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Mean transport of inertial particles in viscous streaming flows

Mathieu Le Provost and Jeff D. Eldredge *

Mechanical & Aerospace Engineering Department, University of California,
Los Angeles, Los Angeles, California 90095, USA

(Received 27 November 2019; accepted 13 April 2020; published 6 May 2020)

Viscous streaming has emerged as an effective method to transport, trap, and cluster
inertial particles in a fluid. Previous work has shown that this transport is well described by
the Maxey-Riley equation augmented with a term representing Saffman lift. However, in
its straightforward application to viscous streaming flows, the equation suffers from severe
numerical stiffness due to the wide disparity between the timescales of viscous response,
oscillation period, and slow mean transport, posing a severe challenge for drawing physical
insight on mean particle trajectories. In this work, we develop equations that directly
govern the mean transport of particles in oscillatory viscous flows. The derivation of
these equations relies on a combination of three key techniques. In the first, we develop
an inertial particle velocity field via a small Stokes number expansion of the particle’s
deviation from that of the fluid. This expansion clearly reveals the primary importance of
Faxén correction and Saffman lift in effecting the trapping of particles in streaming cells.
Then, we apply the generalized Lagrangian mean theory to unambiguously decompose the
transport into fast and slow scales, and ultimately, develop the Lagrangian mean velocity
field to govern mean transport. Finally, we carry out an expansion in small oscillation
amplitude to simplify the governing equations and to clarify the hierarchy of first- and
second-order influences, and particularly, the crucial role of Stokes drift in the mean
transport. We demonstrate the final set of equations on the transport of both fluid and
inertial particles in configurations involving one cylinder in weak oscillation and two
cylinders undergoing such oscillations in sequential intervals. Notably, these equations
allow numerical time steps that are O(103) larger than the existing approach with little
sacrifice in accuracy, allowing more efficient predictions of transport.
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I. INTRODUCTION

Recent developments in the fields of biomedical diagnosis, pollutant treatment, drug delivery, and
microfluidics—to name a few—have motivated the need for efficient and fast methods to transport,
cluster, or trap inertial particles (small finite-sized particles) in a fluid environment. The particles
transported, such as drugs or biological cells, are fragile, and any direct contact creates undesirable
stresses on the particles that may cause irreversible damage. Though no method of transport can
avoid applying stress, noncontact methods can provide opportunities to distribute the stresses over
the particle more uniformly, reducing the possibility for damage. Techniques using ultrasound [1,2],
lasers [3,4], magnetic effects [5], dielectrophoresis [6], or inertial hydrodynamics effects [7,8] have
emerged as some of the most effective methods to manipulate inertial particles.

Another attractive possibility for noncontact particle transport is based on the notion of viscous
streaming. A streaming flow is a weak but large-scale steady response of the fluid to oscillatory
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forcing, brought about through the Reynolds stresses imparted on the fluid. Numerous studies have
shown the promises of viscous streaming to transport and trap inertial particles. Classical works
have focused on viscous streaming created by a cylinder oscillating weakly in rectilinear motion
[9–12]. Lutz et al. [13] have been able to trap particles in steady streaming eddies arranged in a
clover-shaped pattern around a cylindrical post fixed in a microchannel through which fluid was
forced in oscillatory fashion. Chong et al. have identified the mechanisms that underlie this trapping
[12] and have shown that an arrangement of multiple cylinders forced in sequence with oscillatory
motions can be used to construct desired inertial particle trajectories [14]. Abadi and Kosa [15]
have recently designed a closed-loop controller for the position and velocity of inertial particles
inside a two-dimensional square box using steady streaming mechanisms. The control actuation is
made through four vibrating piezoelectric beams inclined 45◦ at each corner of the square box. Very
good performance was reported: inertial particles were successfully forced to carry out a variety of
prescribed motions, such as eight-branch star trajectories or the transport of a constellation of inertial
particles without changing the distance between them. Parthasarathy et al. [16] have recently shown
that, in an arrangement of two cylinders in a fluid in which one is actively moved and the other is
passively transported by the resulting flow, the passive cylinder’s transport is enhanced by adding
oscillations to the active cylinder’s motion. The additional oscillations generate a streaming flow.

Rigid walls are not the only means for introducing oscillatory motion into the fluid to enact a
streaming flow. For example, recent works have shown the potential of using streaming flows created
by bubbles undergoing oscillatory volume and shape changes [17–20]. Two reasons motivate the use
of bubbles for actuation of viscous streaming: Larger amplitude motions can be created compared
to rigid bodies, resulting in quadratic increase of the streaming speed [18]. Also, the bubble-fluid
interface allows nonzero tangential velocity, leading to less deceleration of inertial particles in the
vicinity of the bubbles’ surface compared to rigid surfaces.

All of these works have shown the potential for particle manipulation using viscous streaming.
In order to devise means of strategically exploiting this mechanism for transport, it is important to
have a mathematical model for predicting the particle trajectories effected by a given geometry and
forcing modality. Chong et al. [12] showed that the dynamics of isolated inertial particles in viscous
streaming flows are well captured by the Maxey-Riley (MR) equation [21] with the addition of a
Saffman lift force [22]. (We refer readers to Michaelides [23] for a review and history of various
transport equations for inertial particles.) In particular, this approach accounts for the local velocity
of the fluid in the particle transport, but the particle’s influence on the fluid motion can be reasonably
neglected.

This prediction of particle transport is challenged by the underlying mechanisms responsible for
the transport. A viscous streaming flow has two well-separated timescales: a fast oscillatory scale
tf and a slow one associated with the steady streaming ts [12,24]. Consider a weakly oscillating
cylinder with angular frequency �, amplitude of oscillation A, and radius R such that ε=A/R � 1,
as is typical in streaming applications. The fast timescale is set by the period of oscillation,
tf = T ∼ 1/�. Inertial particles are transported at the characteristic (drift-corrected) speed of the
streaming flow, Vs = ε�A, in a streaming cell of characteristic size δDC . Chong et al. [12] have
shown that this streaming cell size remains δDC = O(R) over a wide range of Reynolds number,
Re = �R2/ν. Hence, the characteristic convective time of an inertial particle around a streaming
cell is of order ts ∼ δDC/Vs ∼ R/(ε�A) = 1/(ε2�). Therefore the slow timescale ts is a factor 1/ε2

larger than the fast scale, i.e., ts = tf/ε2 with ε � 1. An inertial particle of small radius a � R has a
third, even faster timescale: the time of viscous response when its velocity deviates from that of the
fluid. The ratio of this scale to that of the oscillations is measured by the Stokes number, denoted in
this paper by τ , which is proportional to Re a2/R2.

Indeed, in a viscous streaming flow, a particle is continuously wiggling around its mean trajectory
at the fast timescale and translating at the slow timescale. In order to discern long-time behaviors of
inertial particles in viscous streaming flows, simulations must be carried out over several transport
timescales, i.e., several multiples of ts, and consequently, several thousands of oscillation cycles.
Since the oscillatory motion of the fluid—occurring on the fast timescale—has non-negligible
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influence on the particle transport, the simulations of both the particle transport and the governing
equations in the fluid must ostensibly be well resolved temporally at the scale tf . Even with the one-
way coupling described above, a full simulation of a single-particle trajectory is computationally
expensive when carried out in this manner.

Clearly, the primary desire is to predict the slow-timescale (i.e, “mean”) trajectory of the particle
and to seek only the averaged influence of the fast timescale on this trajectory. In this work, we seek
to provide a framework for accelerated prediction of inertial particle trajectories in this fashion. We
are not the first to pursue such a strategy. It should be noted that Thameem et al. [24] and Agarwal
et al. [25] have proposed a time-scale separation of the Maxey-Riley equation to derive equations
resolved at the slow timescale. However, their approach is restricted to a purely radial velocity field,
periodic in time at leading order (in powers of ε) and steady at second order.

The approach we propose in this work is also focused on oscillatory fluid velocity fields, though
it allows for slow transient changes of such fields and places no restrictions on the field’s spatial
structure. We will use the framework of the generalized Lagrangian mean (GLM) theory of Andrews
and McIntyre [26] to form an expression for the Lagrangian mean velocity field wL, associated
with an underlying oscillatory velocity field w. This velocity field, defined as the time-average
velocity of the particle passing through any field point, is a cornerstone of our method: once we
have it, we can directly compute the mean particle trajectories using numerical time steps equal to
several oscillation periods. The field wL explicitly filters the fast fluctuating component from the
mean motion of particles; we will show that the fast component’s effect is confined to the Stokes
drift. To the best of our knowledge, no previous work has used these tools to efficiently solve the
Maxey-Riley equation in a setting of disparate timescales.

We will form Lagrangian mean velocity fields for fluid particles as well as inertial particles. The
underlying velocity field for inertial particles will be obtained by an asymptotic expansion of the
Maxey-Riley equation in small Stokes number for the deviation of the particle’s velocity from that
of the fluid. In so doing, we will extend an approach used previously by Maxey [27] and Ferry
and Balachandar [28]; here, we will add the important Faxén correction to these earlier treatments.
This approach allows us to obtain the inertial particle’s velocity from that of the fluid at little extra
cost. The problem will be further simplified by applying a separate asymptotic expansion in small
oscillation amplitude ε. Truncating this expansion at second order, we will arrive at a compact and
self-consistent form of equations for the fluid velocity field and the subsequent mean transport of
fluid and inertial particles.

The remainder of the paper is organized as follows. The description of the Maxey-Riley equation
and their expansion in small Stokes number are presented in Sec. II. The equations for the
Lagrangian mean velocity field, their simplification in small-amplitude viscous streaming flow,
and the algorithm for the fast Lagrangian-averaged transport of particles are discussed in Sec. III.
Applications of our algorithm to the cases of one and two weakly oscillating cylinders are presented
in Sec. IV. Concluding remarks follow in Sec. V. For the sake of completeness but to ensure clarity
of the main aspects of the paper, some details on the asymptotic expansion in small Stokes number
and a summary of relevant aspects of GLM theory are relegated to the Appendix.

II. BASIC TRANSPORT FOR INERTIAL PARTICLES

In this work, we are interested in computing the trajectory an inertial particle immersed in
an incompressible flow. As discussed in Sec. I, we assume that the coupling between the fluid
motion and the particle trajectory is one way: the particle’s motion is determined by the local fluid
velocity and generates a disturbance field that is unmodified by the proximity to oscillating bodies.
Thus, the fluid’s time-varying velocity field, u(x, t ), can be assumed known—for example, through
analytical or computational means—without regard for the particle’s presence, and our focus is
only on obtaining the particle trajectory in this field. The goal of this section is to obtain the general
transport equations for inertial particles in a form conducive for the next section, in which we distill
this transport into the mean motion.
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The fluid’s density and kinematic viscosity are denoted by ρ f and ν, respectively. The fluid
velocity field u is governed by the incompressible Navier-Stokes equations,

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u, ∇ · u = 0, (1)

in which all quantities (including pressure, p) have been nondimensionalized by the uniform fluid
density ρ f and the characteristic length and timescales of the flow. These scales are established
by the driving mechanism: The fluid is bounded on the interior by impenetrable surfaces that are
either stationary or oscillating with angular frequency �—generically, we refer to these surfaces as
“oscillators.” Thus, the characteristic timescale is taken as 1/� and, in the case of a cylindrically
shaped oscillator, the characteristic length taken as the cylinder’s radius R. The flow Reynolds
number Re is thus defined as

Re = �R2

ν
. (2)

In viscous streaming applications, we anticipate Re = O(10). We assume that the fluid is initially
quiescent and that the flow is generated in an infinite domain in which the fluid remains at rest at
infinity,

u(x, 0) = 0, u → 0, |x| → ∞, (3)

though this condition at infinity can easily be replaced with, e.g., a steady uniform flow or stationary
enclosing walls. The form of the boundary conditions on the oscillators is discussed later in the
paper. For now, we simply note that the displacement amplitude of the oscillations A is assumed
small compared with the size of the oscillator. The ratio of these scales is denoted by ε, so we are
assuming that

ε ≡ A/R � 1. (4)

Inertial particles are assumed to be rigid spheres with density ρp and radius much smaller than the
oscillating object, e.g., a � R. The particle’s mass is denoted by mp = 4πρpa3/3 and the displaced
fluid mass by m f = 4πρ f a3/3 = mpρ f /ρp. We denote the particle trajectory by xp(t ) and associated
velocity by V p(t ):

dxp

dt
= V p(t ). (5)

It will be assumed that the particle starts each trajectory at the same velocity as the surrounding
fluid,

V p(t0) = u[xp(t0), t0]. (6)

It is also useful to define the particle “slip” velocity, V p(t ) − u[xp(t ), t], the particle’s velocity
relative to the surrounding fluid, which is initially zero by virtue of the initial condition (6).

