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Velocity potential contours have been used to demarcate the boundary between the
interior and exterior of a plume, this for the case of adjacent plumes subject to merger
[Rooney, J. Fluid Mech. 771, R1 (2015)]. Whereas Rooney’s theory is restricted to
cases where the plume source is much smaller than the distance between neighboring
plume centers, the modification suggested herein allows individual plumes to originate
from an area source of arbitrary size. In the present theory, the height at which two
plumes fully merge is defined as the location where the combined plume boundary is no
longer concave. Referencing the plume boundary curvature, we introduce an alternative,
simpler entrainment formulation that does not involve the flux-balance parameter used in
Rooney’s revised model. The present model is applied to adjacent cooling tower plumes
and generates satisfactory agreement with previous model predictions, including those that
adopt a quite different criterion for plume merger.

DOI: 10.1103/PhysRevFluids.5.054502

I. INTRODUCTION

The merging of jets or plumes is observed in many situations, such as multiport diffusers [1],
natural ventilation [2], and cooling tower plumes [3]. In the case of natural ventilation, Linden and
Kaye [4] argued that the merging of coflowing plumes can be important in tall, naturally ventilated
rooms of high occupancy. For industrial cooling towers commonly arranged in inline or back-to-
back configurations [5], plume merger influences the amount of entrainment and, by extension, the
dilution rate and the visible plume length. In turn, a correct estimation of the visible plume length
is crucial in evaluating possible risks to nearby infrastructure, e.g., due to ice accretion as well as
strategies for plume abatement.

The process of plume merger is illustrated in Fig. 1. A number of theoretical models on
plume merger, starting with Taylor [6], are based on the idea that the external flow field can be
approximated as irrotational. Because irrotational flow is governed by Laplace’s equation, which
is linear, it is straightforward to superpose two different sinks corresponding to two different
entraining plumes. Kaye and Linden [7] investigated the merging of two axisymmetric plumes of
equal and unequal strengths using a combination of theory and experiment. Their model assumes
that each plume is passively advected by the entrainment flow field of the opposite plume, ambient
entrainment being the mechanism responsible for drawing the plumes together. Meanwhile, the
merging height in their laboratory experiments is defined as the height where there first appears a
single maximum in the transverse buoyancy profile. Following the work of Kaye and Linden [7],
Cenedese and Linden [8] proposed a model that parameterizes the mutual entrainment of side by
side plumes over a vertical range spanning first contact to full plume merger. Over this range of
heights, they found that the plume volume flux varies linearly with height. Their novel contribution
was to use a single equation (i.e., their 2.12) to represent the evolution of volume flux of two merging
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FIG. 1. Surface plots illustrating plume merger from small [(a) ρ0 = 0.1] and large [(b) ρ0 = 0.6] sources
with �0 = 1. The parameters, ρ0, �0, x/R, y/R, and ẑ, are defined in Sec. II. Note that these results are produced
using a so-called curvature method, which is outlined in Sec. III.

plumes. Unlike the small initial momentum and buoyancy fluxes studied by Kaye and Linden [7] and
Cenedese and Linden [8], which, in turn, suggest source conditions close to those of an ideal plume,
Lai and Lee [9] investigated the merging of buoyant jets with an excess of momentum compared to
pure plumes. Before merger, the individual jet elements are represented by a distribution of point
sinks and the dynamic pressure field can be described using Bernoulli’s equation. This pressure
calculation is used in conjunction with the integral governing equations to derive an updated jet
trajectory. A revised pressure field is then computed and the process is repeated until the solution
converges—see their Fig. 4. After merger, the velocity and scalar concentration fields are resolved
by superposition of momentum or kinetic energy and scalar mass flux, respectively. The validity of
Lai and Lee’s model was verified by comparison with the output from a RANS-based numerical
model employing a k-ε turbulence closure [10]. A similar superposition method was adapted by
Yannopoulos [11] to predict the mean vertical velocity and concentration of a finite number of
interacting buoyant jets.

More recently, Rooney [12] (hereafter R15) proposed using the contours of velocity potential
to represent the mean flow boundaries for a long row of plumes or jets. Previous models (e.g.,
Ref. [11]) assume that the plumes are deflected but that their cross sections remain circular and
overlap when merging occurs. By contrast, R15 allows the plume cross section to distort as a result
of reduced entrainment. His model prediction generates good agreement with the experimental
results of Bush and Woods [13] regarding the depth of the two-dimensional outflow resulting
from plume rise in a restricted channel. Later Rooney [14] (hereafter, R16) applied the same
approach to study the merging of a number of plumes equally spaced along the perimeter of a
circle. The other novel contribution in R16 compared to R15 is the introduction of a modified
entrainment assumption, which considers the effect of a so-called flux-balance parameter, � (defined
and discussed in Sec. II C 2). The R16 model, referred to below as Rooney’s revised model to
distinguish it from the original model presented in R15, matches satisfactorily with the experimental
measurements of the total volume flux of two merging plumes made by Cenedese and Linden
[8]. R16 has been recently employed by He and Lou [15] to study the interaction of multiple
forced plumes in a linearly stratified ambient. One possible limitation of Rooney’s work is that
the plume source is assumed to be small compared to the separation distance between neighboring
plume centers. In many cases of practical interest (e.g., cooling towers), however, the plume source
diameter is nontrivial and the plumes are relatively closely spaced. Under such conditions, a virtual
origin correction cannot be applied because the cross section of an individual plume arising from
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(a) (b) (c) (d) (e)

FIG. 2. Evolution of the plume cross section as described by Wu and Koh [3]. Panel (a) denotes the initial
stage of two individual plumes. Panel (b) denotes the stage of first contact, however, no plume interaction
occurs until full merger, which is depicted in panel (c) and which is defined as the elevation where the area
of the central rectangle (shaded red) equals the sum of the areas of the two half round plumes (shaded blue).
Panel (d) denotes a stage of the combined plume post merger. Panel (e) shows an axisymmetric plume in the
very far field.

the virtual source is expected to be highly distorted by the time it reaches the level of the actual
(circular) source.

In the context of cooling tower plumes, a number of merging criteria have been proposed.
Davis [16] assumed that the plumes originating from middle cells are affected only slightly by
the total number of cells, i.e., end effects can be ignored. In coming to this conclusion, Davis [16]
assumed a priori a smooth temperature profile along the axis of the merging plumes (see his Fig. 7).
As illustrated schematically in Fig. 2, Wu and Koh [3] (hereafter, WK78) proposed a merging
criterion on the basis of purely geometrical considerations; their criterion has been employed in
various follow-up studies (e.g., Refs. [17,18]). Unfortunately, the interaction between plumes and
the associated reduced entrainment due to plume merger are not accounted for, which possibly
underestimates the visible plume length.

In the current study, we extend the potential flow theory of R15 and R16 to model the merging
of two plumes rising from arbitrary area sources. An alternate entrainment assumption, which
considers only the evolution of the plume boundary, is proposed. On this basis, we apply our theory
to the merging of two industrial cooling tower plumes. Comparisons with the complementary theory
of WK78 are then drawn.

