
PHYSICAL REVIEW FLUIDS 5, 054101 (2020)

Theory of hydrodynamic interaction of two spheres in
wall-bounded shear flow

Itzhak Fouxon,1,2,* Boris Rubinstein,3,† Zhouyang Ge ,4,‡

Luca Brandt,4,§ and Alexander Leshansky 1,‖
1Department of Chemical Engineering, Technion, Haifa 32000, Israel

2Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, South Korea
3Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, Missouri 64110, USA

4Linné FLOW Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics,
SE-100 44 Stockholm, Sweden

(Received 26 August 2019; accepted 8 May 2020; published 29 May 2020)

The seminal Batchelor-Green’s (BG) theory on the hydrodynamic interaction of two
spherical particles of radii a suspended in a viscous shear flow assumes unbounded fluid.
In the present paper we study how a rigid plane wall modifies this interaction. Using an
integral equation for the surface traction we derive the expression for the particles’ relative
velocity as a sum of the BG’s velocity and the term due to the presence of a wall at
finite distance, z0. Our calculation is not the perturbation theory of the BG solution, so
the contribution due to the wall is not necessarily small. We indeed demonstrate that the
presence of the wall is a singular perturbation, i.e., its effect cannot be neglected even at
large distances. The distance at which the wall significantly alters the particles interaction
scales as z3/5

0 . The phase portrait of the particles’ relative motion is different from the BG
theory, where there are two singly connected regions of open and closed trajectories both
of infinite volume. For finite z0, besides the BG’s domains of open and closed trajectories,
there is a domain of closed (dancing) and open (swapping) trajectories that do not
materialize in an unbounded shear flow. The width of this region grows as 1/z0 at smaller
separations from the wall. Along the swapping trajectories, which have been previously
observed numerically, the incoming particle is turning back after the encounter with the
reference particle, rather than passing it by, as the BG theory anticipates. The region of
dancing trajectories has infinite volume and is separated from a BG-type domain of closed
trajectories that becomes compact due to presence of the wall. We found a one-parameter
family of equilibrium states that were previously overlooked, whereas the pair of spheres
flows as a whole without changing its configuration. These states are marginally stable
and their perturbation yields a two-parameter family of the dancing trajectories, whereas
the test particle is orbiting around a fixed point in a frame comoving with the reference
particle. We suggest that the phase portrait obtained at z0 � a is topologically stable and
can be extended down to rather small z0 of several particle diameters. We confirm this
hypothesis by direct numerical simulations of the Navier-Stokes equations with z0 = 5a.
Qualitatively the distant wall is the third body that changes the global topology of the phase
portrait of two-particle interaction.
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I. INTRODUCTION

Small particles, droplets, and bubbles are ubiquitously present in flowing fluids. When a
suspended particle is transported by a viscous fluid, it modifies the flow around it. If another particle
happens to be in the region of the modified flow, then mutual hydrodynamic interactions between
the particles will take place. The interactions are given implicitly by imposing boundary conditions
on the flow that must hold simultaneously on the surfaces of all interacting particles [1,2]. This
setting is inconvenient for analyses, both theoretical and numerical. Thus, there is no answer to
even the simplest questions, for instance, whether there can be a nontrivial stationary configuration
of particles that would flow as a whole due to the hydrodynamic interaction. Although these
interactions somewhat resemble electrostatic interactions, there is no a hydrodynamic counterpart
of Earnshaw’s theorem [3] stating that such simple configurations are impossible. Here we provide
an example of this possibility in the presence of a boundary and demonstrate that boundaries can
have surprising and nontrivial effects on hydrodynamic interactions.

The only well-studied case of hydrodynamic interactions of particles transported by nonuniform
flow is the case of two particles in a time-independent low Reynolds number linear flow. This was
studied in the seminal Batchelor and Green’s paper [4], see also Ref. [5] for more details and an
account of various contributions to the problem. If the particles’ (and fluid) inertia can be entirely
neglected, then the vector between the particle centers obeys an autonomous first-order evolution
equation, which gives its rate of change as a function of the instantaneous value. The use of the
symmetries makes it possible to quantify the interaction by the two scalar functions of the distance,
which have been tabulated [4]; see also Ref. [2]. This case presents no stationary configurations for
the two particles. One of the main applications is the Poiseuille flow in the channel shown in Fig. 1.
If both particles are far from the walls, z0 � a, r, then they can seemingly be considered as flowing
in an unbounded shear flow and the analysis of Refs. [4–6] applies. The BG theory thus predicts
that there are no possible stationary configurations of the particle pair. Here we demonstrate that
the approximation of an unbounded flow overlooks such configurations and also other phenomena,

FIG. 1. Setup of a particle pair in the Poiseuille flow (depicted in a comoving reference frame). In this
work we study the case z0 � a, where a is the particle radius, however, does not necessarily require z0 � r.
The upper wall is assumed to be much further away from the particle pair than z0.
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which hold independently of how large z0 is, cf. Ref. [7]. Thus, the presence of the wall exhibits a
singular perturbation of the BG theory.