A. The Maxey-Riley equation with Saffman lift

We will assume throughout this work that the Reynolds number redefined on the particle radius
is small,

Re (a/R)2 � 1. (7)

In this work, for the transport of an inertial particle, we use a form of the Maxey-Riley (MR)
equation [21] that includes the Saffman lift [22], as was done by Chong et al. [12] or Ferry and
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Balachandar [28]. If we neglect gravity, the trajectory of an inertial particle is governed by

mp
dV p

dt
= 6πρ f νa

(
u[xp(t ), t] + 1

6
a2∇2u[xp(t ), t] − V p(t )

)
+ m f

Du
Dt

∣∣∣∣
xp(t )

− 1

2
m f

[
dV p

dt
− Du

Dt

∣∣∣∣
xp(t )

− d

dt

(
1

10
a2∇2u[xp(t ), t]

)]

+ 2
√

3πν1/2a2ρ f LB

[
u[xp(t ), t] + 1

6
a2∇2u[xp(t ), t] − V p(t )

]

+ 2
√

3πν1/2a2ρ f LS[u[xp(t ), t] − V p(t )]. (8)

Two different time derivatives act on field quantities in Eq. (8). By d/dt and D/Dt we denote,
respectively, the time derivative operators following the particle and the fluid:

d

dt
= ∂

∂t
+ V p(t ) · ∇, (9)

D

Dt
= ∂

∂t
+ u · ∇. (10)

The set of terms on each line of the right-hand side of Eq. (8) represent, respectively, the Stokes
drag, the fluid acceleration force, the added mass effects, and finally, the Basset history force and
the Saffman lift, with linear operators respectively defined as

LB[ f ](t ) =
√

3

π

∫ t

−∞

d f /dτ√
t − τ

dτ, (11)

LS[ f ](t ) = 3
√

3J∞
2π2

√|ω[xp(t ), t]| f (t ) × ω[xp(t ), t], (12)

where ω = ∇ × u denotes the associated vorticity of the fluid flow at the location of the particle.
For the coefficient J∞, we use J∞ = 2.255: the limit of the lift coefficient function J (η) as the ratio
η = Re 1/2

G /Re p goes to infinity. (For details on this function J , see [29,30].)
The Basset history force is a memory term due to the unsteady diffusion of vorticity from the

particle during its traveling history. Several studies [31,32] have shown that it can be of significant
importance. We retain the term for now for the sake of generality and comparison with previous
works, and our scaling analysis below will not reveal it to be clearly smaller than other terms.
However, in the context of particle transport in viscous streaming, Chong et al. [12] have shown
empirically that this term is of negligible importance in the current parameter regime and can safely
be ignored. We will do the same later in the paper.

Equation (8) also contains the Faxén corrections (the Laplacian of the fluid velocity field), which
were shown by Chong et al. [12] to be crucial in regions of high shear to cause the particle’s
trajectory to deviate from that of the fluid. That study also demonstrated the important role of the
Saffman lift in ultimately trapping the inertial particle at the center of a viscous streaming cell,
observed in previous experiments by Lutz et al. [13], for example.

Several comments are in order regarding our inclusion of the Saffman lift. This term represents
an inertial influence of the fluid when the particle moves relative to the fluid in a region of shear,
generating a force on the particle perpendicular to the motion. As such, it is nonlinearly dependent
on the fluid velocity field. The parameter regime of viscous streaming described in this paper
justifies the inclusion of such lift, as we will discuss below. However, it does not strictly meet
all of the conditions under which Saffman derived the expression for lift [22]. That derivation relies
on the particle lying in a region of shear that is nearly uniform well beyond a region of length
LS = (ν/G)1/2 (the so-called “Saffman length”), where G is the norm of the local velocity gradient;
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such shear uniformity enables Saffman’s rigorous singular perturbation treatment [22]. In streaming
flows, the particle encounters significant shear within the Stokes boundary layer generated around
the oscillating body, a region of thickness δs = (ν/�)1/2. The ratio of the Saffman length to the
Stokes boundary thickness should be small to justify the singular perturbation treatment. Here, that
ratio is (�/|ω|)1/2, where |ω| is representative of the instantaneous vorticity in the Stokes layer. In
the limit of vanishing oscillation amplitude ε, this ratio increasingly fails to abide by the required
separation of scales. But this limit is of little practical relevance, as the flow itself vanishes in this
limit. In the scenarios described later in this paper, the ratio is of order 1: still not quite sufficient
for the strict separation of scales. As Saffman’s own analysis of a particle in steady Poiseuille
flow showed [22], this separation of scales is difficult to meet even in many simpler flows. Thus,
we interpret the mathematical form here as a representative model of the phenomenon, albeit not
fully justified mathematically. We believe that the Saffman lift has served as a useful model in this
capacity for many other studies. Aside from our relaxation of proper scale separation, the other
conditions of Saffman’s derivation [22]—placed on the various Reynolds numbers—are satisfied
in the parameter regime considered in this paper. The shear Reynolds number, Re G = Ga2/ν,
describes the squared ratio of the particle size to the Saffman length and should be much smaller
than unity. This Reynolds number is approximately Re G ∼ Re (a/R)2|ω|/�, and thus satisfies its
condition by virtue of (7). The “slip” Reynolds number, Re p = a|V p − u|/ν, is more difficult to
ascertain a priori, but based on the analysis that follows in this paper [demonstrated in Eq. (45)], the
slip velocity is dominated by the Faxén correction and is approximately a2|∇2u|. In the Stokes layer,
where this correction is most active, the Laplacian of the fluid velocity scales like |ω|/δs, and thus
Re p ∼ Re 3/2(a/R)3|ω|/�, also much less than unity. Using these scalings, the requirement that
Re s/Re 1/2

G � 1 is also met. For arbitrary shear flows, different generalizations of the Saffman lift
can be found in the literature: Tio et al. [33] used expressions involving coordinate-independent
fluid shear rate and the norm of the particle slip velocity. However, the form used here, due
to Ferry and Balachandar [28], is written in a manner that is linearly dependent on the particle
velocity. These two formulations are not equivalent for arbitrary shear flows but reduce to the same
formula with Saffman’s assumptions. In unreported tests, only minor differences in the transport
of inertial particles were observed between these two formulas. We retain the second formulation,
whose linearity in the slip velocity will be helpful for deriving the asymptotic expansion of the
Maxey-Riley equation. It should also be emphasized that the particle transport model omits other
effects—namely, hydrodynamic interactions with the wall of the oscillator—that are undoubtedly
significant in some parts of the trajectory. In particular, both the tangential and normal components
of the particle’s motion would be slowed relative to the fluid during encounters with the wall,
providing an additional mechanism for the particle to be pushed toward the center of the streaming
cell. Rather than compute the full hydrodynamics of these encounters, however, we rely instead
on capturing similar effects in a manner that does not require a full coupling with the fluid flow
field: the Faxén correction to generate a relative slip velocity, the Saffman lift to effect transverse
motions, and kinematic constraints to prevent penetration. Overall, these simplifying assumptions,
while omitting some of the physics of the particle transport, are made in order to obtain a model
that can predict long-range trajectories in extended arrays of oscillators while preserving the basic
mechanisms of particle trapping.

B. The inertial particle velocity field

The velocity V p(t ) is clearly a quantity associated with a particle-centered (i.e., Lagrangian)
perspective. However, our treatment in this paper benefits greatly from changing our view of particle
motion into an Eulerian perspective: the velocity and other quantities observed at a fixed position x
are those attributable to the inertial particle currently occupying that position. That is, we define the
inertial particle velocity field v(x, t ) such that

dxp

dt
= v(xp(t ), t ) = V p(t ). (13)
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By differentiating this expression, it is clear that the time derivative of v following the particle
trajectory (9) is identical to dV p/dt .

This definition v(x, t ), and much of the remainder of this section, draw closely from the work
of Ferry and Balachandar [28]. We briefly review the treatment here and adapt it to account for the
Faxén corrections, which were neglected by Ferry and Balachandar [28] but which we expect are
non-negligible in the current context. It is important to note that the integral curves (i.e., path lines)
of this time-varying inertial particle velocity field describe every possible inertial particle trajectory.
The flow map of this field, once obtained, provides a comprehensive solution for inertial particle
transport, an extremely valuable result.

However, it should also be noted that the definition of v depends on our choice of initial condition
for the particle: with a different choice, a different particle would generally occupy a position x at
time t . Ferry and Balachandar [28] reason that the trajectories for two different choices of initial
condition converge toward each other over time, losing memory of their different initial velocities.

From here on, we will presume that independent and dependent variables have been nondi-
mensionalized by the characteristic time and length scales of the flow. In our viscous streaming
context, it is reasonable to take these, respectively, as the fast flow timescale—the inverse of the
oscillation frequency 1/�—and the radius R of an oscillating cylinder. Thus, for example, u and
v will henceforth denote the fluid and inertial particle velocity fields scaled by �R, x will be the
position scaled by R, and time t will represent the dimensional time multiplied by �.

Using the definitions presented above and some simple manipulation, we can rewrite (8) in a
more compact dimensionless form:

dv

dt
= 1

τ
(u + qF − v) + β

Du
Dt

+ β

5

dqF

dt
+

√
β

τ
(LB[u + qF − v] + LS[u − v]), (14)

in which, for convenience, we have defined a Faxén correction velocity,

qF = 1
6 (a/R)2∇2u. (15)

We have also defined two dimensionless parameters: a density ratio parameter β and a particle
Stokes number τ , respectively, as

β ≡ 3

2ρp/ρ f + 1
, τ ≡ �a2

3βν
. (16)

This latter parameter represents the ratio of the characteristic response time of the Stokes drag on
the particle to the fastest characteristic flow timescale.

C. Asymptotic expansion of the Maxey-Riley equation in small Stokes number

The two parameters introduced in Eq. (16), β and τ , each play an important role in dictating the
behavior of the inertial particle motion. For example, β = 1 represents a neutrally buoyant particle,
which, in the absence of the Faxén corrections, remains on the same trajectory as a fluid particle.
The Stokes number τ is proportional to Re (a/R)2, which we have already assumed to be small in
(7) and thus make the same assumption for the Stokes number: τ � 1. In the absence of Faxén
corrections, we would expect this small Stokes number to quickly penalize deviations of the inertial
particle’s velocity from that of the surrounding fluid [and to render the governing equation (14)
numerically stiff]. Maxey [27] used this argument to develop an asymptotic expansion in τ for
the inertial particle velocity’s departure from that of the fluid. Later, Ferry and Balachandar [28]
extended this expansion to include all of the terms that we have included in the MR equation (14)
except for the Faxén correction.

