17,38–41]. The most commonly used tools
to detect coherent structures are based on material deformation [31,42–44] and on probabilistic
[32,45] properties of the flow. A comparison of the wide range of approaches for detecting coherent
structures can be found in Ref. [36].

Input data in the form of continuous velocity field stands in contrast to observations in oceans
and atmosphere that are recorded by deploying sparse sensors that measure physical properties
(temperature, salinity, etc.) of the fluid flow as they are advected [46–48]. The relative sparsity of
sensors prevents a reliable estimation of a continuous velocity field; to analyze such sparse data sets,
a number of methods have been developed that require only a finite set of discretized trajectories
[49–54].

Sparse-data methods include the braid dynamics methods employed in this paper, which require
only a set of discrete trajectories instead of the full velocity field. Following Boyland et al. [55],
the study of the topological properties of fluid stirring has developed into an active research area.
The topological approach is particularly well suited to the study of mixing by rods, vortices, or
otherwise distinguished Lagrangian trajectories [56–64]. In particular Thiffeault [56,65], Allshouse
and Thiffeault [49], Budišić and Thiffeault [66] used braid theory to characterize mixing and
coherent structures from planar flows solely from particle trajectories, forming the basis for the
approaches used in this paper.

In planar flows, the rate of exponential growth of material interfaces corresponds to the topologi-
cal entropy of the flow [55,56,65,67–70], which quantifies the complexity of trajectories evolving in
a dynamical system. Techniques for estimating topological entropy (without estimating growth rate
first) typically use precise velocity fields to compute unstable periodic orbits [71–74], or intricate
partitions of the flow [75,76]. Budišić and Thiffeault [66] developed a method for calculating the
Finite-Time Braiding Exponent (FTBE), which is an approximation for the topological entropy that
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is more applicable to finite-time, sparse data sets. The FTBE provides a robust measure of mixing
that approaches the topological entropy as the number of trajectories is increased. More recently,
Roberts et al. [64] developed a braid-free approach that also estimates topological entropy based on
the relationship with growth of material lines, without detailed knowledge of the velocity field.

Since the methods of Budišić and Thiffeault [66] and Allshouse and Thiffeault [49] were
developed and applied to model flows, the principal aim of this paper is to evaluate how well suited
braid theory is for the characterization of experimental fluid flows. The flow studied here is the
rotor-oscillator Stokes flow, a canonical example of a flow field that possesses both chaotic and
coherent regions, described by Hackborn et al. [77] and Weldon et al. [19]. In contrast to flows such
as the double-gyre, Bickley jet, or the Duffing oscillator, which have been more commonly used to
analyze material transport, the rotor-oscillator flow has been analyzed both as an analytical model
[77] and as an experimental flow [19]. The braid-based analysis will be twofold: it will provide, first,
an identification of regions of the flow surrounded by minimally growing material lines (typically,
coherent material sets), and, second, an estimation of maximum growth rate of material interfaces
(typically found in the chaotic region). Both calculations will be applied to the analytical model
and to the experimental data in an effort to expose and address challenges that come with analyzing
nonidealized flows.

The paper is organized as follows. Section II presents the model and experimental flows used
in this study. Section III gives a short summary of the braid representation of the flow kinematics.
Next, the paper demonstrates how two particular analysis methods can be applied to model and
experimental flows: Sec. IV explains the detection of coherent structures, comparing the analysis
of numerically advected and experimental particle trajectories, while Sec. V explains estimation
of material growth, comparing the analysis of model and experimental velocity fields. Section VI
summarizes what has been learned by employing braid dynamics to study model and experimental
rotor-oscillator flows.

II. THE ROTOR-OSCILLATOR FLOW

The rotor-oscillator flow is a planar, nonautonomous, incompressible flow where the motion
of the fluid is induced by a rotor that simultaneously rotates about its axis and oscillates along
a channel. Experimentally, particle motion is confined to a two-dimensional fluid layer in a
rectangular tank, with advection induced by a fast-spinning cylinder that also oscillates in the
longitudinal direction. This section summarizes the analytic model and the experimental realization;
further details are found in Refs. [19,77,78].

A. Analytic model

Hackborn et al. [77] studied the rotor-oscillator flow, an asymmetric flow between parallel plates
driven by the rotation of a cylinder (rotor) and the longitudinal oscillation of one of the walls of the
flow tank (oscillator). In a suitable parameter regime, the flow exhibits a main vortex around the
rotor, with two secondary recirculating vortices on each side of the rotor. Each of those vortices
creates its own, progressively weaker, array of vortices, which will not play a role in this work.

We take coordinates (x, y) ∈ [−h, h] × R, with the walls of the channel at x = ±h. The
cylindrical rotor starts at y = 0 at t = 0 and moves along the line x = c. The rotor has radius a
and angular velocity ω. A diagram of the geometry is shown in Fig. 1. (The peculiar interchange of
x and y axes is for consistency with earlier work [77].)

Without longitudinal (y) oscillation, the rotating cylinder induces, in the Stokes limit, a steady
velocity field. In nondimensional coordinates, the spanwise width is x ∈ [−1, 1] with the position
of the rotor c = 0.54 set to match Ref. [77]. We absorb the rotation frequency ω into the
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FIG. 1. Geometry for the rotor-oscillator flow. The walls are at x = ±h, with the rotor oscillating in y at
constant x = c.

nondimensional time t , so the resulting stream function ψ (x, y) [77,78] is

ψ (x, y) = 1
2 log[ f (x, y)]︸ ︷︷ ︸

point vortex

+
∫ ∞

0
g(x, k) cos(ky) dk

︸ ︷︷ ︸
boundary effects

, (1)

where

f (x, y) = cosh(πy/2) − cos(π (c − x)/2)

cosh(πy/2) + cos(π (c + x)/2)
,

g(x, k) = 2[tanh k cosh kx − x sinh kx] cosh kc

sinh 2k + 2k
+ 2[coth k sinh kx − x cosh kx] sinh kc

sinh 2k − 2k
.