Our manuscript is organized as follows: In Sec. II, we review Rooney’s potential flow theories.
A novel entrainment formulation that relates the entrainment coefficient to the plume boundary
curvature is proposed in Sec. III. In Sec. IV, we modify Rooney’s analysis to include finite source
effects. Thereafter, in Sec. V we adapt the present model to cooling tower plumes. Finally, in Sec. VI
we draw conclusions.

II. ROONEY’S THEORY

A. Complex potential

Following R16, the complex potential due to two equal line sinks (Fig. 3 with ρ0 → 0) reads

� = − m

2π
ln(Z ′2 − 1) − m

2π
ln R2 + �, (1)

where −m(Z ) is the strength of each line sink with Z = x + iy = r eiθ , Z ′ = x/R + iy/R = ρ eiθ .
Here R is half of the distance between the line sink sources and � is an arbitrary constant. Due
to the symmetry of the flow field, only the sector for which −π/2 � θ � π/2 is considered. The
contours of velocity potential are given by |Z ′2 − 1| = k, where k > 0 is a constant. Stated in terms
of radius and polar angle, the velocity potential contours satisfy

ρ4 − 2ρ2 cos 2θ + 1 = (ρ2 + 2ρ cos θ + 1)(ρ2 − 2ρ cos θ + 1) = k2. (2)
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FIG. 3. Sketch of two plumes from an area source of radius r0. As r0 → 0, the flow becomes identical to
the n = 2 case exhibited in Fig. 1 of R16.

Solving for ρ and θ yields

ρ = [cos 2θ ± (k2 − sin2 2θ )1/2]1/2, (3)

θ = ±1

2
cos−1

(
ρ4 + 1 − k2

2ρ2

)
, (4)

where the negative square root in Eq. (3) is to be considered only when k � 1. Meanwhile, k2 −
sin2 2θ � 0 (k � 1) specifies the limit of polar angle to be determined in Eq. (9). Sample contours
of velocity potential are illustrated in Fig. 4.

Differentiating Eq. (2) with respect to θ yields

dρ

dθ
= ρ sin 2θ

cos 2θ − ρ2
, (5)

thus ρmax occurs at θ = 0, which corresponds to the positive square root in Eq. (3), i.e.,

ρmax = (k + 1)1/2. (6)

Analogous to ρmax, it is helpful to consider the minimum radial length, ρmin. When k < 1, ρmin

is determined by setting θ = 0 and considering the negative square root in Eq. (3). When k = 1,

FIG. 4. Contours of velocity potential in Z ′ space. The numerical values of k are labeled. For closed
contours with k � 1, the dashed (solid) curves represent the negative (positive) square root in Eq. (3).

054502-4



MERGING OF TWO PLUMES FROM AREA SOURCES …

ρmin = 0. Finally, when k > 1, we consider θ = ±π/2 and the positive square root in Eq. (3).
Altogether,

ρmin =
{

(1 − k)1/2, k � 1,

(k − 1)1/2. k > 1.
(7)

For k � 1, the contours are closed and bounded by a polar angle |θlim| < π/2. The contour
coordinates at θlim, (ρlim, θlim), are determined by setting dθ

dρ
= 0. Thus, it may be shown from

Eq. (5) that ρ2
lim = cos 2θlim. Applying Eq. (3), we find that

ρlim = (1 − k2)1/4, (8)

±θlim = ± 1
2 sin−1 k. (9)

The maximum closed contour occurs when k = 1 with an angular range −π/4 � θ � π/4. Note
also that k = 1 represents the point of first contact. Accordingly, we define the height of first contact
as the height corresponding to k = 1.

B. Flow speed, flux, and area integrals

The complex velocity can be obtained from Eq. (1) as

u − iv = d�

dZ
= − m

2πR

2ρ[(ρ2 cos θ − cos θ ) − i(ρ2 sin θ + sin θ )]

ρ4 − 2ρ2 cos 2θ + 1
. (10)

With this result in hand, the orthogonality between the streamlines and the contours of velocity
potential can be confirmed by noting that

dy

dx
= (1 − ρ2) cos θ

(1 + ρ2) sin θ
= −u

v
. (11)

The square of the flow speed is given by

q2 =
∣∣∣∣dΩ

dZ

∣∣∣∣
2

= m2

4π2R2

4ρ2

ρ4 − 2ρ2 cos 2θ + 1
. (12)

Thus, using Eq. (2),

q = m

2πR

2ρ

k
. (13)

At ρ = ρmax, the flow speed is

qe = m

2πR

2(k + 1)1/2

k
, (14)

which is the maximum speed of the entrained flow along a velocity potential contour. Finally, the
cross-sectional area enclosed by a velocity potential contour is calculated as follows:

A′ ≡ A

R2
=

{
2

∫ ρmax

ρmin
θ+ρ dρ, k � 1,

1
2

∫ π/2
−π/2 ρ2

+ dθ, k > 1,
(15)

where ρ+ and θ+ refer to the different solutions in Eqs. (3) and (4).
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C. Plume theory

1. Generalized plume equations

According to R15 and R16, the plume governing equations are given by

A
d

dz

(
1

2
w2

)
= Ag′ − wE , (16)

d

dz
(Aw) = E , (17)

d

dz
(Awg′) = −N2Aw. (18)

Though written in terms of the plume cross-sectional area, A, vertical velocity, w, reduced gravity, g′,
and the buoyancy frequency, N = (− g

ρa

dρa

dz )
1/2

, where ρa is the ambient density and g is gravitational
acceleration, the above equations could just as well be expressed using the volume flux, Q = Aw,
the momentum flux, M = Aw2, the buoyancy flux, F = Awg′. In contrast to the novel approach of
He and Lou [15], we consider, for simplicity, a neutrally stratified ambient so that the governing
equation for buoyancy is trivial and can be omitted. The closure condition to Eqs. (16)–(18) is
Taylor’s entrainment assumption [19], which relates the entrainment velocity to the vertical velocity
of the plume, i.e.,

qe = α w, (19)

where α is an entrainment coefficient1 and qe is assumed to be the maximum speed of the entrained
flow as specified by Eq. (14). The flux of ambient fluid entrained into the rising plume is given as

E = m = α w R fe, (20)

where

fe = πk

(k + 1)1/2 . (21)

2. Modified entrainment assumption

To further characterize the plume, we follow Morton [22] and introduce a parameter � that
describes how forced or lazy a plume is, defined as

�(z) = 5

8 α π1/2

Q2 F

M5/2
. (22)

� is equivalent to the local plume Richardson number, and its value indicates the departure of
the plume from pure plume balance, a state defined mathematically as �(z = 0) ≡ �0 = 1 [23].
For �0 �= 1, plumes can be classified as forced (0 < �0 < 1) or lazy (�0 > 1). In the forced and
lazy cases, respectively, there is an excess and deficit of momentum at the source compared to
a pure plume. When two plumes merge, according to R16, the flux-balance parameter becomes,
�m(z) = 21/2�(z). Accordingly, Eq. (19) is revised to read

qe = α fmw, (23)

in which

fm = Sk + 21/2

Sk + �m
, (24)

1Note that previously measured values for α presume that the plume is either axisymmetric or two-
dimensional. Here, consistent with Fig. 3, we focus on the former geometry and assume a value for α that
is z-independent. For a comprehensive discussion on the choice of entrainment coefficient, see Refs. [20,21].
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where S is an arbitrary constant with S = 0.1 in R16. The two entrainment formulations, Eqs. (19)
and (23), correspond to Rooney’s original and revised models, respectively.