In regions of shear, the Faxén correction cannot be neglected a priori. For example, in the Stokes
boundary layer formed by an oscillating cylinder, whose thickness scales like 1/

√
Re , one expects

qF ∼ Re (a/R)2u and thus, qF ∼ τu. For the sake of keeping our analysis in this section general,
we will not yet explicitly invoke this scaling of qF. It is important simply to note that the Faxén
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correction is at least comparable to the other dominant terms in the analysis. We will include
the Faxén correction only as qF, unadorned with scaling; once its scaling in τ is determined, its
placement in the asymptotic expansion can be adjusted accordingly. We will do so for the case of
an oscillating cylinder.

Note that this inclusion changes the apparent target velocity at vanishing τ from u to u + qF and
also changes the lowest power of τ in the expansion from τ to τ 1/2, as we shall see. Adapting the
approach of Maxey [27] and Ferry and Balachandar [28], we write the inertial particle velocity field
in terms of the fluid velocity field as

v = u + qF + τ 1/2q. (17)

The deviation of the particle velocity from the target is now borne by the third term on the right-hand
side of (17). In Appendix 1 we present the derivation of the resulting equation for q. In the course
of that derivation, we use the expected scaling of qF in the Stokes layer surrounding the oscillating
cylinder and, furthermore, neglect the Basset memory term as consistent with the analysis of Chong
et al. [12]. The resulting expression is

v = u + τa − τ 3/2β1/2LS[a] + O(τ 2), (18)

in which the fluid acceleration force a has been defined as

a ≡ (β − 1)
Du
Dt

+ 1

2

β

Re
∇2u. (19)

Equation (18) forms one of the cornerstones of our proposed method for accelerated simulation of
inertial particle transport, since it provides a velocity field that describes this transport everywhere,
entirely in terms of the local fluid velocity and its derivatives. However, before we proceed to the
distillation of this equation into fast and slow timescales, we make a few observations. First, it is
important to note that the equation reduces to that of Ferry and Balachandar [28] and Haller and
Sapsis [34] when the Faxén correction velocity is omitted. In that situation, the acceleration force
(19) reduces to

a = (β − 1)
Du
Dt

. (20)

We can observe from this reduced form that without the Faxén corrections, the inertial particle’s
motion can only depart from that of the fluid if the particle is not neutrally buoyant (i.e., if
β 
= 1). But the retention of these Faxén correction terms into the expanded field emphasizes
the observations made by Chong et al. [12]: When the particle is neutrally buoyant or nearly
so, deviation of the particle’s motion from that of the fluid is solely brought about by the Faxén
correction velocity, and the particle’s subsequent dynamics are dominated by the Saffman lift. In
Eq. (18), these observations are confirmed to be the two dominant disturbances from the fluid
velocity. For lighter or heavier particles, the dynamics are effected by a mixture of this influence
with that from fluid acceleration.

III. DEVELOPMENT OF THE EQUATIONS FOR MEAN PARTICLE TRANSPORT

In the previous section, we obtained a velocity field for inertial particle transport that derives
from the velocity field of the fluid. The trajectories of both fluid and inertial particles are described
by the general transport equation,

dxp

dt
= w[xp(t ), t], xp(0) = x0, (21)
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where the generic velocity field w can be interpreted as either the fluid velocity field u or the inertial
particle velocity field v. In the current discussion it is not important to make the distinction, and we
will use the generic term “particle” to describe either a fluid particle or an inertial particle.

In the flows associated with u or v, the trajectories contain a mixture of fast (fluctuating) and slow
(mean) scales. The main objective of this work is to seek the mean trajectories of such particles
directly, skipping over the integration of the fast scales to the extent possible. This challenge to
derive equations resolved only at the slower (or larger) scales exists in many realms of physics, e.g.,
turbulence or climate modeling. The classical Reynolds decomposition of a fluid quantity (such
as velocity or pressure) into a mean and a fluctuating component provides the basic machinery
for developing such equations from an Eulerian perspective, i.e., for fluctuations observed from a
fixed spatial location. Because we are interested in this paper in seeking the slow-scale transport of
individual particles, we cannot perform a standard Eulerian average of the Maxey-Riley equation;
rather, we need to average it in a Lagrangian sense, i.e., for a fixed particle label. Following the work
of Andrews and McIntyre [26,35], we will introduce a Reynolds-like decomposition of the motion
of a particle into a slow (mean) Lagrangian component and a fast (fluctuating) component. In the
context of Lagrangian fluid stability, Bernsteinet al. [36] first argued that the fluctuating component
of the motion of a particle can be derived from an Eulerian disturbed displacement field ξ(x, t ),
evaluated at the mean Lagrangian position of the particle. This led to the generalized Lagrangian
mean theory, developed by Andrews and McIntyre [26,35], who successfully applied the theory
to wave problems in the contexts of stratified and rotating fluid flows. Holm analyzed the GLM
theory from a geometric point of view and derived the Lagrangian averaged Navier-Stokes-alpha
(LANS-α) model for turbulent flows [37–39].

We will use GLM theory to provide a framework in which to analyze particle transport into
fast and slow components. The basic aspects of the theory’s application are outlined in Sec. III A.
Like the Reynolds-averaged Navier-Stokes equations, GLM theory still leaves the treated equations
with a closure problem, analogous to that encountered in the Reynolds-averaged Navier-Stokes
equations. However, rather than seek to replace the influence of the fastest scales with a model,
we instead account for their influence by explicitly computing the disturbed displacement field, ξ.
Following the work of Holm [39], we formulate a simplified form of the equation for ξ for small
disturbances. In Sec. III B, we will clarify this equation via an asymptotic expansion in the small
oscillation amplitude that underpins viscous streaming theory.

A. Development of the Lagrangian mean field equations

Given a time-varying Eulerian field f (x, t ) of arbitrary tensor rank, we can define the following
averaging operator:

f (x, t ) = 1

T

∫ t

t−T
f (x, t ′)dt ′. (22)

In anticipation of the emergence of two timescales, it is important to note that this operator is
intended to average the fast scales and leave the slow scales unaffected. Following Holm [39],
we could formally define f with distinct dependencies on time in these two separate scales. By
expanding the averaging operator in the ratio tf/ts � 1, it is straightforward to show that the
operator’s leading-order behavior preserves the slow behavior of f , provided that ts � T � tf . In
the case of strictly periodic fast scales, it is sufficient for T to be the period of oscillation or some
integer multiple thereof.

We will refer to the field defined in this fashion as the Eulerian mean field. The averaging operator
has the following properties:

(i) Linearity: For constant scalars a, b and two Eulerian fields f and g, a f + bg = a f + bg

(ii) Idempotence: f = f
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FIG. 1. Schematic of flow maps used in this work. Xt and Yt represent slices of the configuration spaces
Xt × [0, ∞) and Yt × [0,∞) at some instant t . Illustrations of particle trajectories are shown as colored curves
(though strictly speaking, these trajectories would proceed along the time axis of the respective space).

It also commutes with spatial and time derivatives, but importantly (and famously in the Navier-
Stokes equations), does not commute with the advection operator, that is,

u · ∇ f 
= u · ∇ f . (23)

In this paper, we seek the mean paths of fluid or inertial particles and the mean variation of
quantities along those paths. The Eulerian mean, assessed at a fixed location, is not the appropriate
measure of average in this context. However, it can be used to “induce” a definition of a Lagrangian

mean, (·)L
, that is, an average of a field taken along the trajectory of a particle, for a fixed Lagrangian

label. This definition, and several useful tools associated with it, are provided by the GLM theory
of Andrews and McIntyre [26].

The basic foundation of GLM theory, illustrated in Fig. 1, is the separate definitions of an actual
configuration space, Xt × [0,∞), in which particles follow the actual (oscillatory) trajectories of
the velocity field w and a mean configuration space Yt × [0,∞), in which particles follow the mean
(smooth) trajectories of this velocity field. From the perspective of any fixed location x in this mean
space, GLM theory describes the difference between the actual and mean positions of particles via
an Eulerian disturbed displacement field ξ(x, t ), defined to have zero mean. With this connection
between the two spaces, any Eulerian field φ in the actual space can be described equivalently by
an associated Eulerian field φξ (x, t ) in the mean space, defined in Eq. (A25) as

φξ (x, t ) ≡ φ[x + ξ(x, t ), t]. (24)

In other words, this associated field expresses the variation of φ at fixed x in the mean space as one
follows the disturbed trajectory x + ξ(x, t ) in the actual space. The Lagrangian mean of φ is then
sensibly defined by taking the Eulerian mean of φξ (x, t ), i.e.,

φ
L
(x, t ) ≡ φξ (x, t ). (25)

The Lagrangian disturbance φl follows naturally as the difference between the actual value and the
Lagrangian mean, i.e.,

φl (x, t ) ≡ φξ (x, t ) − φ
L
(x, t ). (26)

In particular, the Lagrangian disturbance velocity is defined in Eq. (A34). We review other
consequences of GLM theory in the Appendix.
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FIG. 2. Mean (green) and actual (blue) particle trajectories with initial position x0. The position xξ is the
actual position whose mean is x. Adapted from Bühler and McIntyre [40].

1. The basic equations for mean particle transport

Using the notation for GLM theory defined in Appendix 2 and illustrated in Fig. 1, our objective
is to seek the mean flow map Y (·, t ) for particular values of the particle label x0. The equation
generating this trajectory for a specific particle x0 follows directly from Eq. (A21). When we
substitute the velocity with the Lagrangian mean velocity using relation (A32), we obtain the
kinematic equation for a mean particle trajectory:

dxL

dt
= wL[xL(t ), t], xL(0) = x0, (27)

where we have used the shorthand notation xL(t ) ≡ Y (x0, t ) to denote the mean trajectory of a
single particle x0 and explicitly included its initial condition. By definition, the Lagrangian mean
velocity field requires averaging while following the actual trajectory of the particle in Xt × [0,∞),
obtained by adding the local disturbed displacement, ξ(xL(t ), t ) to the trajectory in Yt × [0,∞).
The disturbed displacement field can be generated from the velocity field via its transport equation
(A35), which we rewrite here with relevant definitions for the purpose of elucidating the underlying
(and thus far, exact) computational problem:

∂ξ

∂t
= −wL · ∇ξ + wξ − wL,

ξ(x, 0) = 0,

wξ (x, t ) = w[x + ξ(x, t ), t],

wL(x, t ) = 1

T

∫ t

t−T
wξ (x, t ′) dt ′. (28)

We have included here the initial condition on ξ, which was established by requiring that Yt = Xt =
X0 at t = 0. Figure 2 illustrates the relationships between the mean and actual trajectories.

The set of equations (27) and (28) does not obviously achieve our goal of “skipping over” the
fast (oscillatory) timescales of the flow to accelerate the solution for mean trajectories. However,
it is important to observe that the coupled equations (28) are Eulerian in the mean configuration
space Yt × [0,∞). Furthermore, when they are supplied with the actual velocity field w, they
can be solved a priori to generate the (slowly varying) Lagrangian mean field wL(x, t ), either
simultaneously with w or in a subsequent procedure. With this Lagrangian mean velocity field in
hand, the slow particle trajectories are easily obtained with no further regard for the fast (oscillatory)
timescale by integrating Eq. (27).