Following Ref. [77], we assume the rotor to be a point vortex with a vanishing diameter (a → 0)
while keeping a2ω constant. The time nondimensionalization is kept as follows:

ta2ω

h2
→ t . (2)

The longitudinal oscillation of frequency � is modeled by the time-periodic translation of the
steady stream function ψ (x, y, t ):

�(x, y, t ) = ψ (x, y − ε sin λt ), (3)

with nondimensional parameters

ε = V h/2a2ω, λ = h2�/a2ω, (4)

that combine the channel width h, magnitude of oscillation V , and angular frequencies of rotation
ω and of oscillation �. The use of a translated steady solution is valid as long as � is not so large
as to invalidate the Stokes approximation.

Passive particles are advected via

ẋ(t ) = −∂yψ (x, y − ε sin λt ),

ẏ(t ) = ∂xψ (x, y − ε sin λt ). (5)

Fixing c = 0.54, Hackborn et al. [77] varied ε and λ to identify regimes with chaotic dynamics and
islands of coherence using Poincaré maps. Figure 2 shows a Poincaré map generated with ε = 0.125
and λ = 2π/5.

Timescales that govern the evolution of a single Lagrangian trajectory vary widely depending on
its location. Trajectories that encounter the rotor will circle around it rapidly; trajectories that remain
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FIG. 2. (a) Poincaré map for the model rotor-oscillator flow [19,77] with c = 0.54, ε = 0.125, λ = 2π/5
simulated for 300 forcing cycles. The blue and red colors depend on the average value of the y coordinate along
simulated trajectories. The Poincaré map is sampled at the rotor’s oscillation period τ . (b) Detailed view of the
green dashed frame in (a).

on the outside edge of both the rotor and recirculating vortices evolve on timescales separated by
two or more orders of magnitude compared to the rotor rotation.

B. Experimental flow

The experimental apparatus was inspired by Weldon et al. [19] and is depicted in Fig. 3. The
main difference compared to the analytical model of Hackborn et al. [77] is in apparent change of
the reference frame: they fix the rotor and moved the walls, while Weldon et al. [19] fix the walls
and move the rotor.

The rotor-oscillator system was recreated in a 90 mm × 402 mm acrylic flow tank. For the rotor,
an aluminum rod of diameter a = 3.165 mm was attached to a stepper motor through a plastic
sleeve for thermal insulation. To longitudinally oscillate the rotor, the stepper motor was mounted
to a longitudinal traverse controlled by a second stepper motor.

The tank and the traverse were mounted onto aluminum frames and aligned horizontally. To
visualize a horizontal cross section of the system, a front-faced mirror was placed underneath the
tank at a 45◦ angle. A camera was mounted facing the mirror with the rod at the center of the field
of view. The experimental images were acquired through the mirror reflection at 45◦ and recorded
with a LaVision Imager Pro X 4M 0 2042 × 2042 pixels with a 28 mm lens. Image acquisition,
calibration, and cross-correlation were performed with LaVision’s DaVis imaging software. To
mitigate three-dimensional effects due to evaporation or interaction with the bottom wall, the fluid
system was trapped between a top layer of vegetable oil and a bottom layer of FC-40 coolant.

Two separate experiments were used to record properties of the flow: a particle tracking
experiment (PT, Sec. II B 1), to record Lagrangian trajectories, and a particle image velocimetry
experiment (PIV, Sec. II B 2), to record instantaneous velocity fields. Table I summarizes the
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TABLE I. Experimental parameters.

Symbol Description Value (PIV) Value (PT)

h Half-width of the channel 0.045 m
a Rotor radius 0.003165 m
c Distance of rotor from the wall 0.02376 m
τ̃ Translational period of oscillation 96.5201 s 94.7163 s
V Translational velocity magnitude 5.8275 × 10−4 m 5.9385 × 10−4 m
� Translational angular velocity 0.0651 rad/s 0.0663 rad/s
ω Rotational angular velocity 10.4720 rad/s
Re Reynolds numbera 2.6640
f Sampling frequency 1 Hzb 10 Hz
ε Nondim. oscillation magnitude (V h/2a2ω) 0.1250 0.1274
λ Nondim. oscillation ang. frequency (h2�/ωa2) 2π/5 ≈ 1.2566 1.2806

aIn calculating the Reynolds number for the experiments, we use ωa for the characteristic linear velocity and 2h
as the characteristic length, resulting in Re = 2ωah/ν. Hackborn et al. [77] use a as the characteristic length,
resulting in Re = a2ω/ν ≈ 9.3682 × 10−2 here.
bEffective frequency of sampling. See Sec. II B 2 for details.

FIG. 3. Schematics of the experimental setup for the Hackborn-Weldon rotor-oscillator flow [19,77],
with still walls and an oscillating rotor. (a) Experimental apparatus setup. (b) Fluid system to set up a
two-dimensional flow through density layers for the PT experiment. In the PIV experiment, the tracer particles
were mixed to a single layer of glycerol, and a laser sheet was projected horizontally.
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experimental parameters for the two experiments. For all experiments, the Reynolds number was
estimated to be O(1).

1. Particle tracking (PT) experiment

Tracer particles were custom-made from cellulose acetate polymer spheres by Cospheric, with
diameter 1.78 mm and density 1.285 g/cm3. The particles were painted fluorescent to create a high
light contrast and thereby enhance image acquisition. The coated particles were then filtered by
density to ensure they remained on a virtually two-dimensional plane, the surface between the
lower layer of salty glycerol, of density 1.297 g/cm3, and the upper layer of pure glycerol, of
density 1.261 g/cm3. The denser glycerol solution was mixed with salt and water to match the
viscosity of pure glycerol, measured to be ν = 1.1197 × 10−3 m2/s. The fluorescent particles were
illuminated with an ultraviolet light in a dark room. With the bead diameter D = 1.78 × 10−3 m,
the viscosity ν, a rod of radius a = 3.165 mm, and angular velocity of ω = 10.4720 rad/s,
the Reynold number of the beads at the rotor’s boundary was Rebead = (ωa)D

ν
≈ 5.2689 × 10−2.