3. Nondimensionalization

Following R16, Eqs. (16) and (17) can be nondimensionalized using the buoyancy flux F and the
distance, d = 2R, between plume sources. On this basis, we write

w = α−1/3 F 1/3 d−1/3 ŵ, Q = α−1/3 F 1/3 d5/3 Q̂, z = α−1 d ẑ, (25)

where hatted variables carry no units. The flux-balance parameter can be expressed as � =
5

8 π1/2 Â−1/2 ŵ−3. Thus, the nondimensional form of the governing equations read

dŵ

dẑ
= 1

ŵ Q̂
− ŵ2

2Q̂
fe, (26)

dQ̂

dẑ
= 1

2
ŵ fe. (27)

The nondimensional cross-sectional area is Â = Q̂/ŵ = A/d2 = A′/4 where A′ is defined in
Eq. (15). Equations (26) and (27) are solved using a fourth-order Runge-Kutta finite difference
method whereby the range of integration is 0.001 � ẑ � 5 with a step size of 0.001. Specifically,
we first assign an initial guess of small k, e.g., k = 0.1, then the (small) source cross-sectional
area, A′, is obtained from Eq. (15). The source value for ŵ is obtained by selecting a value for
�0 depending on the nature of the plume under examination (i.e., forced versus pure versus lazy).
After each numerical integration step in ẑ, the value of k can be updated by inverting Eq. (15) using
root-finding. It is expected that k increases with z, albeit in a nonlinear fashion. Note that Eqs. (26)
and (27) are based on the original model of R15; for the revised model we can simply multiply the
term fe [from Eq. (21)] with fm [from Eq. (24)] on the right-hand side of both Eqs. (26) and (27).

Because the plume at ẑ = 0.001 and k = 0.1 is not strictly ideal (ρ0 ≈ 0.05), a virtual origin
correction, i.e., ẑvn, is made to better match the numerical solution with the corresponding near-
source similarity scaling. For �0 > 0.5, we follow the formula for ẑvn proposed by Hunt and Kaye
[24]. In case of pure plume balance at the source, i.e., �0 = 1, the location of the virtual origin
below the actual source is estimated as ẑvn ≈ 0.02.

4. Representative results

Considering �0 = 1, the evolution of vertical velocity (ŵ) and flux-balance parameter (�m) using
both the original and revised models is illustrated in Fig. 5. As shown in Fig. 5(a), the original
model predicts a greater vertical velocity than does the revised model with S = 0.1. Notably, and for
ẑ � 0.32, the vertical velocity using the original model overshoots the far-field similarity solution
then approaches it asymptotically. Over this range of heights, Fig. 5(b) reveals that the plume is
in a forced plume regime, i.e., �m < 1, which is a direct consequence of the reduced entrainment
associated with the simple entrainment assumption Eq. (19). Conversely, the introduction of fm

tends to increase entrainment when �m is low. For the revised models illustrated in Fig. 5(b), �m

with S = 1 decreases to a level slightly below unity, whereas �m with S = 0.1 remains above unity
over the entire range of heights. In general, for the original model and revised model with S = 1,
the plume follows a relatively nonsmooth “lazy–forced–pure” regime transition. By contrast, for the
revised model with S = 0.1, the plume follows a more monotone “lazy–pure” regime transition.

III. ALTERNATE FORM FOR fm

A. Plume-boundary curvature

R15 argued that it should be possible to devise an entrainment assumption that relates the rate
of entrainment to the curvature of the plume boundary. This curvature is indicated by the shape

054502-7



SHUO LI AND M. R. FLYNN

FIG. 5. Evolution of ŵ [panel (a)] and �m [panel (b)] as predicted by the original model (dashed curve),
revised model with S = 0.1 (solid curve) and with S = 1 (dash-dotted curve). The dotted lines in (a) denote
the near- and far-field self-similarity solutions.

of the velocity potential contours in, e.g., Fig. 4. However, R16 introduced a correction factor,
fm in Eq. (24), with a different goal in mind, i.e., to increase the entrainment when �m decreases
and vice versa. The revised entrainment assumption proposed by R16 produces good agreement
with Cenedese and Linden [8] vis-à-vis the volume flux of two merging plumes. However, it is not
altogether obvious whether �m maps straightforwardly to the plume boundary curvature except in
the near- and far-field limits where the individual and the merged plumes are axisymmetric. In light
of the above, and returning to the suggestion made in R15, we propose that the rate of entrainment,
rather than depending on �m, depends instead on the shape of the plume boundary as represented by
the shape of the velocity potential contours defined by Eq. (2). Below, we explore this possibility in
quantitative detail and thereby derive a new entrainment formulation that is different from the well-
established formulations presented in R15 (Rooney’s original model) and R16 (Rooney’s revised
model).

The contour curvature is expressed as

κ (θ ) =
∣∣2( dρ

dθ

)2 + ρ2 − ρ
d2ρ

dθ2

∣∣[( dρ

dθ

)2 + ρ2
]3/2 . (28)

At ρ = ρmax, the curvature simplifies to

κc = 2 + k

k(1 + k)1/2 . (29)

We measure the departure of the contour from a circular shape using a parameter P, defined as

P =
{ 1

2 (ρmax − ρmin) κc, k � 1,

ρmax κc, k > 1.
(30)

The near- and far-field limits whereby P → 1 as k → 0 and k → ∞ also apply. Even so, there is
a discontinuity in P at k = 1 because k = 1 marks the beginning of the transition from individual
plumes to a merged plume. By comparison with Eq. (24), we find in Fig. 6 that the following simple
formulation for fm in terms of P generates equally acceptable behavior:

fm =
{

Pn′
, k � 1,

Pn′′
, k > 1.

(31)
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FIG. 6. The evolution of fm and �m in the original model (dashed line or curve), revised model with S = 0.1
(dash-dotted curve) and with S = 1 (dotted curve) and the curvature method using Eq. (31) (solid curve).
In contrast to Fig. 5(b), a virtual origin correction is not included because the small offset by ẑvn does not
significantly alter the positions of the curves.

By an empirical trial-and-error process, and favoring a fractional representation for the exponents
n′ and n′′, we propose that n′ = 1/2 and n′′ = 1/4. Note that He and Lou [15] also discussed the
plume-boundary curvature but did not propose a functional form like Eq. (31) for fm. Instead, they
proposed a simpler function that reads, for the two plume case,

fm = k2 exp(−k2) + 1. (32)

The above formulation also achieves near- and far-field limits of unity; moreover, fm reaches its
maximum value at k = 1. Note, however, that for k > 1 Eq. (32) converges to unity much more
rapidly than do the formulations illustrated in Fig. 6(a). This implies that Eq. (32) may lead to
relatively low entrainment post-merger.

Shown in Fig. 6(a) is the correction factor, fm versus k. For k � 1, the value of fm computed
using the curvature method lies slightly above that obtained by the revised model with S = 1. One
advantage of the curvature method is that, as shown in Fig. 6(b), it avoids the oscillation about unity
that characterizes both the original model (dashed curve) and the revised model with S = 1 (dotted
curve). Moreover, �m using the curvature method approaches the far-field similarity solution more
rapidly than is the case with the other models considered. This accelerated similarity seems more
consistent with the observation of two merging plumes made by Baines [25]. He found that the total
volume flux of the two merging plumes rapidly approached the similarity solution once the two
plumes began to interact.