In Sec. III B 2, we will clarify features of the equations (28) that can be used to simplify our
task. In particular, we will make the assumption that the disturbed displacement field ξ is small
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everywhere (compared with the characteristic length scale of the flow, e.g., R) and exploit this
assumption to reduce the equations to a more computationally tractable form.

2. A note on the disturbed displacement field on moving surfaces

In the context of this paper, the problems we wish to solve involve flows whose fastest timescales
are generated by impenetrable surfaces undergoing motion consisting entirely of rapid disturbances.
The partial differential equation in Eq. (28) for the disturbed displacement field, ξ(x, t ), is already
closed—it purely describes transport and has no need of boundary conditions. However, it is
nonetheless useful to reconcile the surface motion (which we will assume is prescribed) with our
definition of the mean configuration space Yt × [0,∞) and the field ξ(x, t ); intuitively, we should
expect that the surface motion is somewhat simpler in this space. In fact, we will restrict our attention
in this work to surfaces that are at rest in the mean configuration space and consider the implications
of this restriction. After that, we will discuss its rationale.

Let us consider a subset of the particles in X0 to comprise a reference surface, Sb0. This
surface represents the interface between the body and the surrounding fluid at t = 0. We can also
interpret Sb0 as comprising multiple disconnected surfaces in case there are many bodies. The
(actual) subsequent motion of any surface particle x0 ∈ Sb0 is described by a map X b(x0, t ), and
the collection of all such points is denoted by Sb(t ). For the velocity field w, whether it represents
the fluid or inertial particle motion, we will require that the no-slip and no-penetration conditions
are both enforced at the surface. [It should be apparent from the inertial particle velocity field (18)
that this field does not satisfy these conditions even if the fluid velocity does. We will augment the
field with a constraint, to be discussed in Sec. III C.] We thus insist that X (x0, t ) = X b(x0, t ) for all
x0 ∈ Sb0, which ensures that

w0(x0, t ) = ∂X b(x0, t )

∂t
(29)

for all such particles.
We also define the map Y b(x0, t ) and insist that it, too, agrees with the overall map to Yt × [0,∞)

for all particles in Sb0. But, in line with our assumption that the surface is at rest in the mean
configuration space, we require that this map is the identity:

Y (x0, t ) = Y b(x0, t ) ≡ x0, x0 ∈ Sb0. (30)

Applying our Lagrangian form of the Reynolds decomposition (A31) to particles in Sb0, we can
relate these surface maps to the disturbed displacement field:

ξ(x0, t ) = ξb(x0, t ) ≡ X b(x0, t ) − x0, x0 ∈ Sb0, (31)

where we have defined a surface displacement field ξb(x, t ) for particles in the surface. Note that
this relationship also ensures that ξ(x0, 0) = 0, as desired.

To express this relationship in the usual Eulerian form of the field ξ, we will define Sb as the fixed
position of the surface in the mean configuration space. By assumption, Sb = Sb0, and clearly, the
coordinates of any fixed location on this surface x ∈ Sb are equal to the particle label there, x = x0.
Thus, we obtain the following simple expression for the disturbed displacement field at points on
the surface:

ξ(x, t ) = ξb(x, t ) ≡ X b(x, t ) − x, x ∈ Sb. (32)

Applying the GLM axiom that the mean of ξ vanishes identically, it is clear that requiring the
surface to remain at rest in the mean configuration space is equivalent to requiring that ξb = 0, or
equivalently,

X b(x, t ) = x. (33)

That is, the location x ∈ Sb, as intuitively expected, is identically the mean position of this moving
surface point on Sb(t ) in the full configuration space Xt × [0,∞), and ξ(x, t ) entirely describes its
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motion in that space. It should also be clear that being stationary in the mean configuration space
implies that the Lagrangian mean velocity, wL(x, t ), is exactly zero at all points on the surface:

wL(x, t ) = 0, x ∈ Sb. (34)

In the specific case of the fluid velocity field, w → u, the no-slip boundary condition (29) can be
rewritten in terms of the surface displacement field ξb as

u[x0 + ξb(x0, t ), t] = ∂ξb(x0, t )

∂t
, x0 ∈ Sb0, (35)

where ξb = 0, and x0 coincides with the mean location of the surface point on Sb(t ).
As an example of an admissible surface motion, relevant for the results we will show later in this

work, let us consider a rigid body in oscillatory translational motion. Then we can write the full
surface map for any surface label x0 ∈ Sb0 as

X b(x0, t ) = xc(t ) + (x0 − xc0), (36)

where xc(t ) is the time-varying position of the centroid of the body, and xc(0) = xc0 is that centroid’s
initial location. Applying the restriction to this motion, the surface point must remain fixed at x0 in
the mean configuration space, and to ensure that this truly is the mean space,

xL
c = xc0. (37)

That is, the centroid must start at its mean position. The resulting disturbed displacement field on
the mean surface is described by

ξ(x, t ) = ξb(x, t ) ≡ X b(x, t ) − x = xc(t ) − xc0, x ∈ Sb. (38)

In other words, when the surface is in rigid translation, the disturbed displacement field is uniform.
It is straightforward to conceive of other admissible surface motions that would generate streaming
flows, including oscillatory rigid rotation or time-varying deformations about a stationary mean
surface.

We should observe that our restriction (33) precludes combinations of faster (fluctuating) motions
with slower motions that have nonzero mean. We make this restriction to avoid ambiguity involving
our definition of the Eulerian mean (22) when applied in the mean configuration space at fixed
positions on or near the surface. If such a surface were moving in this space, then it would move
relative to this fixed averaging position during the averaging interval, obscuring the decomposition
of the surface’s motion. Of course, by construction, any motion in the mean space is presumed to
occur on a much slower timescale than the averaging interval. In fact, if we rely on two independent
measures of time, slow and fast—as done, for example, by Holm [37] and others—then the surface
can be treated as stationary with respect to the time averaging over the fast scales. However, we
have chosen to use only a single measure of time, primarily because the timescale associated with
the slow motion effected by viscous streaming only presents itself a posteriori. Nevertheless, the
viscous streaming flows we focus on in this work do not contain such slow surface motions.

In passing, we note that there is nothing in the analysis of this section that prevents us from
applying it to surfaces formed from bubble (liquid-gas) interfaces. However, in that case, one
would have to allow for mean transport within the mean surface. That is, although Sb would still
be stationary, Y b(·, t ) would no longer be the identity but would allow for mean transport on the
surface.

B. Asymptotic reduction for small oscillation amplitude

The full governing equations describing the mean transport of fluid and inertial particles have
now been specified. These include the equations for the velocity fields themselves—the Navier-
Stokes equations (1) for the fluid velocity field u and Eq. (18) for the inertial particle velocity
field v induced by this fluid motion—and the initial condition and boundary conditions on the fluid
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velocity (3) and (35). They also include the equations for mean transport in these velocity fields,
including (28) for the Lagrangian mean wL of either of the velocity fields, and Eq. (27) for the mean
transport xL(t ) of any particle, fluid, or inertial. Collectively, they represent a map from a given
surface displacement field of the oscillator(s), ξb, to the resulting mean transport of the particles in
the fluid.

In this section, we aim to simplify the calculation of this mean transport by exploiting the small
amplitude, ε = A/R � 1, of the oscillations described by ξb. We will help our cause by exposing
the oscillation amplitude with a unit form, �b, of the surface displacement field:

ξb(x, t ) = ε�b(x, t ), (39)

where �b(x, t ) = O(1). With the driving mechanism proportional to ε, we expect that all other
quantities, including the velocity field embodied by w, and its associated disturbed displacement
field ξ, are themselves proportional to ε at leading order (and we do not expect flow instabilities
to emerge in this parameter regime that might change this fact). Thus, we will expand all such
quantities in powers of ε,

w = εw1 + ε2w2 + O(ε3), ξ = εξ1 + ε2ξ2 + O(ε3), (40)

where w, as usual, could be either the fluid velocity u or the inertial particle velocity v. We will
also use the same expansion for the pressure, p (which, more precisely, represents the pressure
disturbance from ambient).

1. Reduction of the Navier-Stokes equations

Let us first introduce the asymptotic expansions for u and p into the Navier-Stokes equations (1).
We can also do the same for the boundary condition (35) and expand the velocity in a Taylor series
about ε = 0. Equating powers of ε, it is easy to show that we get

∂u1

∂t
− 1

Re
∇2u1 + ∇p1 = 0, ∇ · u1 = 0, (41)

and the associated initial condition u1(x, 0) = 0 and boundary conditions

u1(x, t ) = ∂�b(x, t )

∂t
, x ∈ Sb, u1 → 0, |x| → ∞. (42)

At the next level, we get

∂u2

∂t
− 1

Re
∇2u2 + ∇p2 = −u1 · ∇u1, ∇ · u2 = 0, (43)

with initial condition u2(x, 0) = 0 and boundary condition

u2(x, t ) = −�b(x, t ) · ∇u1(x, t ), x ∈ Sb, u2 → 0, |x| → ∞. (44)

Equations (41)–(44) describe the dominant fluid behavior in a viscous streaming problem for
a given unit surface motion, �b(x, t ). It is important to note that the equations for u1 and u2 are
both unsteady Stokes equations and linear. The nonlinear effects enter the second-order equation, as
a forcing term involving only the first-order flow field. The boundary conditions are applied at the
mean location of the cylinder surface. Because of this, the second-order boundary condition contains
a correction to account for the application of the first-order boundary condition at this mean location
rather than its actual location. In fact, as will be revealed in Eqs. (50) and (56) below, the boundary
conditions on u1 and u2 ensure that fluid particles initially on the surface remain on the surface and
that the Lagrangian mean fluid velocity uL will remain zero on the mean surface to O(ε3).

There are two significant advantages gained by this asymptotic treatment of the governing
equation. First, the geometry of the problem, including that of the oscillators, is fixed, which
greatly improves the computational efficiency of the solution procedure; and second, the flow
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field generated at each asymptotic level has unit order of magnitude, which reduces the effects
of numerical error on the solution.

With this expansion of the fluid velocity in small amplitude, the inertial particle velocity field
v, provided by Eq. (18), can be asymptotically expanded in the same manner, though with the
inclusion of an intermediate term at ε3/2 due to the Saffman lift, v = εv1 + ε3/2v3/2 + ε2v2. It is
straightforward to show that the leading contributions are given by

v1 = u1 + τa1 (45)

and

v3/2 = −τ 3/2β1/2 3
√

3J∞
2π2

√|ω1|
a1 × ω1, v2 = u2 + τa2, (46)

where ω1 = ∇ × u1, and where the leading-order acceleration forces a1 and a2 are given by

a1 = (β − 1)
∂u1

∂t
+ 1

2

β

Re
∇2u1 (47)

and

a2 = (β − 1)

(
∂u2

∂t
+ u1 · ∇u1

)
+ 1

2

β

Re
∇2u2. (48)

In order to unify our later discussions on averaging the trajectories of fluid and inertial particles
under the generic velocity w, we take some liberty in asymptotic notation by lumping ε3/2v3/2 +
ε2v2 into a single second-order term ε2v2, where

v2 = −ε−1/2τ 3/2β1/2 3
√

3J∞
2π2

√|ω1|
a1 × ω1 + u2 + τa2. (49)

Though there is some awkwardness in this notation with a negative power of ε, there should be no
ambiguity, and the O(ε3/2) term is easily recovered in every expression that follows.