The velocity being maximized at the rotor’s boundary, Rebead is an upper bound for the flow field,
so the neutrally buoyant beads are assumed to move as passive tracers.

The images were acquired at a frequency f = 10 Hz. There were 77 918 frames (time steps)
recorded, for a total run duration of 7791.8 s, corresponding to about 82.3 periods. The particle
trajectories were obtained through a MATLAB package, the Tracking Code Repository [79]. For
the particle tracking experiment, the nondimensional parameters were ε = 0.1274 and λ = 1.2806.
The physical period of oscillation was τ̃ = 94.7163 s.

2. Particle image velocimetry (PIV) experiment

Tracers for the PIV experiment were hollow glass spheres of mean diameter 8–12 μm mixed
with glycerol. The Reynolds number of the glass spheres at the rotor’s boundary was Resphere ≈
1.9977 × 10−4, and the spheres are assumed to move as passive tracers. A pulsed Nd:YAG laser
was powered to illuminate the glycerol-glass spheres solution in a horizontal plane normal to the
tank front wall. To reduce artifacts and noise in the velocity fields, the domain was partitioned
into two for image processing in DaVis; this helped compensate for the wide range of velocities
between the rod’s rotation and the slower motion on the outer domain. First, the region around the
rod was processed at f = 10 Hz and bin-averaged in 10-image blocks; second, the outer domain
was processed at f = 1 Hz and matched to the bin centers of the first part. The resulting effective
sampling rate was f = 1 Hz. There were 10 730 frames recorded, for a total run duration of 1073 s,
corresponding to about 11.1 periods. For the PIV experiment, the nondimensional parameters were
ε = 0.1250 and λ = 1.2566. The physical period of rotor oscillation was τ̃ = {96.5201 s, which
corresponds to five dimensionless time units.

The velocity fields were postprocessed using the approach of Kelley and Ouellette [80] to impose
incompressibility for the PIV-obtained velocity field; this was necessary because of the multiple
repeated periods over which the PIV data were used for our investigations. Figure 4 demonstrates
that instantaneous streamlines of the model and experimental velocity fields qualitatively match.
Due to experimental constraints, however, the streamlines obtained from the PIV experiments
deviate from the streamlines obtained from the model velocity fields. Some of these discrepancies
come from the fundamental differences between the model and experimental flow. First, the model
assumes the rotor to be a point vortex, whereas a physical rod had to be present to stir the fluid. In
spite of the small rod diameter of a = 3.165 mm, the flows deviate around the rotor. Second, the
model assumes a Stokes flow with zero Reynolds number: with a �= 0 as the characteristic length,
the experimental Reynolds number is Re ≈ 9.3682 × 10−2, as described in Table I. Additionally, the
deviations are especially prominent near the lateral boundaries, due to the laser beam’s reflection
at the walls of the tank, which introduced artifacts in the velocity fields. The PIV record is not
available for the full width of the channel, but rather in the approximate band −0.85 < x < 0.85 in
the nondimensional spanwise coordinate.
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FIG. 4. Snapshot of instantaneous streamlines of (a) the model velocity field [19,77] with c = 0.54, ε =
0.125, λ = 2π/5 and (b) the PIV-recorded experimental velocity field at the same time instance.

To create synthetic trajectories in the experimental velocity field, the velocities were linearly
interpolated between spatial nodes and time samples before passed on to the trajectory integrator.
Trajectories were integrated using the variable-step, variable-order MATLAB ode15s [81] algo-
rithm to manage the stiffness of the differential equations, which is a consequence of the large
difference in timescales of primary and secondary rotors. To simulate times longer than the recorded
number of oscillation periods, the PIV velocity field was periodized in time.

III. BRAID DYNAMICS

Braid theory is an algebraic way of characterizing and classifying continuous maps based on
their topological properties. In our application, the continuous maps are the flow maps generated
by the two-dimensional (unsteady) fluid velocity field over a particular time interval, as studied in
Refs. [55–57,65,67]. The “input data” for the braid theory characterization of fluid flows are a set
of N continuous particle trajectories evolved concurrently over a finite time interval; in particular,
the analysis does not require access to the velocity field or its gradients.

Braids are constructed from a set of N particle trajectories pi(t ) ∈ R2, i = 1, 2, . . . , N , with
0 � t � T . A physical braid is the embedding of trajectories in the three-dimensional space-time
[Fig. 5(a)], where individual trajectories (strands) weave around each other. A topological braid
[Fig. 5(c)] is a reduced representation of the physical braid that retains only the sequence of
exchanges of the strand order with respect to a fixed space-time plane onto which the strands are
projected. This plane can be chosen largely arbitrarily for the purposes of this article [56,65,66,82].
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FIG. 5. A physical braid and a corresponding topological braid generated from five trajectories. In all
diagrams the time flows from bottom to top. The sequence of generators (ordered from left to right in increasing
time) is B = σ−1

2 σ4σ1σ2σ3σ
−1
2 σ−1

4 σ2σ4σ3σ
−1
4 .

Strand exchanges can be represented by a sequence of symbols σi called Artin braid generators.
The generator σi represents the crossing of the ith strand in front of the (i + 1)th strand in Fig. 5(c),
where the index i indicates the order of strands from left to right just before the crossing occurs; the
inverse generator σ−1

i represents the crossing of ith strand behind the (i + 1)th strand.
A topological braid constructed from a given set of trajectories captures topological information

about the flow. The topological analog of material advection in fluid flows is the action of a braid on
topological loops. A topological loop is a collection of closed, nonintersecting curves that enclose
two or more (but not all) strands in the braid (Fig. 6). The curves in a loop are “pulled tight,” i.e.,
they can be pictured as rubber bands tightly wrapped around strands of the physical braid. The
action of a braid B on a loop , denoted by B, is visualized by sliding the rubber bands along the
physical braid in the direction of time. As strands exchange places, the loop is forced to stretch since
it cannot pass through the strands (Fig. 6).