B. Height of full merger

As mentioned at the end of Sec. II A, R16 defined the height of first contact, ẑ f c, which
corresponds to k = 1. R16 also determined the far-field virtual origin correction, ẑv f , which is
defined as the height below the actual source where a virtual pure plume with an identical total
buoyancy flux can achieve the same far-field similarity solution for the merged plume. What is left
unspecified is the height of full merger. Unfortunately, the definition proposed by Kaye and Linden
[7], i.e., the height where a single maximum in the transverse buoyancy profile appears, is difficult
to apply in the present analysis. For a more straightforward prediction, we shall define the height of
full merger on the basis of the velocity potential contours. For 1 � k < 2, as illustrated in Fig. 4, the
combined plume boundary always exhibits concavity close to x = 0. The height of full merger, ẑ f m,
is defined as the height at which the boundary of the combined plume is no longer concave. Stated
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TABLE I. Height of full merger predicted by R15, R16, the present analysis and measured/predicted in
Kaye and Linden [7].

Original Revised with S = 0.1 (1) Curvature Kaye and Linden [7]

ẑ f m 0.61 0.51 (0.54) 0.52 0.49 ± 0.03 (α = 0.12) 0.44 (theory)

in mathematical terms, we look for the elevation (or k value) satisfying

κ (θ = π/2) = |1 − 2/k|
(k − 1)1/2 = 0, (33)

which yields k = 2. Therefore, ẑ f m is defined as the height corresponding to k = 2.

C. Comparison with previous theoretical and experimental results

To test the validity of the definition for the height of full merger, we compare ẑ f m predicted by the
original and revised models and the curvature method with the theoretical and experimental results
of Kaye and Linden [7] in Table I. The nondimensional height of full merger in Kaye and Linden
[7] is sensitive to the choice of entrainment coefficient, although α = 0.09 was selected therein.
We shall instead choose α ≈ 0.12, as validated by Cenedese and Linden [8]. Meanwhile, Kaye and
Linden [7] predicted theoretically that ẑ f m = 0.44. Table I shows that ẑ f m predicted by the revised
models and the curvature method match well with this measured result.

R16 compared his original and revised models with the experimental results of Cenedese and
Linden [8]. Details of the associated “filling-box” experiment are presented in Sec. 3 of Cenedese
and Linden [8] and in Sec. 6 of R16. By reproducing Figs. 6 and 9 of R16 (not shown here) but
adding solutions derived from the curvature method, we find, consistent with Fig. 6(a), that the
curvature method produces results very close to those derived from the revised model with S = 1.
From these comparisons with previous theoretical and experimental results, we conclude that the
curvature method exhibits comparable performance vis-à-vis Rooney’s revised model. It is worth
reiterating that the curvature model is simpler than the revised model because the former requires
specification only of k, whereas the latter requires specification of both k and �m.

IV. FINITE SOURCE EFFECT

A. Modified contours approximating plume boundaries

We now introduce ρ0 = r0/R > 0, defined as the ratio of the plume source radius to half of the
distance between the plume centers—see Fig. 3. Our analysis proceeds on the basis of the following
two assumptions: (i) the complex potential is still given by Eq. (1), and (ii) nonpoint source plumes
distort in a manner similar to their point source counterparts. Technical details associated with this
latter assumption are briefly summarized in Appendix A. Therefore, and incorporating a finite ρ0

into Eq. (2), we ultimately arrive at the following analog expression:

ρ4 − 2ρ2
(
cos 2θ + ρ2

0

) + (
ρ2

0 − 1
)2 = (

ρ2 + 2ρ cos θ + 1 − ρ2
0

)(
ρ2 − 2ρ cos θ + 1 − ρ2

0

) = k2.

(34)
Solutions to Eq. (34) are presented in Fig. 7 for a pair of ρ0 values. On the basis of this figure and
Eq. (34), we make two important observations. First, Eq. (34) does not admit any contours within
the cross section of the plume source. Second, Eq. (34) applies for the case of two adjacent plumes.
Results similar to Eq. (34) for cases with n > 2 are provided in Appendix B.

Analytical solutions to Eq. (34) are as follows:

ρ = {
cos 2θ + ρ2

0 ± [
k2 − sin2 2θ + 2 ρ2

0 (1 + cos 2θ )
]1/2}1/2

, (35)
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FIG. 7. As in Fig. 4, but with ρ0 > 0. (a) ρ0 = 1/3, (b) ρ0 = 2/3. The closed black circles in both panels
denote the plume source.

θ = ±1

2
cos−1

[
ρ4 + (

ρ2
0 − 1

)2 − k2

2ρ2
− ρ2

0

]
, (36)

where the negative square root in Eq. (35) applies for k < 1 − ρ2
0 . Analogous to Eq. (3), k2 −

sin2 2θ + 2ρ2
0 (1 + cos 2θ ) � 0 (k < 1 − ρ2

0 ) determines the range of polar angles occupied by the
closed contours in Fig. 7.

Differentiating Eq. (34) yields

dρ

dθ
= ρ sin 2θ

cos 2θ − ρ2 + ρ2
0

, (37)

and so the maximum radial extent, now defined as

ρmax = (
1 + ρ2

0 + (
k2 + 4ρ2

0

)1/2)1/2
, (38)

still occurs at θ = 0. However, the minimum radial length is given as

ρmin =
{(

1 + ρ2
0 − (

k2 + 4ρ2
0

)1/2)1/2
, k � 1 − ρ2

0 ,(
k − 1 + ρ2

0

)1/2
, k > 1 − ρ2

0 .
(39)

For k � 1 − ρ2
0 , the positions of the limits (ρlim, θlim) are determined from dθ/dρ = 0, which

gives ρ2
lim = cos 2θlim + ρ2

0 . Substituting into Eq. (34) yields, as the respective analogues of Eqs. (8)
and (9),

ρlim = [(
1 − ρ2

0

)2 − k2
]1/4

, (40)

±θlim = ± 1
2 cos−1

{ − ρ2
0 + [(

1 − ρ2
0

)2 − k2
]1/2}

. (41)

Note, in particular, that the maximum closed contour when k = 1 − ρ2
0 corresponds to an angular

range − 1
2 cos−1 (−ρ2

0 ) � θ � 1
2 cos−1 (−ρ2

0 ).
Analogous to the approach outlined in Sec. III B, the plume curvature at the level of full merger

should satisfy

κ (θ = π/2) = |1 − 2/k|(
k − 1 + ρ2

0

)1/2 = 0, (42)
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which again yields k = 2 as the height of full merger. Meanwhile, and consistent with the ρ0 → 0
case, k = 1 − ρ2

0 represents the point of first contact.
Under the assumption that the complex potential defined by Eq. (1) applies also to the nonpoint

source case, the contours illustrated in Fig. 7 are not, strictly speaking, curves of equi-(velocity)
potential. The velocity potential, φ, associated with Eq. (1) is expressed for the ρ0 > 0 case as

φ = − m

2πR
ln

(
k2 + 2ρ2

0ρ2 − ρ4
0 + 2ρ2

0

)1/2
. (43)

For small ρ0, φ is approximately constant on each of the contours defined by Eq. (34). For large
ρ0, it can be inferred from Eqs. (38) and (39) that greater variations in φ arise, but these are most
prominent in the near source region with small k values. In the context of the self-similar model
prescribed by Eqs. (16)–(18), this near source region is of less interest than the regions of greater
distances from the source. Moreover, and as we explain in greater detail in Sec. IV G below, the
contours defined by Eq. (34), which we consider to define the plume boundary when ρ0 > 0, yield
good agreement with previous theoretical results of Cenedese and Linden [8] even in the extreme
case of ρ0 = 1.