With the advantages presented by the mean configuration space, it is worth wondering whether
we might formulate and solve governing equations directly for uξ in this space to provide a
more direct path to the Lagrangian mean velocity field. Such equations have been derived, for
example, by Andrews and McIntyre [26,35]. These equations introduce new quantities, such as
the pseudomomentum density field, −ul · ∇ξ, that couple the disturbed displacement field into the
equations. We have chosen instead to solve for u in the actual configuration space and then follow
the procedure described in Sec. III B 2 to relate this velocity (or the inertial particle velocity) to its
corresponding Lagrangian mean field. Ultimately, after asymptotic expansions in ε have been used
to reduce the equations, one can show that both procedures reduce to the same result.

2. Reduction of the Lagrangian mean velocity field

Now let us apply our asymptotic expansions (40) to the particle transport equations. We start
with the equation for wξ in Eq. (28) and carry out a Taylor expansion about ε = 0. We then get

wξ (x, t ) = εw1(x, t ) + ε2[w2(x, t ) + ξ1 · ∇w1(x, t )] + O(ε3). (50)

It should be noted that this expanded form of wξ relates the Eulerian forms of the actual velocity
field in our two spaces: between the value at fixed x in the mean configuration space and its value
at the mean location to which x is mapped in the actual configuration space. We can then substitute
this expanded form of wξ into the definition of wL in Eq. (28) and easily get an expanded form of
this mean velocity:

wL = εw1 + ε2(w2 + ξ1 · ∇w1) + O(ε3). (51)
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This shows that, at leading order, the Lagrangian mean velocity at some location x in Yt is equal
to the Eulerian mean of the leading-order velocity at the same location in Xt . At the next order,
however, an additional term appears: the Eulerian mean velocity is modified by the Stokes drift
velocity, wd ≡ ξ1 · ∇w1. When the fluid velocity field is purely oscillatory (i.e., without transient
behavior), it can be easily verified that the leading velocity has zero Eulerian mean, w1 = 0, for both
types of particles. Thus, the Stokes drift has an essential role in determining the mean trajectories
of particles. For inertial particles, where w is taken to be v, the Saffman lift in Eq. (18) generates
a nonzero Eulerian mean at smaller order (ε3/2) than for a fluid, but the Stokes drift still cannot be
neglected in such a case.

Now let us complete the asymptotic analysis by substituting the expansion of ξ and both
expanded forms of the velocities into the equation for ξ in Eq. (28) and equating like powers of
ε. At the leading two asymptotic levels, we get

∂ξ1

∂t
= w1 − w1, (52)

∂ξ2

∂t
= w2 − w2 − w1 · ∇ξ1 + ξ1 · ∇w1 − ξ1 · ∇w1. (53)

First, let us note that at each asymptotic level these equations preserve the zero mean of ξ, thereby
ensuring that we remain within the constraints of GLM theory. Second, we observe that we can
obtain a completely self-consistent algorithm for generating the Lagrangian mean velocity field by
retaining only the equation for ξ1. In other words, for a given pair of asymptotic velocity fields w1

and w2, we can solve

∂ξ1

∂t
= w1 − w1, (54)

wd ≡ ξ1 · ∇w1, (55)

wL(x, t ) = εw1(x, t ) + ε2[w2(x, t ) + wd (x, t )], (56)

to generate a Lagrangian mean field wL valid to O(ε5/2). This reduced form requires only the leading
Eulerian velocity fluctuation, w1 − w1, to obtain the required disturbed displacement field, and
thence, the Stokes drift’s important contribution, wd , to the Lagrangian mean velocity field for
particle transport.

It is worth making a few other notes on the Lagrangian velocity before we close this section.
To support the first two notes, let us first develop an alternative form of the Stokes drift (55). If we
substitute (54) for w1 and remember that ξ1 = 0, then this Stokes drift can be written as ξ1 · ∇∂ξ1,t ,
where ξ1,t denotes ∂ξ1/∂t . Using our definition of the Eulerian mean in Eq. (22), we can integrate
this form of the Stokes drift by parts:

wd = 1

T

∫ t

t−T
ξ1 · ∇ξ1,t ′ dt ′ = 1

T
[ξ1 · ∇ξ1]t

t−T − 1

T

∫ t

t−T
ξ1,t ′ · ∇ξ1 dt ′, (57)

with T the averaging interval. The first term on the right-hand side of this equation is identically
zero when the field ξ1 is periodic and T is an integer multiple of the period. For transient problems,
in which T is taken to be much larger than the oscillatory timescale, the term does not strictly
vanish. However, it should be noted that had we formally defined separate fast and slow measures
of time, then T would be much longer than this fast timescale (while the slow time is effectively
held fixed). The term would vanish in this limit. For this reason, we argue that it can be neglected in
general cases without consequence. Thus, the Stokes drift can also be written as wd = −ξ1,t · ∇ξ1,
or, alternatively, as a combination of the two forms, with the velocity substituted back in:

wd = 1
2 (ξ1 · ∇w1 − w1 · ∇ξ1). (58)

This latter form of the Stokes drift has several merits, as we discuss below.
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a. Mean trajectories in an incompressible velocity field. In the case when the velocity field w is
incompressible, ∇ · w = 0, and the Lagrangian mean of this field is steady, ∂wL/∂t = 0, then we
can obtain mean particle trajectories directly from the contours of a Lagrangian stream function
field associated with wL [41], as we will show here. When w is divergence-free, then w1 and w2 and
their means are as well. Each of these means can thus be derived from a stream function field, which
we will denote by ψ1 and ψ2, respectively (where, e.g., w1 = ∇ × ψ1). It is less obvious that the
Stokes drift term, wd = ξ1 · ∇w1, can be derived from a stream function as well. However, when the
velocity field w1 is divergence-free, then by (54), so are ξ1 and its time derivative, and the right-hand
side of (58) can thus be written as ∇ · (ξ1w1)/2 − ∇ · (w1ξ1)/2. After applying a standard vector
identity on this latter form, the Lagrangian mean of an incompressible periodic velocity field can be
written as

wL = ∇ × ψ
L
, (59)

where the Lagrangian stream function, ψ
L
, is defined as

ψ
L = εψ1 + ε2(ψ2 + ψd ), (60)

and we have defined a Stokes drift stream function, ψd, as

ψd = 1
2w1 × ξ1. (61)

b. Numerical computation of the Lagrangian mean velocity field. In our present viscous stream-
ing context, the assumptions necessary to derive the trajectories from a Lagrangian stream function
are fulfilled only by the fluid velocity field. The inertial particle velocity field is not divergence-free
due to the Saffman lift, and we must compute trajectories by numerically integrating the mean
transport equation (27). For most problems, this numerical integration must make use of a wL field
numerically computed from grid velocity data. This grid-based approximation inevitably introduces
error, and the specific form of this error can be highly deleterious. The error is most clearly revealed
in the cases in which we have the Lagrangian stream function available to verify our result—that
is, cases in which wL is divergence-free. Most contours of the Lagrangian stream function form
closed loops, whereas numerically computed trajectories generally fail to close unless we adopt a
numerical approximation that has certain key properties. In particular, if, for two vector fields a and
b, the underlying approximation satisfies the product rule a · ∇b = ∇ · (ab) − (∇ · a)b in a discrete
sense, and if the discrete divergence vanishes when the continuous divergence does, then the form of
the Stokes drift given by Eq. (58) greatly mitigates the mismatch between the numerically computed
particle trajectories and the Lagrangian streamlines. Even when the mean particle trajectories cannot
be otherwise obtained from a Lagrangian stream function, form (58) retains many of its benefits for
reducing the accumulated error in the trajectories.

c. Reconciliation with surface motion. Finally, it is useful to reconcile Eqs. (54)–(56) with
the expected behavior of these quantities on the surface Sb at this order of approximation. Most
obviously, the first-order disturbed displacement field ξ1 on this surface is described by the
fluctuating velocity of the moving surface Sb(t ) evaluated at its mean location in the actual space.
Furthermore, by (34), we restrict the Lagrangian mean velocity to be exactly zero on Sb. Equation
(56) shows that this restriction requires that w1 = 0 at the mean location of the surface in actual
space; at second order, it is further required that

w2 = −wd , (62)

which reflects that the Eulerian mean velocity at this mean location is not exactly zero but must vary
with the displacement of the surface from this location.
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FIG. 3. Overall algorithm for the fast Lagrangian averaged transport of particles.

C. Algorithm for Lagrangian averaged transport of particles

With the governing equations now developed and reduced for O(ε) oscillations, we can now
summarize the proposed algorithm for computing the fast Lagrangian averaged transport of fluid or
inertial particles in viscous streaming flows. The algorithm, illustrated in Fig. 3, involves three
steps. The first step consists of computing the underlying velocity field w for a given surface
motion ε�b(x, t ). If our interest is in fluid particle trajectories, w represents the fluid velocity
field u. This velocity is assembled from u = εu1 + ε2u2 using the solutions of the sequence of
unsteady Stokes equations (41)–(44). In this work, these equations are solved numerically with the
immersed boundary projection method [42,43]. For inertial particles, w corresponds to the particle
velocity field v, induced by the fluid velocity u via the expansion in small Stokes number (18).
This velocity field’s own asymptotic expansion in ε, where needed, is provided through O(ε2) by
Eqs. (45) and (49).

In the second step of the algorithm, the leading-order disturbed displacement field ξ1 is computed
by integrating Eq. (54), rewritten here for reference:

∂ξ1

∂t
= w1 − w1. (63)

In the case of fluid particles, we simply integrate this equation simultaneously with the Navier-
Stokes equations in the first step. For inertial particles, we integrate with a third-order Runge-Kutta
method using cubic splines to interpolate the underlying time-discretized velocity field. From this
field, the Lagrangian mean velocity field wL is computed from Eq. (56) with the Stokes drift
calculated with Eq. (58), i.e.,

wL = εw1 + ε2
(
w2 + 1

2 (ξ1 · ∇w1 − w1 · ∇ξ1)
)
. (64)

Finally, in the third step, the Lagrangian mean trajectory of each particle is computed by
integrating the mean transport Eq. (27) from some initial location x0 with a fifth-order Adams-
Bashforth method. We generally use a time step that is 10 times larger than the period of oscillation.
As we observed in Sec. III A 2, the inertial particle velocity field (18) does not inherently satisfy
the no-slip or no-flow-through conditions, even if the fluid velocity field does. This is also true of
the solution from the full Maxey-Riley equation, and Chong et al. [14] handled the issue by adding
a penalty force inspired from lubrication theory to prevent penetration of inertial particles through
the surfaces of oscillators. Here, we use an alternative approach wherein we augment the transport
equation with a constraint that the particle remain in the region external to the oscillators. The
constraint is posed as

Hδ[d (x)] = 0, (65)

where d (x) is a signed distance field with respect to the oscillator boundaries—positive in the
interior of the oscillator and negative in the exterior—and Hδ is a smooth Heaviside function used
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previously by Li [44], defined as

Hδ (z) =
⎧⎨
⎩

0 z < −δ,
1
2 (1 + z/δ + π−1 sin(πz/δ)) |z| � δ,

1 z > δ,

(66)

where δ is a smoothing distance set equal to the particle radius a for all our simulations. The
constrained system of ordinary differential equations is then solved with the manifold projection
method described by Hairer et al. [45].

For both types of particles, all Eulerian means in the algorithm are computed with the time
average defined in Eq. (22). The averaging interval T is taken to be ten periods of oscillation.
This ensures that, during transient phases, the interval is long compared with the fast timescale but
short compared with the trajectory. When the flow reaches a stationary periodic state, the averaging
interval can be reduced without consequence to a single period of oscillation.