FIG. 6. Two topological loops before (left column) and after (right column) action of the braid from Fig. 5.
The strands of the braid are shown in black as cross sections. The Dynnikov vectors before and after the braid

action in (a) are [1 1 1 0 0 0]
B−→ [0 −2 3 0 −1 0] and in (b) [0 0 0 0 0 1]

B−→ [0 −1 1 0 −1 0].
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FIG. 7. Coordinate system based on intersection numbers αi, βi used to calculate Dynnikov coordinates
(6). In this example of N = 5 strands, α1,3,5 = 0, α2,4,6 = 2, β1,2,3,4 = 2, resulting in the Dynnikov vector
[1 1 1 0 0 0]. Precise location of strands in the x, y space is not important, only their order along the projection
coordinate.

Computationally, any loop acted on by the N-strand braid can be represented by a vector of
2N − 4 signed integers, and vice versa, through the Dynnikov coordinatization of loops [65,83,84].
Figure 7 demonstrates how to calculate the Dynnokov coordinates of a loop around N = 5 strands.
The intersection numbers α1, α3, . . . , α2N−3 count the number of intersections between the tightened
loop and axes above the punctures, while α2, α4, . . . , α2N−4 and β1, . . . , βN−1 count the number of
intersections with axes below the punctures and between the punctures, respectively. The Dynnikov
coordinate vector is calculated from intersection numbers as

[a1 a2 · · · aN−2 b1 b2 · · · bN−2], where an = (α2n − α2n−1)/2, bn = (βn+1 − βn)/2.

(6)

The action of each braid generator σi is then represented by a piecewise-linear map σi:Z2N−4 →
Z2N−4; explicit expressions for σi can be found in Refs. [65,84]. All braid computations and
visualizations in this paper have been produced using the MATLAB toolbox braidlab [82].

To measure the amount of stretching, we compute the “length” of a topological loop || as
the number of times it intersects the horizontal axis that would pass through all points in Fig. 6.
Although the quantity || on its own does not correspond to spatial length of a material curve, it is
useful for characterizing the relative loop growth factor

|B|/||, (7)

measuring the ratio of loop length before and after application of the braid B. The loop growth factor
will play a prominent role in the following sections as a criterion for searching for maximally and
minimally growing loops , given a specific braid B.

The topological braid can be interpreted as a dramatically reduced representation of the full flow
using only a finite number of trajectories, with the physical trajectories represented by topological
operations, and material advection represented by stretching of “rubber-band” loops. Despite their
simplicity, braid-based calculations provide bounds on the rate of material stretching in the full flow,
and approximate boundaries of Lagrangian coherent structures, as explained in Secs. IV and V.
Additionally, the reduction also yields significant speed up as compared to material line advection,
which can rely on expensive interpolation methods [85].

IV. DETECTION OF COHERENT STRUCTURES

The braid theory approach to detect coherent structures offers a unique mechanism for parti-
tioning different regions of the flow based on the entanglement of trajectories, as opposed to their
relative positions [50] and material deformation [86]. A coherent structure identified using braids is
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FIG. 8. (a) Particles (dots) and loops in physical space. Particles in the identified structure (blue) are
connected by straight lines (solid) and surrounded by the corresponding straight pair loop (dashed and dotted
lines). The coherent structure loop (blue line) links the two straight pair loops. (b) The particles and loops in
standard form, with points aligned on the real axis. The Dynnikov vectors are [0 1 0 −1 0 −1 0 0 0 1] for the
blue curve, [0 1 1 −1 0 −1 0 0 0 1] for the red curve, and [0 1 0 0 0 −1 0 1 0 0] for the green curve.

defined as a topological loop that does not grow under the action of the braid. The loop provides an
approximate physical boundary that delineates an internal fluid subdomain that does not mix with
exterior fluid. We present an overview of the theory developed by Allshouse and Thiffeault [49] and
show how the current work improves the algorithm to more efficiently detect coherent structures
for larger trajectory sets. The method is then applied to a synthetic set of trajectories based on the
model velocity field presented in Sec. II A and on experimentally measured trajectories, allowing
for comparison between theory and experiments.

A. Theory

There are several different definitions of coherent structures used for characterizing patches of
passive tracer that do not disperse under Lagrangian transport [31,44,87]. In the context of braid
theory, Allshouse and Thiffeault [49] define coherent sets as a set of trajectories surrounded by an
initially “simple” topological loop that does not grow, or grows subexponentially, over the duration
of the braid. Subexponential growth can occur as particles rotate as a patch, so we do not consider
this type of growth as indicative of long term mixing. We now summarize the relevant techniques
from Ref. [49] with modifications to make the presentation more compact.

Simple topological loops are those whose Dynnikov coordinates (see Sec. III) contain only
{±1, 0}, i.e., their coordinate vectors are {±1, 0}2N−4 ⊂ Z2N−4. As the magnitude of elements
in the coordinate vectors relates to the number of folds of a loop around particles, these loops
will have one or no folds as they surround particles (see Fig. 8 for examples). As mentioned in
Ref. [49], enumerating all simple loops and checking how fast they grow under the action of the
braid is computationally intractable, even for modestly size braids: #({±1, 0}2N−4) = 32N−4 ∼ 9N ,
a number that is prohibitively large for even N ≈ 20 strands in a braid. Therefore, we look to reduce
the number of simple loops considered, while still retaining a way to determine which advected
particles are in coherent structures.

To reduce the number of loops considered, Allshouse and Thiffeault [49] focus on pair loops
that enclose only two out of the N particles. Although there are (N

2 ) = N (N − 1)/2 particle pairs to
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choose, there are still many simple loops that enclose any given pair. In contrast to Ref. [49] where
loops were completely above or below all particles between the particle pair, here we consider a
single pair loop for each pair, namely, the one that can be “pinched” to a straight line in the initial
conditions plane; we term these straight pair loops. This creates a set of (N

2 ) loops to consider,
which is half as many as in Ref. [49], while also yielding loops that have a simpler spatial shapes.
Figure 8(a) contains the lines (red and green) connecting pairs of particles, and the corresponding
straight pair loops in standard form are presented in Fig. 8(b).