B. Flow speed and cross-sectional area

To be consistent with the ρ0 → 0 case, and following the justification given in Appendix C, we
require that E = m also applies for nonideal line sinks. Accordingly, and with ρ0 > 0, the complex
velocity normal to the plume boundary reads

u⊥ − iv⊥

= − m

2πR

2ρ
(
k2 + ρ2

0ρ2 − ρ4
0 + 2ρ2

0 + ρ2
0 cos 2θ

)[(
ρ2 − ρ2

0 − 1
)

cos θ − i
(
ρ2 − ρ2

0 + 1
)

sin θ
]

(
k2 + 2 ρ2

0 ρ2 − ρ4
0 + 2ρ2

0

) [
k2 + 2ρ2

0 (1 + cos 2θ )
] .

(44)

The flow speed normal to the plume boundary is given by

q⊥ = m

2πR

2ρ
(
k2 + ρ2

0ρ2 − ρ4
0 + 2ρ2

0 + ρ2
0 cos 2θ

)
(
k2 + 2 ρ2

0 ρ2 − ρ4
0 + 2ρ2

0

) [
k2 + 2ρ2

0 (1 + cos 2θ )
]1/2 . (45)

Thus, at ρ = ρmax, the speed of the flow entrained across the plume boundary is

qe = m

2πR

2
[
1 + ρ2

0 + (
k2 + 4ρ2

0

)1/2]1/2[
k2 + 4ρ2

0 + ρ2
0

(
k2 + 4ρ2

0

)1/2][
k2 + ρ4

0 + 4ρ2
0 + 2ρ2

0

(
k2 + 4ρ2

0

)1/2](
k2 + 4ρ2

0

)1/2 , (46)

which is used to represent the bulk entrainment velocity.
Note finally that plume cross-sectional areas are still defined by Eq. (15). The cross-sectional area

as a function of k for different ρ0 is shown in Fig. 8. In general, A′ grows approximately linearly for
k � 1.

C. Entrainment flux

With reference to the original entrainment assumption, i.e., Eq. (19), the entrainment flux with
ρ0 � 0 is given by

E = m = α w R fe, (47)

where

fe = π
[
k2 + ρ4

0 + 4ρ2
0 + 2ρ2

0

(
k2 + 4ρ2

0

)1/2](
k2 + 4ρ2

0

)1/2[
1 + ρ2

0 + (
k2 + 4ρ2

0

)1/2]1/2[
k2 + 4ρ2

0 + ρ2
0

(
k2 + 4ρ2

0

)1/2] , (48)

054502-12



MERGING OF TWO PLUMES FROM AREA SOURCES …

FIG. 8. Plume cross-sectional area as a function of k for different source radii, i.e., ρ0 = 0.1, 0.4, 0.8, and
0.99. The stars indicate where k = 1 − ρ2

0 .

which reduces to Eq. (21) in the limit ρ0 → 0. In the near- and far-field limits, Eq. (48) reduces to

fe →
{

πρ0(ρ0+2)
ρ0+1 , k → 0,

πk1/2, k → ∞,
(49)

respectively. In the latter case, we reproduce the limit associated with ρ0 = 0. In the former
case, R fe tends to the plume source perimeter (2πRρ0) times ρ0+2

2(ρ0+1) . The term ρ0+2
2(ρ0+1) decreases

monotonically as ρ0 increases, which, as expected, indicates less entrainment associated with a
large plume source.

We retain the governing equations described in Secs. II C 1 and II C 3, however, with entrainment
fluxes given by Eqs. (47) and (48). The procedure for solving the original model with Eq. (20), the
revised model with Eq. (23) and the curvature method with Eq. (31), by replacing Eq. (21) with
Eq. (48), is similar to that described in Sec. II C 3. A slight difference is that the initial guess for k
is now vanishingly small, e.g., 10−12, and the range of integration is 0 � ẑ � 5.

D. Representative results

Representative solutions showing the vertical velocities [panels (a) and (b)] and volume fluxes
[panels (c) and (d)] with ρ0 = 0.1 and 0.6 and �0 = 1 are illustrated in Fig. 9. In general, both the
revised model and the curvature method predict a smaller vertical velocity but a greater volume flux
(and therefore greater breadth) compared to the original model. For ρ0 = 0.1, the vertical velocity
predicted by the original model [Fig. 9(a)] overshoots the far-field similarity solution, which is
consistent with Fig. 3(a) of R16. This overshoot is however absent in Fig. 9(b) for which ρ0 = 0.6.

Table II lists the characteristic heights, i.e., ẑ f c, ẑ f m, and ẑv f , for the flows considered in Fig. 9.
The method of determining the far-field virtual origin is identical to that in R16, with a positive
value denoting a distance below the actual source. Due to the enhanced entrainment considered
in the revised model and the curvature method, both Eqs. (24) and (31) predict somewhat lower
elevations for full merger than does the original model.

The evolution of �m = 21/2�(z) for the original, revised and curvature models is illustrated in
Fig. 10. Figure 10(a) shows that for plumes with ρ0 = 0.1 and �0 = 1, �m oscillates about unity
using the original model and the revised model with S = 1. For the original model, a similar
oscillation is observed in Fig. 10(b) where, consistent with Fig. 9, ρ0 is increased from 0.1 to
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FIG. 9. Nondimensional vertical velocity [panels (a) and (b)] and volume flux [panels (c) and (d)] as
functions of height for the original model (dashed curve), the revised model with S = 0.1 (solid curve) and
with S = 1 (dotted curve) and the curvature method (solid curve). The thin dotted lines denote the far-field
similarity solutions for ŵ and Q̂, respectively.

0.6. According to R16, the pronounced dip to �m < 1 using the original model [Figs. 10(a) and
10(b)] indicates that entrainment is relatively low around ẑ f m. As a result, the plume is forced to
accelerate to the far-field limit, which is reflected by the overshooting of the far-field similarity
solution in Fig. 9(a). By contrast, the curvature method and the revised model with S = 0.1 tend
more smoothly to the far-field similarity solution in that they avoid overshoot for ρ0 large and small.

TABLE II. Heights of first contact and full merger and the far-field virtual origin correction for the source
conditions considered in Fig. 9. Values correspond, in sequence, to the original model Eq. (19), the revised
model Eq. (24) with S = 0.1 and with S = 1, and the curvature method Eq. (31).