IV. RESULTS

In this section, we present the results from the application of the particle transport algorithm
to two representative viscous streaming flows. First, in Sec. IV A, we verify that our asymptotic
expansion (18) of the inertial particle velocity field in small Stokes number produces time-resolved
trajectories that are accurate when compared with the solution of these trajectories from the full
Maxey-Riley equation (8). Then, in Secs. IV B and IV C we investigate the performance of the
mean transport algorithm when applied to fluid and inertial particles, respectively, compared with
the fully time-resolved integration of these trajectories, and, in the case of fluid particles, with the
Lagrangian streamlines.

The two viscous streaming flows we consider in this work each consist of a flow generated by
a rigid cylinder of radius R in weak oscillatory translation with angular frequency �. An isolated
cylinder in such motion creates four streaming cells arranged along 45-degree rays [46]; in arrays
of multiple cylinders, the cells are still present, though somewhat deformed by the presence of other
cylinders. Inertial particles tend to become trapped in these streaming cells, as evident from previous
work [12–14]. Our focus in this paper is primarily to confirm the various aspects of the proposed
transport algorithm. The first case consists of a single cylinder, while the second case consists of two
cylinders that oscillate in sequence: one cylinder oscillates while the other remains stationary, then,
after a certain interval, they exchange their roles. In this second case, we are particularly interested
in the second cylinder’s ability to draw an inertial particle originally trapped near the first cylinder
towards one of its own streaming cells.

For both cases, the surface displacement ξb of any oscillator is described entirely by the motion
of the cylinder’s centroid, as expressed in Eq. (38). In our investigations of this section, the
centroid motion is purely sinusoidal, xc(t ) = xc0 + ε sin t ex, where ε = A/R. [We continue to
nondimensionalize all quantities in this section with � and R, as discussed just before Eq. (14).]
In terms of the unit form of this surface displacement, ξb = ε�b, we can express the motion as

�b(x, t ) = sin t ex. (67)

Throughout, the Reynolds number Re is held fixed at 40, and the amplitude ε for any oscillator is
0.1. The Stokes number of the inertial particles is set at τ = 0.1 and the particle density ratio at
ρp/ρ f = 0.95, which corresponds to β = 1.034 and a particle of radius a/R = 0.088.

A schematic of the unit surface motion is depicted in Figs. 4 and 5. The blue dot represents the
position of the centroid of the cylinder, and the blue dashed line depicts the unit surface displacement
applied at points on the fixed cylinder surface. The right diagram in each figure depicts the manner
in which we generate flow fields over long time horizons. After each change in the oscillator motion,
the flow does not become statistically stationary until viscous diffusion has had sufficient time to act.
Once this transient phase has ended and the flow’s mean has become stationary, the solution over
the last oscillation cycle is reused as many times as necessary to generate the flow field’s history. In
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FIG. 4. Diagram of the oscillating cylinder (right) and a time sequence illustrating the repeated oscillation
cycles.

the conditions specified above, we find that the flow becomes statistically stationary in the region
within six radii of the oscillator after around ns1 = 20 periods of oscillation. We have two such
transient phases in the case of two oscillators. As Fig. 5 shows, these oscillators are arranged six
radii apart along the same axis on which they oscillate, and the periodic flow solution developed by
each oscillator is repeatedly recycled as needed in the respective intervening periods. For particle
trapping purposes in these conditions, we find that these recycling intervals require n f 1 − ns1 =
25 000 periods and n f 2 − ns2 = 40 000 periods, respectively.

Throughout this investigation we will rely on fluid velocity fields obtained by numerical solution
of the unsteady Stokes equations with a procedure based on the immersed boundary projection
method with lattice Green’s function [42,43]. The validation of this procedure, including its
convergence to the analytical solution in the case of a single cylinder in oscillatory translation, has
been confirmed but is omitted from this work for brevity. We note that the simulations reported here
are carried out on a Cartesian grid with spacing �x/R = 0.02 and a time-step size ��t/(2π ) =
0.004, or 250 time steps per period, to satisfy the viscous stability constraint. The computational
domain in both cases, [−6R, 6R] × [−6R, 6R], is relatively more compact than required by other
numerical methods due to the use of the lattice Green’s function and associated viscous integrating
factor [43].

A. Small Stokes expansion of inertial particle velocity field

In this section, we assess the accuracy of the asymptotic expansion of the inertial particle velocity
field in small Stokes number, developed in Eq. (18). For evaluation purposes, we compare the
trajectories of inertial particles transported by this velocity field, with the trajectories of the same
particles with velocity obtained from the full Maxey-Riley equation (8). It should be noted that we
are not yet assessing the mean transport algorithm in this section, so our comparison is made of

FIG. 5. Configuration and oscillation sequence with two cylinders adapted from the work of Chong et al.
[14].
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FIG. 6. Time-resolved inertial particle trajectories from the Maxey-Riley equation (black) and the asymp-
totic expansion in small Stokes number (green) for particles initially located at x0 = (2, 2) (left column) and
x0 = (1, 3) (right column). The top row (a), (d) shows the trajectories over the first 20 oscillation periods, and
the middle (b), (e) and lower (c), (f) rows depict the time histories of the x and y components, respectively,
sampled once per period.

the full time-resolved trajectory, computed from (13) for both velocities. As discussed earlier in the
paper, the Basset term is neglected in both forms of velocity. For the numerical integration of these
trajectories, we use a fifth-order Adams-Bashforth method with time step ��t/(2π ) = 0.004.

For the case of a single oscillating cylinder, we simulate two trajectories: one for a particle
starting from x0 = (2, 2) and tracked for 10 000 periods of oscillation, and another for a particle
released from x0 = (1, 3) and tracked for 25 000 periods. Both particles are released after the flow
has reached its stationary periodic state. The comparisons of these trajectories are shown in Fig. 6.
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TABLE I. Relative errors on particle position, after one period and at the final time t f , in two different
inertial particles trajectories predicted by the small Stokes number expansion.

x0 Error after one period (%) t f /T Error at t f (%)

(2, 2) (−1.19 × 10−5, 8.77 × 10−5) 10000 (−6.91, −1.11)
(1, 3) (1.29 × 10−4, 2.04 × 10−5) 25000 (−0.693, −0.736)

The small portions of the full trajectories shown in the top row exhibit the characteristic fluctuations
of these trajectories about a mean. To reveal this mean behavior more clearly, we sample these
trajectories only once per cycle in the middle and lower rows, with the history of each component
depicted in a separate plot. These plots exhibit the trapping behavior: both particles converge toward
a fixed point inside the streaming cell along the 45-degree ray.

The plots in Fig. 6 show that the asymptotic expansion in small Stokes number has very
accurately preserved the behavior of the Maxey-Riley equation. Though small errors accumulate
over time, the trajectories apparently agree well even after 25 000 periods. Table I reports a
quantitative measure of this comparison, with error defined as the difference of the asymptotically
approximated trajectory components from those of the Maxey-Riley trajectory at the same instant,
normalized by the current radial distance from. The error remains small throughout, and the final
trapping location is predicted with less than 1% error.

Now, let us validate our small Stokes number expansion on the transport of inertial particles
in the two-cylinder case. Here, we release particles just after the initiation of motion of the left
cylinder. This case is potentially more challenging due to the transient behavior of the flow after each
oscillator’s motion is initiated. The results in Fig. 7, which depicts the full trajectory sampled once
per period for a particle released from (−2, 3), show that the particle is first trapped near the center
of a streaming cell near the left cylinder at (x, y) = (−1.98, 1.03); and after the right cylinder starts
its own motion, the particle is eventually drawn to a new trapping location at (x, y) = (1.98, 1.03).
It should be noted that this problem requires the no-penetration constraint described in Eq. (65)
when the inertial particle approaches the right oscillator. As observed in Fig. 7, the particle is drawn
toward this oscillator along the axis of symmetry. Without the explicit enforcement of this constraint
the particle would spuriously pass across the oscillator surface. Instead, the particle remains offset
from the oscillator by a small distance set by the smoothing parameter δ in this constraint and is

FIG. 7. Trajectory of an inertial particle initially located at x0 = (−2, 3) over 65 000 periods of oscillation.
Trajectories from the Maxey-Riley equation (black) and small Stokes number expansion (green) are both
sampled once per period.
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FIG. 8. Lagrangian mean trajectories (magenta circles, spaced by 30 periods) generated for fluid particles
started at x0 = (2, 2) and x0 = (1, 3) (denoted by the larger gray circle), compared with the Lagrangian
streamlines, depicted as black lines. (Other Lagrangian streamlines are shown in light gray.) The black region
shows the mean position of the cylinder, and the lighter shaded region in the vicinity of the cylinder shows the
range of displacement of the cylinder over one oscillation cycle.

quickly drawn into an orbit that spirals toward the trapping point. Throughout this sequence, the
asymptotically approximated trajectory agrees well with the Maxey-Riley trajectory, with error less
than 0.01% after the first transient phase. The final percentage error in the trapping location, after
65 000 cycles, is (1.76 × 10−2, 1.19 × 10−2).

B. Mean fluid particle trajectories

In this section, we verify our algorithm for computing mean particle trajectories by applying it to
fluid particles. In the first case, we compute trajectories from the fluid velocity field generated by the
single oscillating cylinder after it has achieved periodic behavior. As we discussed in Sec. III B 2, the
mean trajectories of fluid particles are equivalently derived from the contours of a Lagrangian stream

function field ψ
L

in Eq. (60). This alternative approach provides a natural target for verification.
Examples of this comparison are shown in Fig. 8 for two different particles, both of whose mean
trajectories have been integrated with a time step size of ten periods. The agreement is very good,
and importantly, the trajectories generated by the algorithm are closed after each orbit to within
small numerical error.

In Fig. 9 we compare the mean trajectory of the particle x0 = (2, 2) with the full time-resolved
trajectory. This latter trajectory is obtained from the same (numerically computed) fluid velocity
field, but by integrating the unsteady fluid velocity with 250 time steps per period and cubic spline
interpolation of the Cartesian grid values. The full trajectory reveals the oscillations incurred by the
particle as it orbits about the streaming cell. The mean trajectory from the algorithm displays the
expected behavior, passing through the first point in each cycle, as shown in the small section of
trajectory in Fig. 9(b). Indeed, when the full trajectory is sampled once per cycle (starting with its
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FIG. 9. (a) Lagrangian mean trajectory (magenta) for fluid particle started at x0 = (2, 2) compared with the
full time-resolved trajectory (blue) for the same particle. (b) Magnified view of fluid particle trajectory. (c), (d)
Comparison of x and y components, respectively, of the Lagrangian mean trajectory and the full time-resolved
trajectory (sampled once per cycle).

initial position), as shown in Figs. 9(c) and 9(d), the mean trajectory agrees well with it even after
10 000 oscillation periods, corresponding to nearly six orbits.

In the second case, we use the configuration of two cylinders. As a target of comparison, we
release a particle from x0 = (−1, 3), near the left cylinder, after statistically stationary behavior
has been achieved from the right cylinder’s motion. The comparison with the full time-resolved
trajectory is shown in Fig. 10 and exhibits very good agreement. The particle is initially drawn
toward the right cylinder and achieves a closed orbit about the streaming cell; each orbit requires
approximately 13 000 periods of oscillation.