The identification of coherent structures as loops that do not grow under the action of the braid
is broken into two parts: identification of sets of particles enclosed by a coherent structure, and
creation of a loop around those particles that does not grow. The starting point for identifying sets
of particles that are inside a coherent structure is the forming of straight pair loops i j connecting
particles pi, p j ∈ R2 in the initial condition plane. We represent the collection of N trajectories by
vertices in (a family of) undirected graphs G; the set of particles enclosed by a coherent structures
will correspond to connected components in these graphs. The growth of the straight pair loops
under the action of the braid will determine which edges ei j are included or excluded in G.

Based on the loop growth rate (7), compute Li j as the exponential growth rate of the straight pair
loop i j under the action of the braid

Li j = 1

T
log

|Bi j |
|i j | . (8)

The graph of vertices G is fully connected and undirected as there is a pair loop between each
pair of vertices, with edge weight Li j . Fix a threshold � � 0 and construct a family of subgraphs
G� ⊂ G, retaining only edges that satisfy Li j � �. G� can be interpreted as a subgraph of G where
connections are made only by simple straight pair loops whose exponential growth rate is less
than �.

For any � there may be vertices in G� that remain disconnected from any other vertex. In
particular, vertices that are disconnected at � = 0 are deemed incoherent, as they are not enclosed
by any slow-growing pair loops. On the other hand, coherent structures will correspond to vertices
that are mutually connected (connected components of the graph). Particles are grouped into a
coherent structure by greedy agglomeration of the connected vertices. We expect that, as � is
increased from its lowest value, the number of coherent structures initially grows as more pair
loops become admissible. Eventually, additional pair loops that are added will act as connections
between preexisting connected components, merging pairs of coherent structures. This will result in
a decrease in the number of coherent structures, and growth in size of individual coherent structures,
until there is only one large structure containing all particles within the system.

Once a set of particles has been identified as being contained by a coherent structure, the
corresponding structure is the composite of the straight pair loops that connect the set of particles. In
the example presented in Fig. 8, three particles (colored in blue) are connected by straight pair loops,
a green loop and a red loop. The final step in the coherent structure identification is to merge the
nongrowing straight pair loops into a single nonstraight loop, which we consider to be the boundary
of the coherent structure. In Fig. 8 the coherent structure surrounds both straight pair loops without
enveloping any of the particles outside the coherent structure.

B. Coherent structures in the model system

While the braid method for detecting coherent structures was validated by Allshouse and
Thiffeault [49], the use of only straight pair loops is a modification that requires similar verification.
To do so, we analyze a set of trajectories generated using the model velocity field presented in
Sec. II A. Because only a single pair loop per pair of trajectories is analyzed, it is possible to process
a larger number of trajectories. Increasing the number of trajectories while keeping the domain size
constant has the potential to more accurately locate the boundary of the coherent set with the braid
method. As demonstrated by Allshouse and Thiffeault [49], the braid method requires multiple
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FIG. 9. (a) The initial positions of N = 300 analytic model trajectories (dots), colored based on their
coherent structure assignment with unassigned particles in black. The lines connecting particles indicate
straight pair loops that have a growth ratio less than the threshold, with less opaque lines representing loops
that grow more. (b) and (c) Zoomed-in regions corresponding to the gray dashed boxes in (a). The coherent
structures corresponding to slowly growing loops for each set of points are drawn in the corresponding color.

particles to be located within a coherent structure in order for it to be identified; by increasing
the number of trajectories analyzed, it is thus more likely that smaller structures will be identified.
For the numerically calculated trajectories, 300 trajectories are analyzed, and the resulting coherent
structures can be compared with the Poincaré map in Fig. 2.

The numerically calculated trajectories are randomly distributed throughout the entire domain
and are advected for 50 periods to match the PT experiment. A sampling rate of 100 measurements
per period is sufficient to properly represent the braid. The 300-trajectory braid is represented by
approximately 2.15 million generators. The application of the braid to all of the straight pair loops
is the bottleneck of the algorithm and takes three hours on a laptop. We use a growth rate threshold
of Li j = 1/T to identify the straight pair loops that do not grow rapidly over the time interval. Using
this growth rate, we identify loops that grow by a factor of e1 over the time interval [see (8)], which
is less than 1% of all the pair loops.

The network of particles connected by a slow-growing, straight pair loop is presented as lines
in Fig. 9(a). The particles that are connected by a network of these pair loops form a coherent set,
where each set has a different coloring of both the particles and the network connections. Finally,
the coherent structure, which is represented by the slow-growing loop that surrounds all the particles
of a particular coherent set, can be identified. These resulting slow-growing loops are presented in
Figs. 9(b) and 9(c).

Four different types of coherent structures were identified by the method. The two structures
in red and blue represent each of the main recirculating vortices. Over the time interval, the
topological length of the left and the right recirculating vortex loops grow by a factor of 1.24 and
1.48, respectively. Near the left vortex (blue), there are four additional structures identified at its
perimeter: these structures are plotted in magenta, purple, yellow, and dark purple. Each of these
features is comprised of two or three particles, and in all cases, the structures closely orbit the
recirculating vortex without penetrating the boundary. Another type of coherent structure identified
is presented in light and dark green in Fig. 9(a). These two structures correspond to particles that
orbit around the chaotic sea and the recirculating vortices. The dark green structure grows by a
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FIG. 10. (a) The initial positions of N = 33 experimental trajectories (dots) and identified coherent loops
(black lines). Three coherent structures are identified (red, blue, and green). The straight pair loops that have a
growth rate of less than the threshold are represented as straight lines connecting the particles. The less opaque
the line, the greater the growth rate. (b) The final position of the trajectories and the deformed coherent loops.

factor of 1.47, while the light green structure shrinks to 0.6 times its initial length due to the particles
becoming closer in the topological projection. Finally, the fourth type of structure is identified in
gray in Fig. 9(a) near (1.89, 0.13) cm. This structure is made up of two particles that are a physical
distance of 0.01 cm apart. Because of their close proximity, these particles do not separate over the
50 periods of advection, despite being in the chaotic sea.