Source parameters ẑ f c ẑ f m ẑv f

ρ0 = 0.1, �0 = 1 0.27, 0.23, 0.24, 0.25 0.56, 0.46, 0.49, 0.48 −0.05, 0.19, 0.06, 0.09
ρ0 = 0.6, �0 = 1 0.08, 0.07, 0.07, 0.07 0.34, 0.28, 0.30, 0.28 0.24, 0.45, 0.33, 0.36
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FIG. 10. Evolution of �m for ρ0 = 0.1 and ρ0 = 0.6 with �0 = 1.

E. Effects of varying ρ0 and �0

Further to the analysis in Sec. IV D, we now consider a range of ρ0 and �0. Moreover, we focus
exclusively on the curvature method in this (and the next) section. The evolution of �m for different
�0 with ρ0 = 0.1 and ρ0 = 0.6 is illustrated in Figs. 11(a) and 11(b), respectively. For a small plume
source, e.g., ρ0 = 0.1, Fig. 11(a) shows that all �m, even for a highly forced plume (�0 = 0.2), first
exceed then relax to unity. By contrast, and for a much larger source e.g., ρ0 = 0.6, Fig. 11(b) shows
that plumes arising from a moderately (�0 = 0.4) or highly (�0 = 0.2) forced source remain forced
until pure plume balance is achieved in the far field. This is due to more rapid plume merger for
larger plume sources whereby the combined plume at the point of first contact exhibits �m < 1.

Another parameter of interest is the effective entrainment, which is defined as the ratio of the
volume flux of two merging (nonideal) plumes to the total volume flux of the same two plumes,
now isolated [8]. For a single isolated axisymmetric plume, the entrainment rate is expressed as

E = 2πbαw, (50)

FIG. 11. Evolution of �m for ρ0 = 0.1 and ρ0 = 0.6 with �0 = 0.2, 0.4, 0.6, 0.8, and 1.
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FIG. 12. Effective entrainment with �0 = 1 and ρ0 = 0.1, 0.3, 0.5, 0.7, and 0.9. The thin dashed vertical
line denotes the far-field limit, 2−1/2.

where b is the mean plume radius. Following the nondimensionalization in Sec. II C 3, the governing
equations for an isolated plume are given as

dŵ1

dẑ
= 1

ŵ1Q̂1
− 2π1/2ŵ

3/2
1

Q̂1/2
1

, (51)

dQ̂1

dẑ
= 2π1/2ŵ

1/2
1 Q̂1/2

1 , (52)

where the subscript 1 denotes a single isolated plume. Figure 12 shows the evolution of the effective
entrainment, expressed as (Q̂/Q̂1)

3/4
, for �0 = 1 and different ρ0. It is evident from Fig. 12 that the

larger the plume source, the greater the effective entrainment. This result seems counter-intuitive:
two plumes are deemed to be less affected by each other if they are set apart by a greater distance
(i.e., ρ0 is small). This paradoxical behavior arises because small plumes tend to be more heavily
distorted in terms of their cross-sectional area and this, in turn, depresses ambient entrainment. By
contrast, a comparison between Figs. 7(a) and 7(b) reveals that larger plume sources suffer from
less distortion, i.e., departure from the original circular shape. As a consequence, they admit more
(effective) ambient entrainment than their small ρ0 counterparts.

F. Comparison with the saline plume experiment of Davis et al. [26]

Davis et al. [26] studied the dilution characteristics of single and multiple plumes using
water tank experiments. In their experiments, the densimetric Froude number is defined as Fr0 =
w0/(g′

0D)1/2 where D is the plume source diameter, thus we can relate Fr0 to �0 as follows:

�0 = 5

16α
Fr−2

0 . (53)

With α = 0.12, Fr0 = 6 corresponds to �0 = 0.072, which represents a highly forced plume at
the source. A single spacing ratio corresponding to ρ0 = 0.75 is considered by Davis et al. [26].
The comparison between their experimental measurements and the curvature method is shown in
Fig. 13 where we plot the variation of the plume volume flux with elevation. Although only limited
experimental data are available, the agreement between theory and experiment is robust.
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FIG. 13. Comparison of the curvature method with the experimental data of Davis et al. [26]. The
solid curve denotes the curvature method with α = 0.14. The open diamonds correspond to volume flux
measurements made at z/D0 = 10, 20, and 30. The dashed curve is a curve fit to all the experimental data
of Davis et al. [26].

G. Extreme case of ρ0 = 1

The extreme case with ρ0 = 1 is of interest because the plumes start to contact at the source,
whilst the plume sources are circular. A similar situation is, of course, the merger of two plumes
whose cross-sections remain circular, which is assumed in the models of Kaye and Linden [7] and
Cenedese and Linden [8]. Therefore, and for ρ0 = 1, we argue that the merging plume is likely to
be approximated by the region above the “touching height” (a.k.a. the height of first contact) in
the piecewise model of Cenedese and Linden [8]. Note that the characteristic length scale is the
centerline distance between the two plume centers at the touching height not at the level of the
near-field virtual source. Following (2.5) and (2.10) in Cenedese and Linden [8], we first give the
piecewise model and its prediction for half of the total volume flux of the two plumes, i.e.,

Q̂ =
{(

9
10

)1/3 3
5π2/3(1.643ẑ + 0.465), ẑ � 0.107,(

9
5

)1/3 3
5π2/3(ẑ + 0.560)5/3, ẑ > 0.107,

(54)

where ẑ = 0 now represents the touching height at which point the two plumes are expected to
be fully self-similar, i.e., �(ẑ = 0) = 1 and ẑ = 0.107 represents the height of full merger. The
evolution of the volume flux obtained from the models of Secs. II–IV and Cenedese and Linden’s
piecewise counterpart Eq. (54) is shown in Fig. 14. In all cases, excellent overlap is noted.

V. APPLICATIONS TO COOLING TOWERS

A. Governing equations

For cooling tower plumes, buoyancy derives from temperature and humidity. As such, and in
addition to the volume and momentum fluxes defined, respectively, as Q = A w and M = A w2, we
must also define an excess temperature flux,  = A w(tp − ta) where t denotes the air dry-bulb
temperature, an excess specific humidity flux, H = A w(qp − qa) where q denotes the specific
humidity, and an excess specific liquid moisture flux, W = A w (σp − σa) where σ denotes the
specific liquid moisture. Subscripts p and a denote the plume and the ambient, respectively. The
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FIG. 14. Plume volume flux for the limiting case of ρ0 = 1 and �0 = 1.

buoyancy flux is defined as

F = A w g′ = A w g

(
1 − tv,a

tv,p

)
, (55)

where the plume virtual temperature and ambient virtual temperature, tv,p and tv,a, are, respectively,
defined as follows [27]:

tv,p =
(

ta + 273.15 + 

Q

) [
1 + 0.608

(
qa + H

Q

)
− W

Q

]
, (56)

tv,a = (ta + 273.15) (1 + 0.608 qa − σa). (57)

Here we consider ta values measured in degrees Celsius and σa = 0 signifying an ambient devoid of
liquid moisture. Note that even in a stationary and unstratified ambient, the buoyancy flux of a moist
plume is not always constant due to the possibility of condensation. We consider the dimensional
form of the governing equations, which read as follows:

dQ

dz
= E , (58)

dM

dz
= A g′, (59)

d

dz

(
 − Lv

cpa
W

)
= 0, (60)

d

dz
(H + W ) = 0, (61)

where the latent heat of condensation, measured in J/g, is Lv = Lv (t ) = 4.1868 [597.31 − 0.57 t]
with t measured in degrees Celsius, and cpa = 1.006 J/(g K) representing the specific heat of air at
constant pressure [3]. The set of Eqs. (58)–(61) is consistent with the governing equation for moist
plumes specified by Eq. (19) of Morton [28]. Some authors, e.g., Woods [29], have used the full
form of the energy conservation equation including enthalpy, kinetic energy and potential energy
[cf. Woods’s Eq. (4)]. When the mixing process is adiabatic, the full form equation reduces to the
conservation equation for thermal energy, i.e., Eq. (60).
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TABLE III. Representative operating and environmental conditions for cooling towers [30].