C. Mean inertial particle trajectories

The previous section demonstrated that our proposed algorithm can successfully predict the mean
trajectories of fluid particles. In this section, we apply the algorithm to inertial particle transport.
Each trajectory computed from this algorithm is compared with the full time-resolved trajectory
obtained from the same inertial particle velocity field v, derived from the fluid velocity field after
it has reached a periodic state. Thus, the differences between these trajectories are due entirely
to errors in truncating the asymptotic expansion in ε in the construction of the Lagrangian mean
velocity in Eqs. (54)–(56).
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FIG. 10. Left: Time-resolved fluid particle trajectory, sampled once per cycle (blue), and Lagrangian mean
trajectory (magenta circles, spaced by 30 periods), and Lagrangian mean streamlines (in light gray) for x0 =
(−1, 3), with mean cylinder configurations depicted in black. Right: Time histories of the x and y components
of both trajectories shown in the left panel.

The panels in Fig. 11 depict the predicted mean trajectories of inertial particles initially released
from (2,2) and (1,3), respectively, in the single-cylinder configuration. Both exhibit good agreement
with the full trajectory, though small errors incurred during the nearest approach to the cylinder
(due to the aforementioned truncation of the expansion in ε) tend to push the particle onto a
slightly different orbit in each encirclement of the streaming cell. However, these errors are largely
irrelevant, as both the mean trajectory and the full time-resolved trajectory converge on the same
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FIG. 11. Lagrangian mean trajectories (magenta) generated for inertial particles started at (a) x0 = (2, 2)
and (b) x0 = (1, 3) (denoted by the small circle), compared with the full time-resolved trajectories (blue) of
the same particles, sampled once per cycle. The Lagrangian streamlines of the fluid are shown for reference as
light gray lines. The black region shows the mean position of the cylinder, and the lighter shaded region in the
vicinity of the cylinder shows the range of displacement of the cylinder over one oscillation cycle.
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FIG. 12. Left column: (a), (b) Comparison of x and y components, respectively, of the Lagrangian mean
trajectory and the full time-resolved trajectory (sampled once per cycle) for particle x0 = (2, 2). (c) Lagrangian
mean trajectory (magenta) for inertial particle x0 = (2, 2), compared with the full time-resolved trajectory
(blue) for the same particle. Right column: (d), (e) Comparison of x and y components, respectively, of the
Lagrangian mean trajectory and the full time-resolved trajectory (sampled once per cycle) for particle x0 =
(1, 3). (f) Lagrangian mean trajectory (magenta) for inertial particle started at x0 = (1, 3), compared with the
full time-resolved trajectory (blue) for the same particle.

trapping point. This is more clearly revealed in panels of Figs. 12(a), 12(b), 12(d), and 12(e), which
show the respective comparisons of each coordinate’s history along the trajectory (plotted once per
cycle in the case of the full trajectory). The orbits of the streaming cell predicted by the mean
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FIG. 13. Lagrangian mean trajectories generated for inertial particles with ρp/ρ f = 0.95 (magenta) and
0.05 (blue) started at x0 = (2, 2).

transport algorithm are slightly faster than those of the full trajectories due to the slightly larger
push toward the center experienced by the particle in the mean algorithm as it passes closest to
the cylinder. To better illustrate the relationship between these two approaches to computing the
trajectories, in Figs. 12(c) and 12(f) we plot every point along a portion of the full time-resolved
trajectory and overlay the same portion of trajectory predicted by the mean transport algorithm.
The algorithm visually tracks the center of oscillations but skews slightly inward as it moves away
from the cylinder. It can be observed that for x0 = (1, 3), the oscillations along the full trajectory
overlap with the rightmost configuration of the cylinder; however, those portions of the trajectory
that overlap correspond to the phase in the cycle when the cylinder is in its leftmost configuration.

Most of our results in this paper are focused on a single type of particle—nearly neutrally buoyant
with ρp/ρ f = 0.95 (or β = 1.034). To demonstrate the effect of density ratio, we compare this
particle’s mean trajectory in Fig. 13 with that of a very light particle with density ratio ρp/ρ f = 0.05
(so that β = 2.73). The light particle is affected much more by the buoyancy term—the first term
in Eq. (19)—which applies a centrifugal motion directed toward the center of the streaming cell.
Interestingly, this contribution is most active during the intervals when the Saffman lift is not on the
outermost parts of the orbit when the particle’s trajectory is most curved.

Figure 14 shows the results for a particle released from (−2, 3) in the two-cylinder configuration.
Over the first 25 000 periods, the particle is drawn toward the streaming cell of the left cylinder
during that cylinder’s motion. Then, when the left cylinder stops its motion and the right cylinder
starts to oscillate, the particle is entrained into the cell nearest to the right cylinder over the ensuing
40 000 periods. Both trajectories are predicted well by the mean transport algorithm. It should be
noted that the no-penetration constraint is active for both the mean and the full trajectory predictions
during the interval in which the particle reaches the rightmost cylinder and is drawn along its
boundary (at around 30 000 periods).

D. The effect of transient behavior

An important question that overlies the transport of particles in viscous streaming is the effect of
transient behavior in the fluid during changes of oscillator motion. In the examples we have profiled
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FIG. 14. (a) Full time resolved inertial particle trajectory, sampled once per cycle (blue), and Lagrangian
mean trajectory (magenta) for a particle released from x0 = (−2, 3) in the sequential oscillator configuration.
(b), (c) Time histories of the x and y trajectory components, respectively.

in this paper, these changes in motion occur suddenly: each cylinder stops or starts instantaneously.
Such sudden changes provide an unambiguous context in which to assess the transient effects, since
the flow is necessarily approaching a well-defined stationary state when such transient effects will
vanish. Some of the sudden change of motion is communicated everywhere instantaneously through
pressure. The transient effects are due to viscous diffusion, which plays a particularly important role
along directions transverse to the motion. As mentioned earlier, at Re = 40, this diffusion requires
(empirically) around 20 oscillation cycles to spread the information about motion changes across
the entire region of interest and thus establish stationary periodic behavior.

In Fig. 15 we examine the effects of transient behavior for two inertial particles over the first
14 oscillation periods. Each case depicts the inertial particle’s trajectory predicted by the mean
transport algorithm over one time step (in this example only, taken to be 14 periods) during a
transient interval of the two-cylinder array—in the first case during the initial motion of the left
cylinder, and in the second case during the newly initiated motion of the right cylinder (after
the left cylinder has stopped). The full time-resolved trajectory is depicted for reference in both
cases. It is important to observe first that, as a result of the pressure-driven part of the flow, each
particle’s trajectory achieves approximately periodic behavior very quickly; the viscous adjustment
takes longer. However, the mean transport algorithm predicts the behavior very well during such
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FIG. 15. Time-resolved inertial particles trajectories (blue) and mean transport algorithm (yellow) for x0 =
(−2.0, 3.0) over the transient regime of the left cylinder (left) and x0 = (−1.9285, 1.0266) over the transient
regime of the right cylinder (right).

intervals: the particle’s final location at the end of the step agrees well with where it is expected
to be along the full trajectory. Furthermore, the plots show that the influence of transient behavior
in the flow is likely negligible. In 14 periods, neither particle has moved more than 0.02R from its
initial location. Even if we were to ignore the mean transport during this transient interval, our error
would be equivalent to assuming that the particle had started at a negligibly different location and
then been subject to a truly periodic flow.

V. CONCLUSIONS

In this paper, we have developed simplified equations governing the mean transport of inertial
particles in viscous streaming flows. In flows generated by weakly oscillating rigid surfaces, the
motions of fluid and inertial particles exhibit two distinct timescales: a fast scale associated with
the particle’s oscillatory motion and a slow scale associated with its mean translation. Previous
work by Chong et al. [12] has shown that the mean motion of small inertial particles in streaming
flows is well described by the Maxey-Riley equation augmented with Saffman lift and with Faxén
corrections retained, but with the Basset memory term neglected. Collectively, the Faxén correction
and the Saffman lift effect the trapping of inertial particles in streaming cells generated near the
oscillating object.

In this work, we have analyzed such transport with the help of three key tools. First, we conceived
an Eulerian field for inertial particle velocity by asymptotically expanding the Maxey-Riley equation
in the small Stokes number associated with small particles in moderate Reynolds number flows. This
approach follows the earlier works of Maxey [27] and Ferry and Balachandar [28], but importantly
here, retains the essential Faxén term. This expansion has confirmed the observations made by
Chong et al. [12]: A small neutrally buoyant particle moves at leading order like a fluid particle,
but in regions of shear near the oscillating body, the Faxén correction alters the particle’s velocity
from that of the fluid and the Saffman lift then causes it to move transversely to the shear, ultimately
causing it to spiral toward a trapping point in the center of a streaming cell.

The second tool has been the generalized Lagrangian mean theory of Andrews and McIntyre [26].
This theory’s exact distinction between the mean and fluctuating parts of a trajectory has allowed
us to construct the Lagrangian mean velocity field, which is ultimately responsible for a particle’s
mean transport. This mean field receives an essential contribution from Stokes drift, based on an
Eulerian disturbed displacement field that accompanies the time-varying velocity field.

The third important tool has been an expansion in the small oscillation amplitude. This
expansion’s effect on the fluid velocity field was already known from early work on streaming
(e.g., Holtsmark et al. [46]). However, with the availability now of the inertial particle velocity field

054302-29



MATHIEU LE PROVOST AND JEFF D. ELDREDGE

and its subsequent decomposition into mean and fluctuating parts, we have been able to identify
the dominant effects of small-amplitude oscillation on mean inertial particle transport. For fluid
particles, the particle trajectories are directly obtained from the contours of a mean Lagrangian
stream function field.

By applying the resulting algorithm to two basic oscillator flows, we have demonstrated that the
approximations we have made by truncating these expansions have generally preserved the accuracy
of the original treatment. Furthermore, the application of these tools has made a tremendous impact
on the efficiency of computing mean particle trajectories. The previous approach to predicting such
trajectories involved two straightforward steps: first, to compute the fluid velocity field until it
reached stationary periodic behavior; and second, to advance the particle in this oscillatory flow
field with the Maxey-Riley equation, with time steps that sufficiently resolve the fast scales. Each
such time step requires the evaluation of the instantaneous forces on the particle, generally obtained
by interpolating the velocity field and its derivatives from the computational grid. A full trajectory
generally requires O(106) such time steps and is quite slow to compute. The approach presented
here, which constructs the aforementioned Eulerian fields to develop the Lagrangian mean velocity
field, allows time steps that are O(1000) times larger than the previous approach.

It is also important to stress that, in spite of our examples, no aspect of our treatment
of this problem is limited to two-dimensional oscillators. Indeed, the cost reduction would be
proportionally greater in three-dimensional problems, where the calculations of forces on full
trajectories require more taxing interrogations and calculations of the flow field data.

We have also shown in this work that the viscous transients in the fluid that arise after changes of
oscillator motion have insignificant effect on mean particle transport. This observation depends on
the distinction of timescales in this regime of Reynolds number and oscillator amplitude: a particle
moves very little in the time it takes for viscous diffusion to communicate the oscillator’s change of
motion, so it is safe to assume that the fluid has already reached a stationary periodic state. We have
not exploited this feature in this paper, but in a paper currently in development we will demonstrate
that by treating the underlying flow field as strictly periodic, we can solve for this flow field and then
construct the Lagrangian mean velocity of either type of particle entirely in the frequency domain.
This leads to a further substantial gain in computational efficiency.