C. Coherent structures in the experimental system

Having identified the main coherent structures in the model system, we next apply the method to
experimentally observed trajectories. The particle trajectories generated by the experimental system
(see Sec. II B 1 and Table I) can be applied to the coherent structure method to identify the structures
in the flow field. The first 50 periods of advection are considered, throughout which 33 trajectories
remained in the imaging domain for the duration of the time interval. These 33 trajectories produce
a braid made up of 9592 generators. Using the same length ratio threshold as the analytic model
trajectory analysis, we identified three coherent sets of particles. Each of the sets is surrounded by a
nongrowing loop. Applying the method to this data set takes less than 10 sec.

The initial and final position of the particles and the corresponding coherent structures are
presented in Fig. 10. The two main recirculating vortices are identified. The set of particles orbiting
around the outside of the domain is also identified. For the experiment, particles that pass through
the chaotic sea only during the final periods also belong to this outer structure because not enough
mixing with the structure has occurred for some of these particles to be excluded from the orbit
structure. For all three cases, the braided length of the topological loop |B| either shrinks or
remains the same. The left and right recirculating vortex structures correspond to ratios of 1 and
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0.86, respectively, while the orbiting structure ratios 0.92, demonstrating that perceivably coherent
structures result in roughly constant lengths of topological loops. Having demonstrated the coherent
structures approach to the PT trajectories, the analysis was reiterated on data sets of synthetic PIV
trajectories. Each recirculating vortex was detected with resolution dependent on the trajectory
initialization. The Supplemental Material figure [88] presents the coherent structures detected from
two sample sets of synthetic trajectories, one with 33 trajectories and one with 100 trajectories.

D. Comparison

These results demonstrate the ability of the braid theory approach to detected coherent structures
accurately and robustly in an experimental, periodically forced flow. The method found similar
qualitative results using the experimental and analytic model trajectories. Despite the lower particle
density in the experimental system, the coherent structures representing the vortex edges were
detected, even with the structures containing as few as three particles, which shows the reliability of
the method even for sparse data sets. The small-scale features detected in the model flow were not
identified from the experimental data because too few particles were seeded in those regions.

When comparing the braid-based coherent structures to the Poincaré map for the model flow,
there are similarities and differences. First, the main recirculating vortices, represented in red and
blue for both the model and experimental examples, correspond to the islands identified in Fig. 2(b).
The second feature identified is an outer structure corresponding to a set of particles that are
advected at very low velocities around the main vortex system. This outer structure encompassed
a much higher proportion of particles for the experimental flow than for the theoretical flow. This
may be due to the sparsity of the data set: if fewer trajectories are present, then they may be less
likely to entangle with the chaotic sea.

To improve the resolution of the braid-based coherent structures, more particle trajectories are
needed to improve the spatiotemporal coverage. In laboratory experiments, however, there are two
main limitations to accomplishing this. Due to imagery and tracking issues, the trajectories of
several experimental particles could not be fully reconstructed for all periods. This is why only 33
out of 80 trajectories were retained for the analysis. The braid approach requires all trajectories
to span the same time interval, and it needs a continuous data set, i.e., no missing data points
within trajectories. The imagery issue was mostly due to the challenge of having a contrast between
particles and background flow that is high enough for particles to be detected at each time step.
The tracking issue was mostly due to the wide range of velocities between particles located close
to the rotor and particles in the outer region, which made the construction of trajectories from
their respective particles difficult. The other main challenge to obtaining a sufficient spatiotemporal
coverage is that as the particle density increases, the particle-particle interactions become more
important and can cause the flow to significantly deviate from the analytic model. Some of the
features of interest present in the flow being small-sized, it was therefore difficult to seed the spatial
domain to discern all of them. Nonetheless, the remaining trajectories were already sufficient to
succeed at detecting the largest coherent structures using the braid theory approach.

V. ESTIMATING THE GROWTH RATE OF MATERIAL INTERFACES

Newhouse and Yomdin [68–70] established that, in planar flows, the exponential growth rate
of material interfaces is equal to the topological entropy of the flow. In turn, topological entropy
of the flow is bounded below by braid entropy, a measure of complexity of braids of any
periodic trajectories in the flow [55,58]. Adding trajectories to a braid can only increase the braid
entropy, therefore a reasonable approximation strategy involves computing braid entropies of braids
comprising more and more trajectories in an effort to narrow the gap between the braid and
topological entropy. Applying this strategy to experimentally recorded or simulated trajectories is
difficult to do directly, as most trajectories are not periodic. Nevertheless, Budišić and Thiffeault
[66] demonstrated that computing a so-called Finite-Time Braiding Exponent (FTBE) provides
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a reasonable data-driven estimate of braid entropy and consequently an estimate of the rate of
exponential growth of material interfaces. In this section, we apply this procedure to evaluate the
degree of correspondence between the experimental and model rotor-oscillator flows.

A. Theory

The most straightforward way to quantify the complexity of a braid is to count the number of
crossings in the braid, while avoiding counting trivial crossings. For example, two braids with two
strands each:

both have three crossings, since the two central crossings in the top braid can be disentangled
even with the endpoints pinned. More rigorously, before counting crossings the braid is reduced
by employing braid group rules that cancel out such intersections. Define braid length #B to be the
number of intersections after the braid is reduced. Given a topological braid BN,T that corresponds
to N trajectories collected over a time interval of duration T , the average braid growth rate of BN,T

is

G(BN,T ) = #BN,T

T
. (9)

The number of intersections alone is a poor indicator of complexity. For example, the two three-
stranded braids

have the same length, but the strands in the bottom braid are intertwined in a more intricate manner.
The topological entropy of a braid, or simply braid entropy, measures the complexity of a braid

by quantifying how fast loops grow as they are slid along the braid (as in Fig. 6). Braid entropy
can be computed by finding the largest rate of growth of a topological loop under a repeated
action of the braid [56,89]. When the physical braid comprises periodic trajectories, the entropy
of the associated topological braid is a lower bound for the topological entropy of the flow. This
property was successfully exploited to create stirring protocols for rod-based stirrers [23,55,57,90],
to design spatially periodic mixers [91], and to analyze stirring of a passive tracer by compact
coherent structures (so-called ghost rods) [57,58,63,92].