Variable symbol Variable name Value (unit)

Pa Ambient pressure at the top of the cooling tower 101 325 (Pa)
ta Ambient temperature 6 (◦C)
RHa Ambient relative humidity 65 (%)
tw Wet cooling temperature 30 (◦C)
td Dry cooling temperature 20 (◦C)
w0 Stack exit velocity 6 and 10 (m/s)
A0 Stack exit area 71.3 (m2)
d Distance between cell centers 14.3 (m)
ṁd
ṁw

Ratio of the dry to wet air mass flow rate 0.3 and 0.6
n Number of cooling tower cells 2

B. Representative results

Table III lists the input parameters to be used in assessing the heights of full merger for the
present model and also for the WK78 model. According to Eq. (22), and assuming α = αp = 0.117
[31], the source flux-balance parameters are, respectively, �0 = 0.52 and �0 = 0.57 for ṁd

ṁw
= 0.6

and ṁd
ṁw

= 0.3 where, in both cases, we have assumed a stack exit velocity of w0 = 6 m/s. The

counterpart values for �0 with w0 = 10 m/s are 0.19 and 0.20, respectively. Here ṁd
ṁw

specifies
the ratio between dry (sensible) cooling to wet (evaporative) cooling in a hybrid wet/dry cooling
tower—see Li and Flynn [32] for additional details. In WK78, the composite plume post-merger is
a combination of a central slot plume and two half round plumes at the two ends—see Fig. 2(c).
The entrainment coefficient for the central slot plume is αl = 0.147 and the counterpart coefficient
for the two half round plumes is, consistent with the above discussion, αp = 0.117. Therefore, the
effective entrainment coefficient for the plume post merger is, on average, between αp and αl .

To examine the difference between the WK78 model, Rooney’s original and revised models
and the curvature method, we plot the height of full merger, ẑ f m = αp z f m/d , using the four

FIG. 15. Height of full merger, ẑ f m, as a function of the source flux-balance parameter, �0, with ṁd
ṁw

= 0.3.
Note that the variation in �0 corresponds to the variation in the cooling tower exit velocity, w0. Meanwhile, all
other parameters correspond to the values given in Table III.

054502-19



SHUO LI AND M. R. FLYNN

FIG. 16. Nondimensional plume reduced gravity [panels (a) and (b)], vertical velocity [panels (c) and (d)]
and relative humidity [panels (e) and (f)] as functions of height above the stack exit. The stack exit velocity is
w0 = 6 m/s.

aforementioned approaches as functions of the source flux-balance parameter, �0, for ṁd
ṁw

= 0.3—
see Fig. 15. The range for �0 is 0.13 to 1.22 (w0 is 4 to 12 m/s) to ensure that the source flow spans
the range between forced and slightly lazy. Similar profiles are predicted in case of ṁd

ṁw
= 0.6 (not
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FIG. 17. As in Fig. 16 but with a stack exit velocity of w0 = 10 m/s.

shown), which indicates that the moisture effect on plume dynamics is modest. For �0 � 0.7, the
WK78 model predicts slightly greater ẑ f m than does the curvature method although the difference is
small. The original model always predicts the greatest ẑ f m among the five models. However, and for
�0 ≈ 1, the revised models predict somewhat greater ẑ f m than does the WK78 model. This reduced
entrainment in the revised model is consistent with Eqs. (23) and (24) which require entrainment
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to decrease as �m increases. For smaller �0, the revised models, with their increased entrainment,
predict smaller ẑ f m than does the WK78 model.

The strong agreement between the curvature method and the WK78 model evident in Fig. 15 is
all the more encouraging given the prevalence of the latter in atmospheric dispersion models [17,33].
Unfortunately, and whereas the red and (solid) black curves show strong overlap when considering
ẑ f m, greater differences arise when examining other metrics. For example, Fig. 16 shows the plume
reduced gravity, vertical velocity and relative humidity (RH) of the WK78 versus original and
revised models and the curvature method where we consider w0 = 6 m/s. Similar results but with
w0 = 10 m/s, are presented in Fig. 17. Figures 16(a)–16(d) indicate that the WK78 (original) model
predicts the greatest (smallest) dilution rate. Accordingly, Fig. 16(e) shows that the WK78 (original)
model predicts the shortest (longest) visible plume. For a larger exit velocity, i.e., w0 = 10 m/s,
however, Fig. 17 shows that the revised model with S = 0.1 produces the greatest dilution rate, even
compared to the WK78 model. By contrast, the curvature method always predicts a greater visible
plume length thus less dilution rate compared to WK78. It should be emphasized that the WK78
model overestimates the entrainment rate in the near field because it does not properly account for
plume interaction and the corresponding reduced entrainment that follows therefrom. Consequently,
and in contrast to Rooney’s revised model, we see that there exists a consistent offset between the
curvature method and WK78, this because the curvature method predicts a lower rate of dilution
than does WK78. In spite of this, the overall comparison, accounting for the data of Figs. 15 to 17,
is satisfactorily robust.

VI. CONCLUSIONS

The present manuscript extends the theory in Rooney [12,14] to describe the merging of two area
source plumes in an unstratified ambient. The plume boundary is defined by the contours defined
by Eq. (34); these contours grow from the circumference of a circular source of arbitrary size. The
height of full merger is here defined as the height at which the combined plume boundary is no
longer concave. Another contribution of this work is to compare this height of full merger with
the alternative definition (and model predictions) due to Wu and Koh [3]. In adapting the turbulent
plume equations of Morton et al. [19], Wu and Koh [3] argued that the point of merger should be
regarded as that elevation where the area of the central rectangle equals the sum of areas of the two
half round plumes—see Fig. 2(c).

Rooney’s revised model incorporates a correction factor Eq. (24) that depends on the velocity
potential contour (k), flux-balance parameter (�m), and a free parameter (S). To generalize and
simplify the correction factor, an alternate entrainment assumption, i.e., the so-called curvature
method, is herein proposed. It allows one to specify the rate of entrainment exclusively from the
geometry of the plume boundary. In turn, predictions of the height of full merger derived from the
curvature method and from Rooney’s revised model are broadly consistent with the experimental
results of Kaye and Linden [7]. Similarly positive agreement is also noted upon comparing the
curvature method and the experimental data collected by Davis et al. [26].

For small, forced and pure plume sources, plume merger allows the plume to transition to a lazy
plume regime then approach the far-field pure plume limit. By contrast, and for larger and highly
forced plume sources, the merging plume directly approaches the far-field limit, dynamics that are
similar to an isolated plume. For fixed �0, small plume sources yield less effective entrainment as
compared to larger sources, this as a result of the entrainment-inhibiting distortion of the plume
cross-sectional area that is experienced for small z.