Note that all of the computational tools developed for this paper are available, see Ref. [47].
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APPENDIX

1. Asymptotic expansion of the inertial particle velocity for small Stokes number

Here, we present the detailed asymptotic expansion of the inertial particle velocity field v in
small Stokes number τ by substituting the form (17) and seeking an expression for q in terms of
the fluid velocity field and its derivatives. With the form (17), we can rewrite Eq. (14) in terms of q.
First, note that the two time derivatives are related to each other by

d

dt
= D

Dt
+ (qF + τ 1/2q) · ∇. (A1)

It can be easily verified that

dv

dt
= Du

Dt
+ (qF + τ 1/2q) · ∇(u + qF) + DqF

Dt
+ τ 1/2 dq

dt
. (A2)
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Thus, by substituting this and shifting all terms involving q to the left-hand side, multiplying by
τ 1/2, and manipulating the terms slightly, Eq. (14) can be rewritten as[

1 + τ 1/2β1/2L + τ
D
Dt

+ τ 3/2q · ∇
]

q = −β1/2LS
[
qF

] + τ 1/2α, (A3)

where L = LB + LS. We have defined a differential operator,

D f
Dt

= ∂ f
∂t

+ (u + qF) · ∇ f + f · ∇[
u + (1 − β/5)qF

]
, (A4)

for some field vector f , and α represents a fluid acceleration force,

α = (β − 1)
Du
Dt

+ β

5

DqF

Dt
− DqF

Dt
. (A5)

To solve for q, we write it as an asymptotic sequence in powers of τ 1/2:

q = q0 + τ 1/2q1/2 + τq1 + τ 3/2q3/2 + O(τ 2). (A6)

Similarly, the operator on the left-hand side of (A3) can be formally inverted by expanding it in
powers of τ [with the help of (A6) to replace q]:[

1 + τ 1/2β1/2L + τ
D
Dt

+ τ 3/2q · ∇
]−1

= 1 − τ 1/2β1/2L − τ

( D
Dt

− βL2

)
+ τ 3/2

[
−q0 · ∇ + β1/2

(
L D
Dt

+ D
Dt

L
)]

+ O(τ 2), (A7)

where L2 denotes the composition of L with itself, i.e., L2 = L ◦ L.
Applying this expanded inverse operator to the right-hand side of (A3), substituting the expansion

(A6), and grouping terms with like powers of τ , we obtain

q0 = −β1/2LS[qF], (A8)

q1/2 = α − β1/2L[q0], (A9)

q1 = −β1/2L[α] −
( D
Dt

− βL2

)
q0, (A10)

q3/2 = −q0 · ∇q0 + β1/2

(
LDq0

Dt
+ D

Dt
Lq0

)
−

( D
Dt

− βL2

)
α. (A11)

From these, the inertial particle velocity field can be reassembled:

v = u + qF − (τβ )1/2LS[qF] + τ (α + βLLS[qF]) − τ 3/2

[
β1/2L[α] − β1/2

( D
Dt

− βL2

)
LS[qF]

]

− τ 2

[( D
Dt

− βL2

)
α + βLS[qF] · ∇LS[qF] + β

(
L D
Dt

LS[qF] + D
Dt

LLS[qF]

)]
+ O(τ 5/2).

(A12)

The equation above is valid in general circumstances of small τ . However, we return now to the
scaling of the Faxén correction velocity, qF. As we discussed earlier, when the particle is immersed
in a laminar flow created by an oscillating cylinder, we expect qF ∼ τu due to the shear in the Stokes
layer, whose thickness goes like (ν/�)1/2. Formalizing this idea, we can define a rescaled Laplacian
∇̃2 such that

∇2 = Re ∇̃2, (A13)
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from which it follows that

qF = 1
2τβ∇̃2u. (A14)

Then, with this explicit scaling of qF and ignoring the Basset memory term LB as justified by the
analysis of Chong et al. [12], we find that the particle velocity is given by

v = u + τa − τ 3/2β1/2LS[a] − τ 2

[( D
Dt

− βL2
S

)
a − 1

10
β2 D

Dt
∇̃2u

]
+ O(τ 5/2), (A15)

where we have defined a simplified acceleration force,

a ≡ (β − 1)
Du
Dt

+ 1

2
β∇̃2u, (A16)

in which we remind the reader that the rescaled Laplacian ∇̃2 is defined in Eq. (A13). We have also
simplified our earlier definition (A4) of the operator D/Dt in the appropriate manner to

D f
Dt

= D f
Dt

+ f · ∇u. (A17)

2. A review of generalized Lagrangian mean theory

In this section, we present the basic outline of the generalized Lagrangian mean theory of
Andrews and McIntyre [26]. We present details only to the extent necessary for our results in the
main body of the paper.

Consider a flow map, X (x0, t ), illustrated in Fig. 1, from material coordinates (i.e., Lagrangian
label) x0 in a reference space X0 to a location in a space-time configuration space Xt × [0,∞). In
this latter space, each slice Xt represents an evolved form of X0 at some later time t ; we assume that
Xt = X0 at t = 0. We denote the velocity field associated with this map as w and will refer to the
infinitesimal bit of material associated with x0 as a “particle.” We will use the notation w0(x0, t ) to
denote the velocity w in its Lagrangian form, i.e.,

w0(x0, t ) ≡ ∂X (x0, t )

∂t
. (A18)

As is typical, we regard the flow map as invertible so that we can uniquely associate a Lagrangian
label with any fixed location. To distinguish from later terminology, we will refer to the location
X (x0, t ) as the actual location of the particle x0 at time t and the velocity w0(x0, t ) as the particle’s
actual velocity.

We can always think of X (x0, t ) as a composition of two maps,

X (x0, t ) = X ξ (Y (x0, t ), t ), (A19)

as illustrated in Fig. 1. The first, Y (x0, t ), maps x0 in X0 to some location in another configuration
space Yt × [0,∞) at time t ; and the second,

X ξ (x, t ) ≡ x + ξ(x, t ), (A20)

maps from that location in the slice Yt at t to the actual location in the corresponding slice Xt at
time t .

We will require that Yt coincides with X0 at t = 0, just as Xt does. In other words, the two
spaces are identical at the initial instant. At all times, we assume that the mapping Y (·, t )—like
X (·, t )—is invertible. Also, just as X (·, t ) is associated with the velocity field w, the flow map
Y (·, t ) is generated by its own velocity field, W , i.e.,

W 0(x0, t ) ≡ ∂Y (x0, t )

∂t
. (A21)
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From the definition (A20) and its use in the composition (A19), it is clear that ξ(x, t ) provides
an additive correction from the location provided by mapping Y (x0, t ) to the actual location of the
particle, provided by X (x0, t ):

ξ(Y (x0, t ), t ) = X (x0, t ) − Y (x0, t ). (A22)

If we differentiate this with respect to time (keeping the Lagrangian label fixed), then by the chain
rule we obtain

∂

∂t
ξ(Y (x0, t ), t ) + W 0(x0, t ) · ∇ξ(Y (x0, t ), t ) = w0(x0, t ) − W 0(x0, t ), (A23)

which relates the velocity fields, w and W , associated with each flow map.
For GLM theory and our later applications, it will be very useful to regard ξ as an Eulerian

vector field, ξ(x, t ). To make sense of this interpretation, let us make use of the inverse mapping
x0 = Y −1(x, t ), uniquely associating any fixed location x in Yt , to the particle currently residing
there at time t via the mapping Y (·, t ). Then relation (A22) can be written as

ξ(x, t ) = X (Y −1(x, t ), t ) − x, (A24)

showing that at each point x, ξ(x, t ) provides the actual location of the particle relative to x itself.
In fact, it is clear from (A19) that X ξ (x, t ) = X (Y −1(x, t ), t ): the two sides of the equality just
represent two different routes to the same map, as can be observed in Fig. 1. Indeed, through this
map formalism, any field quantity φ can be viewed from one of three perspectives: as an Eulerian
field quantity in the configuration space Yt , φξ (·, t ); as the “actual” Eulerian field in Xt , φ(·, t ); or as
a Lagrangian (i.e., particle-centered) field, φ0(·, t ), associating φ to particles in X0. They are related
by

φξ (x, t ) ≡ φ(X ξ (x, t ), t ) ≡ φ0(Y −1(x, t ), t ). (A25)

Similarly, we can rewrite the velocity relation (A23) as

∂

∂t
ξ(x, t ) + W (x, t ) · ∇ξ(x, t ) = wξ (x, t ) − W (x, t ), (A26)

where we have defined the Eulerian velocity field, W (x, t ) ≡ W 0(Y −1(x, t ), t ), associated with the
flow map Y (·, t ). By wξ (x, t ), we denote the actual velocity of the particle currently mapped to x by
Y (·, t ):

wξ (x, t ) ≡ w0(Y −1(x, t ), t ). (A27)

Equation (A26) shows that this velocity differs from W (x, t ) by a correction described by the rate
of change of the ξ field measured along the Y (·, t ) trajectory passing through x at time t .

With this formalism in place, following Andrews and McIntyre [26], we can define the
Lagrangian mean (·)L

of any field φξ (x, t ) as equal to the Eulerian mean along the trajectory
followed by x in the configuration space Xt under the map X ξ (x, t ) ≡ x + ξ(x, t ):

φ(x, t )
L ≡ φ(x + ξ(x, t ), t ) ≡ φξ (x, t ). (A28)

Thus far, we have not specified anything about the map Y (·, t ) and its associated field ξ(x, t ).
GLM theory assigns ξ(x, t ) the role of a fluctuation field, and furthermore, asserts that it has zero
Eulerian mean and that the velocity field W (x, t ) is its own mean,

ξ(x, t ) = 0, W (x, t ) = W (x, t ). (A29)

We can immediately note that, by taking the mean of Eq. (A20) and applying the first of these
axioms, we get

X ξ (x, t ) = x. (A30)
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That is, the location x in Yt × [0,∞) maps on average to the location x in Xt × [0,∞).
Furthermore, by taking the Eulerian mean of the relationships (A24) and (A26), the axioms (A29)
immediately imply other important relationships between the configuration spaces Yt × [0,∞) and
Xt × [0,∞): The trajectory in Yt × [0,∞) described by the flow map Y (x0, t ) is the mean of the
actual trajectory X (x0, t ) in Xt × [0,∞), so that (A22), rewritten trivially as

X (x0, t ) = Y (x0, t ) + ξ(Y (x0, t ), t ), (A31)

represents a Reynolds decomposition of the trajectory, and ξ can be called the disturbed displace-
ment field; and the velocity W represents the Lagrangian mean of the actual velocity w,

W (x, t ) = w(x, t )
L
, (A32)

or simply, W = wL. From here forward, we refer to Yt × [0,∞) as the mean configuration space.
If we define the Lagrangian mean material derivative as the rate of change while moving along a

mean trajectory,

DL

Dt
≡ ∂

∂t
+ wL · ∇, (A33)

and the Lagrangian disturbance velocity as the difference between the actual velocity and the
Lagrangian mean velocity,

wl ≡ wξ − wL, (A34)

then we can rewrite the velocity relationship (A26) as

DLξ

Dt
= wl . (A35)

This equation provides the basis for generating the actual trajectory of the particle while following
the particle’s mean trajectory. It is useful to note that the Lagrangian mean of this equation is
identically zero.

The analysis of other fields follows from the definitions thus far. For a general field φ, if we
differentiate the relationship (A25) with respect to time and apply the chain rule, then, with the help
of (A26), it can be shown that

DLφξ

Dt
(x, t ) =

(
Dφ

Dt

)ξ

(x, t ) ≡
(

∂φ

∂t
+ w · ∇φ

)
(X ξ (x, t ), t ). (A36)

In other words, the rate of change of φξ measured while moving along the mean trajectory is
identical to the rate of change measured while moving along the actual trajectory. That is, no
information has been lost while following a different trajectory. The Reynolds decomposition of
this field follows naturally from the Lagrangian mean,

φξ (x, t ) = φ
L
(x, t ) + φl (x, t ). (A37)
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