When trajectories in the physical braid are not periodic, the theory is less developed compared to
the periodic case, and published works rely on numerical simulations [56,65]. Nevertheless, when
trajectory segments are long enough, it is possible to define the FTBE [66], which measures the
exponential growth rate of a particular topological loop during a single application of a braid. (By
comparison, topological entropy measures asymptotic exponential growth with respect to repeated
application of the braid.)

The FTBE is given by

FTBE(BN,T ) = 1

T
log

|BN,T 0|
|0| , (10)

where 0 is the topological loop in Fig. 11 (top). The particular loop 0 is chosen so that any
nontrivial braid results in a nonzero deformation [66]. To ensure this, the components of the loop
are “anchored” on the boundary of the domain, which is topologically equivalent to adding an
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FIG. 11. Top: Loop 0 used to compute the FTBE, with Dynnikov vector 0 = [0 0 0 0 −1 −1 − 1 −1].
Bottom: The loop after action of the braid from Fig. 5, with Dynnikov vector B0 = [−1 0 8 1 0 −6 −3 7].
Black dots: strands belonging to the braid; rightmost red dot: the auxiliary “anchor” strand. The length of a
loop is the number of intersections with the dashed axis (|0| = 4, |B0| = 36).

additional strand (depicted as the hollow circle) that does not participate in dynamics. Justifications
for the choice of 0 is given at length in Refs. [93,94].

Compared to (8) in Sec. IV, the FTBE is calculated for the specific loop 0 instead of a set of
simple pair loops. Further information on FTBE calculations can be found in Ref. [66].

Compared to the connection between topological entropy and the rate of material growth,
the connection between FTBEs and the rate of material growth is more heuristic. Nevertheless,
numerical investigations in a chaotic flow [66] show that FTBEs can indeed be used as a reasonable
proxy to the topological entropy of a braid in the absence of periodic Lagrangian trajectories in the
flow. Consequently, FTBEs characterizes the rate of growth of material lines in this work. Braid
growth G will be used as the independent variable in comparing FTBE of braids with different
number of strands.

B. Comparison of the model and experimental flows

We compare the complexity of numerical trajectories in the model and experimental velocity
fields. The parameters of the PIV experiment in Table I correspond to a nondimensional oscil-
lation period τ = 5 and nondimensional parameters ε = 0.1250 and λ = 1.2566. We initialized
trajectories in the chaotic region where primary and secondary vortices meet (see Fig. 4), as this
is where exponential growth of material lines is expected, and simulated them for 30 oscillation
periods (T = 30τ = 150). As the PIV velocity field was recorded over 11 oscillation periods (see
Sec. II B 2), to achieve T = 150 we repeated three times the first 10 oscillation periods.

Integrating PIV velocity field for long times compounds measurement errors in the velocities,
especially in the slow regions of the flow, resulting in unphysical trajectories, e.g., trajectories
that exit the domain. We removed such trajectories from the PIV data set and replaced them with
additional simulated trajectories until we obtained a full set of N = 600 well-behaved trajectories.
We collected the same number of trajectories from the model velocity field. Even though the
model and PIV velocity fields are qualitatively similar (see Fig. 4), the precise location of the
saddle-like point sitting between the primary and secondary vortices is slightly different. To ensure
that trajectories are seeded in the chaotic zone in both cases, we used a different initialization
rectangle for the two velocity fields. Consequently, Poincaré plots in Figure 12 show that both
data sets have similar qualitative features in the region of interest. Finally, we converted sets of
trajectories into braids using the MATLAB toolbox braidlab [82].

The braids of trajectories are characterized by their braid growth rates (9) and FTBE values (10),
which respectively quantify how many nontrivial strand crossings are generated, and the amount
of stretching that these crossings impose on topological material lines. We analyze ensembles
of S = 500 braids, each with n strands, in order to estimate distributions of FTBE and braid
growth. By randomly choosing n trajectories out of the full set of N = 600 simulated trajectories,
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FIG. 12. Poincaré plots of trajectories in braids used to compare FTBE and braid growth rate between
analytic model and PIV velocity fields. Trajectories were initialized uniformly inside the highlighted rectangles
(a) (x, y) ∈ [−0.25, −0.5] × [−0.5, 0.5] for model velocities; (b) (x, y) ∈ [−0.1, −0.5] × [−0.5, 0.5] for PIV
velocities. The Poincaré map is taken at the rotor’s oscillation period τ .

for each number of strands n = 3, . . . , N/2 = 300, we create S realizations of braids Bn,T . By
reusing trajectories in several braids, fewer trajectories need to be simulated, avoiding the costly
initialization and resimulation of trajectories for individual realizations. Further discussion of the
resampling step is in Ref. [66].

Figure 13 shows histograms of FTBEs and braid growth rates for both sets of braids with S = 500
realizations of the largest number of strands n = 300, subsampled from the full simulated set of N .
From a qualitative comparison with Poincaré plots, one would expect similar results for both model
and PIV velocity fields. The shapes of distributions are similar, but with quantitative differences.
The model velocity field shows a greater variance in the growth rate, while FTBE distributions are
nonoverlapping, indicating a significant separation of recorded FTBE values. The model velocity
field may allow initialization of rare-event trajectories more easily, e.g., in intricate periodic islands
that would be washed out in experimental system, potentially explaining the variance in growth. The
distance between FTBE distributions appears to be more significant, indicating that even though
the number of strand intersections is comparable, the intersections for the model flow generate
noticeably more complexity than the experiment.

Presently, we do not know of a trajectory mechanism that would explain this difference. We
do not think that the difference in initialization window (see Fig. 12) could cause this deviation,
as trajectories in both cases occupy the chaotic region surrounding the vortices despite the slight
numerical differences in locations of those regions.