The application of the curvature method to adjacent cooling tower plumes yields good agreement
with predictions of the merger height made by Wu and Koh [3]. Meanwhile, representative results
(Figs. 16 and 17) show that the curvature method consistently predicts a slightly greater visible
plume length than does the model of Wu and Koh [3], the latter exhibiting generally good agreement
with independently collected laboratory and field data [34,35].
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FIG. 18. Schematic illustrating the geometric details associated with Eq. (34). The left and right circles are
centered at C1 (−1, 0) and C2 (1, 0), respectively, and both have radius ρ0. From the point N , the straight lines
NN1 and NN2 are tangent to the circles centered at C1 and C2, respectively; N1 and N2 are the respective tangent
points.

The present model is restricted to two plumes with the same source height, source size and source
strength. Even with this restriction, the model cannot describe the contraction above a lazy plume
with �0 > 5/2. Nonetheless, as a first approximation, lazy plumes may be assumed to interact only
above the necking zone. Topics of future research interest are to apply the present model to merging
plumes in case of ambient stratification and to merging turbulent fountains. For adjacent forced
plumes in a linearly stratified ambient, He and Lou [15] directly applied Rooney’s theory whereas
the finite source effect and the fountain-like behavior at the plume top were not considered. For
moderately spaced turbulent fountains, the downflowing outer plumes are expected to merge thus
influencing the fountain rise height.
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APPENDIX A: A NOTE ON THE DERIVATION OF EQ. (34)

Underpinning Eq. (34) are some geometrical details, which we highlight in Fig. 18. The lengths
of the straight lines, |NC1|, |NC2|, |NN1|, and |NN2|, are given as follows:

|NC1| = ∣∣Z ′ + 1
∣∣, |NC2| = ∣∣Z ′ − 1

∣∣, (A1)

|NN1| = (|Z ′ + 1|2 − ρ2
0

)1/2
, |NN2| = (|Z ′ − 1|2 − ρ2

0

)1/2
, (A2)

where Z ′ = x/R + iy/R corresponds to the position N . The product |NC1||NC2| = k is consistent
with Eq. (2). A set of curves resulting from this latter equality are called Cassini ovals [36]; these
curves are shown in the right-half plane in Fig. 4. For ρ0 > 0, and to avoid any curves within the
two circles shown in Fig. 18, we consider not |NC1||NC2| but rather |NN1||NN2|. Doing so yields

(|Z ′ + 1|2 − ρ2
0 )

1/2
(|Z ′ − 1|2 − ρ2

0 )
1/2 = k, which is consistent with Eq. (34). As observed in Figs. 4

and 7, a half lemniscate is realized in the right-half plane when k = 1 and k = 1 − ρ2
0 using Eqs. (2)

and (34), respectively.

APPENDIX B: NOTE ON n � 3 AREA SOURCE PLUMES

According to R16, the velocity potential contours for n ideal source plumes spaced equally
around a circle of radius R are specified by

ρ2n − 2ρn cos nθ + 1 = k2. (B1)
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The left-hand side of Eq. (B1) can be decomposed as follows:

ρ2n − 2ρn cos nθ + 1 =
n∏

m=1

[
ρ2 − 2ρ cos

(
θ + 2(m − 1)π

n

)
+ 1

]
. (B2)

To introduce a source of finite radius, we must now include a factor of ρ0. Doing so after first
combining Eqs. (B1) and (B2) yields

n∏
m=1

{
ρ2 − 2ρ cos

[
θ + 2(m − 1)π

n

]
+ 1 − ρ2

0

}
= k2. (B3)

On substituting ρ = 0 in Eq. (B3), we find that k = (1 − ρ2
0 )n/2, which corresponds to the point

of first contact. This implies that first contact between adjacent plumes is accelerated if ρ0 and/or
n increases. Unfortunately, it is not straightforward to obtain analytical solutions to Eq. (B3) with
n � 3.

APPENDIX C: ENTRAINMENT FLUX FOR SOURCES WITH ρ0 > 0

From Eqs. (34) and (12), we can determine the flow speed as

q = m

2πR

2ρ(
k2 + 2 ρ2

0 ρ2 − ρ4
0 + 2ρ2

0

)1/2 . (C1)

Analogous to R16, the volume of fluid entrained across any velocity potential contour C is

E =
∫

C
q dl = mI

2π
, (C2)

where

I =
∫

C

2ρ(
k2 + 2ρ2

0ρ2 − ρ4
0 + 2ρ2

0

)1/2 dl ′ (C3)

and

dl ′ = 2
{
ρ4 + ( − ρ4 + ρ2

0ρ2
)[(

1 − ρ2
0

)2 − k2 − ρ2
0ρ2

]}1/2{
4ρ4 − [

ρ4 − 2ρ2
0ρ2 + (

1 − ρ2
0

)2 − k2
]}1/2 dρ (C4)

=
[
k2 + 2ρ2

0 (1 + cos 2θ )
]1/2 {

ρ2
0 + cos 2θ ± [

k2 − sin2 2θ + 2ρ2
0 (1 + cos 2θ )

]1/2}1/2[
k2 − sin2 2θ + 2ρ2

0 (1 + cos 2θ )
]1/2 dθ.

(C5)

Using Eqs. (35) or (36), the right-hand side of Eq. (C3) can be expressed as a function of ρ or θ ,
respectively. Note that Eq. (C2) does not account for the nonorthogonality between the streamlines
and the plume boundary defined by Eq. (34). For ρ0 > 0, the velocity component that is normal to
the contours defined by Eq. (34) satisfies

dy

dx
=

(
1 + ρ2

0 − ρ2
)

cos θ(
1 − ρ2

0 + ρ2
)

sin θ
= −u⊥

v⊥
. (C6)

Note that Eq. (C6) reduces to Eq. (11) in the limit of vanishingly small ρ0. By incorporating the
angle, θ ′, between the velocity vectors (u and u⊥) expressed, respectively, by Eqs. (11) and (C6),
Eq. (C2) can be rewritten as

E =
∫

C
q⊥dl =

∫
C

q cos θ ′dl = mI

2π
, (C7)
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FIG. 19. Flux integral as a function of k for various ρ0. Dashed curves follow Eq. (C2), whereas the solid
line follows Eq. (C7).

where q⊥ is the flow speed normal to the plume boundary and

cos θ ′ = u
‖u‖ · u⊥

‖u⊥‖ = k2 + ρ2
0ρ2 − ρ4

0 + 2ρ2
0 + ρ2

0 cos 2θ(
k2 + 2 ρ2

0 ρ2 − ρ4
0 + 2ρ2

0

)1/2 [
k2 + 2ρ2

0 (1 + cos 2θ )
]1/2 . (C8)

Of course, (C8) reduces to cos θ ′ = 1 when ρ0 = 0.
Solutions for I determined, respectively, by Eqs. (C2) and (C7) are presented as functions of k

in Fig. 19. Note that, once the speed normal to the plume boundary (q⊥) is adopted, I = 2π and
therefore E = m. When the total speed (q) is applied instead, we find from the dashed curves of
Fig. 19 a deviation from I = 2π for small k. Not surprisingly, the deviation grows with ρ0.
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