Additionally, artificially degrading the quality of the model does not change the outcome. We
have sampled the model velocity field on the same grid as the PIV velocity field, and we performed
the same space-time interpolation that was used for the PIV velocity field. The resulting interpolated
model velocity field had the same FTBE values as the continuous model velocity field, suggesting
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FIG. 13. Standardized distributions of FTBEs and growth rates with S = 500 samples of n = 300-stranded
subbraids (out of N = 600 trajectories, T = 30τ = 150); nonstandardized histograms are inset into each graph.

that discretization and interpolation themselves are not the cause for the lower FTBE values in the
PIV flow. These results are not presented in figures, as they do not differ from the model flow results.

Ultimately, the quantitative difference between FTBE values may speak to the sensitivity of the
braid dynamics techniques, in particular FTBE, to differences between flows that are otherwise
challenging to determine.

In order to exhibit the dependence of distributions of FTBEs and growth rates on duration T and
number of strands n for braids Bn,T , we compute summary statistics and graph them against T and
n. FTBE distributions are represented by their maximum values, as braid entropy of any braid is a
lower bound for the topological entropy of the flow. Growth rate distributions are simply represented
by mean values, as there are no special considerations for this quantity.

The maximum FTBE in a sample should provide the best-available bound to topological entropy
for sufficiently long duration T [66]. Figure 14 demonstrates that the values of maximum FTBE and
mean growth stabilize well ahead the end of simulations, which leads us to conclude that studying
trajectories of length T = 30τ is representative of values in the long-time limit.

Intuitively, the more strands participate in a braid, the higher the potential for complexity.
Consequently in chaotic regions, where we initialized trajectories, both FTBE and braid growth
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FIG. 14. Dependence of the maximum FTBE and mean growth rate on trajectory duration T . The
comparison is between the maximum FTBE over a sample of n = 300-stranded braids and a single braid
of n = 600 strands, all from analytic model and PIV flows.

should increase with n. Figure 15 shows the observed dependence. The growth rate for both
flows increases quadratically with the number of strands, which can be explained by noting that
n strands can form (N

2 ) = O(n2) pairs. In chaotic regions, statistical quantities tend to mimic those

in stochastic processes with independent increments, so over large periods of time any of those (N
2 )

possible crossings should be equally likely. As more pairs are confined in a finite space, we observe
a quadratic increase in the number of crossings for a fixed time interval.

FTBE increases with n in both velocity fields, following the shape previously observed in
Ref. [66] for which there is no good mathematical model, as far as we are aware. Topological
entropy of the flow acts as the upper bound for the curve, but it is not clear if the bound is tight. In
planar flows, topological entropy corresponds to the maximal rate of exponential growth of material
lines. Since the FTBE is nonzero, we infer that both flows exhibit exponential growth of material
interfaces, although the FTBE estimates of these rates differ quantitatively. We do not know if the
difference is dynamically significant. Future work could contrast FTBE results to those obtained by
the recently developed eTEC technique [64] as an independent comparison.
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FIG. 15. Effect of increase in braid size (number of strands) on FTBE and growth rate of braids of
trajectories from model and PIV flows. Filled-in marks correspond to maximum of a sample of n-stranded
braids. Hollow marks correspond to the single 600-stranded braid.

Finally, we point out some challenges encountered here. An effective comparison of complexity
based on braid dynamics requires Lagrangian trajectories that cover many periods of oscillations,
which is experimentally challenging for several reasons. As explained in Sec. II B 2, the analytical
model assumes that the rotor is a point vortex and that the Reynolds number is zero. Additionally,
for the FTBE to be computed, the motors of the rotor and the oscillator must run for many hours,
which inevitably introduces some amount of thermal energy into the flow and slightly changes its
viscosity over time. For these reasons, we used only 10 periods of experimental data to reconstruct
the flow, which required artificially repeating the velocity field to obtain Lagrangian trajectories
over 30 periods. The chosen periods were the first 10 full periods after the first peak of oscillation,
discarding the transient dynamics after the initial acceleration.

VI. DISCUSSION

We demonstrated that methods based on braid dynamics can identify qualitative features of
material transport in model and experimental rotor-oscillator flows. In particular, Sec. IV shows
that braid dynamics can distinguish between nearby transport structures—secondary vortices and
a recirculating region—even when only a few Lagrangian trajectories are seeded in them, with
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structures being detected from as few as two trajectories. For quantities measuring material
deformation (FTBE and growth rate), we demonstrated in Sec. V that our two qualitatively similar
flows result in similar distributions, with parallel trends in their time evolution.

Based on these results, we expect that the braid dynamics methods will be useful in situations
where only a small number of Lagrangian trajectories from a two-dimensional flow is available,
either due to experimental challenges, or because only a rough estimate of flow properties is desired.

During the comparison of model and experimental data, it became clear that processed data
needs to satisfy, at a minimum, the following requirements in order to be successfully processed
using computational braid dynamics methods:

(1) There cannot be significant gaps in the discrete time series of particle tracks
(2) At least a few particles should be seeded in each structure to be detected
(3) Quantitative comparison of FTBE values is unreliable in regions without significant mixing
(4) Reliable calculation of FTBEs requires either long Lagrangian trajectories or measured

velocity fields that can be used to generate such trajectories.
As explained in Secs. IV D and V B, we have had to overcome several difficulties in order to

obtain a set of experimental particle tracks that were both sufficiently dense and gapless. Other
experimental setups may face similar challenges, which currently limits the range of application
of methods based on braid dynamics. Nonetheless, in experimental conditions that do satisfy
the requirements, braid dynamics techniques can be competitive with alternative techniques for
identifying coherent structures or quantifying the amount of mixing in a two-dimensional flow. We
do point out that the recently developed eTEC technique [64] shows promise in overcoming at least
some of the obstacles mentioned here.

We highlight three directions for future work to increase the usefulness of braid dynamics
techniques for experimental data. First, many more existing (gappy) data sets could be processed if
there was a technique for filling in missing segments in Lagrangian trajectories that do not introduce
significant additional entropy. Second, fewer strands would be needed if there existed a theoretical
model for growth of FTBEs with number of strands. Finally, the efficiency of search for coherent
structures could be improved by considering the geometry of the space of topological loops. Some
of these directions may be amenable to modern machine learning techniques.
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