Recently, stationary configurations of particles transported in microfluidic channels attracted
attention due to the possibility of flow-assisted microfabrication by using a combination of
hydrodynamic and nonhydrodynamic (i.e., adhesive) interactions [8,9]. Under certain conditions,
the particles can self-assemble into clusters of different morphology that flow with no change of
interparticle distances; see Ref. [10] for detailed discussions. These micron-scale clusters can then
be solidified and collected from the flow, and be potentially used for fabrication of functional
metamaterials. To theoretically explain and subsequently predict the structure formation of the
suspended particles observed in experiments, Shen et al. [9] proposed a model based on a dipolar
asymptotic form of hydrodynamic interaction. Notice that the dipolar form only holds at large
particle separations (it was derived in detail using the fundamental solution for the channel flow
[11]; see Ref. [12] and also references therein). One reason for the apparent applicability of this
description, despite the particles were close to each other, is likely the dominance of the adhesive
radial forces between particles at close proximity, such that any hydrodynamic interaction producing
a nonzero tangential velocity component would yield a similar cluster formation dynamics (see
Ref. [10] for further evidence). In contrast, a consistent predictive theory of hydrodynamic
interactions should hold irrespective of the presence of adhesive forces, and allow for analysis of
interaction of flowing particles at close proximity and near the wall, as in experimental setup [9].
The present paper is a step toward this theory.

There are two differences between the channel flow and the unbounded shear flow considered
in the BG theory [4,6]. The velocity profile of the channel flow is quadratic [13] in the coordinate
rather than linear. This difference is often irrelevant when the interacting particles are located much
closer to one of the channel walls, so that the flow can be closely approximated by the linear shear
flow. This is the case we consider in the present paper. Another difference, is that the no-slip rigid
wall is always at a finite distance and it interacts with the flowing particles.

We first consider the evolution of the interparticle distance when the effect of the wall is neglected
and the BG theory applies. It is useful to consider the three-dimensional phase space spanned by all
possible distances r between the spheres’ centers where one of them is at the origin. The distance
r(t ) between the spheres’ centers obeys an autonomous evolution equation which means that there is
a well-defined phase space flow V 0(r) such that ṙ = V 0[r(t )] and a unique trajectory passes through
each point. This is the consequence of neglecting particles’ and fluid inertia and the translational
invariance due to which the shear resistance matrix depends on r only, cf. [14] (translation in a
linear flow changes the flow by a constant vector, irrelevant by Galilean invariance). The flow V 0(r)
does not vanish anywhere so that there are no steady configurations. The absence of critical points
with V 0(r) = 0 implies a simple structure of the phase space. This can be most readily observed
in the symmetry plane formed by the horizontal flow direction x and the vertical velocity gradient
direction z (see Fig. 2). The trajectories that belong to the plane never leave it, Vy(y = 0) = 0, and
can be considered separately. There is a simple dichotomy of the trajectories: closed trajectories
crossing the x axis and open trajectories that do not cross the x axis. The open trajectories describe
the faster particle overtaking the slower one. The particles return to their original vertical positions
following the hydrodynamic encounter and there is fore-and-aft symmetry of the phase portrait. In
contrast, the trajectories that cross the x axis are closed, corresponding to a bound pair of spheres
orbiting around each other. Open and closed trajectories are separated by the separatrix that touches
the x axis asymptotically at large distances [6]. Rotation of this separatrix around the z axis creates
an axisymmetric surface that separates the regions of open and closed trajectories in space (it is
not readily evident how this axial symmetry could be guessed a priori without writing down the
equations). The region of closed trajectories has an infinite volume, which presents difficulties in,
e.g., calculation of the effective viscosity of a dilute hard-sphere suspension at the quadratic order
in concentration [15].

We demonstrate here that when a distant wall is considered, the evolution of r remains
autonomous in the leading approximation, ṙ = V [r(t )]. Thus, at any finite z0 � a we can still

054101-3



ITZHAK FOUXON et al.

FIG. 2. Phase portrait of the trajectories in the symmetry xz plane, within the BG approximation of z0 = ∞.
All lengths are scaled with the particle radius a. Throughout the paper the reference sphere is at the origin and
the trajectories of the second sphere are shown. Due to the fore-and-aft and top-down symmetries only one
quadrant is depicted. The two types of the trajectories—closed (blue) and open (red), are separated by the
separatrix, the open trajectory that asymptotically approaches the x axis [4,6]. For two spheres at the same
vertical line, the maximal separation for closed trajectories is of order of 10−5; see Ref. [5]. As a result, at this
resolution, the trajectories are indistinguishable when approaching the z axis. This includes the shown open
trajectory that crosses the z axis slightly above the closed trajectories. The time-period of revolution along the
shown closed trajectory is more than 700 (here and thereafter the time units of inverse shear rate γ̇ −1 are used).

examine the phase portrait, which is, however, qualitatively different from that in Fig. 2. Our
calculation is not a perturbation theory of the BG solution as we do not assume V ≈ V 0, so the
disturbed phase space flow V (r) is significantly different from V 0. The change in topology occurs
because at finite z0 there exist critical points at which V (r) vanishes; see the phase portrait in the
symmetry plane in Fig. 3. The saddle (hyperbolic) point rs, the closer of the two critical points to
the origin, is unstable. The other neutral equilibrium (elliptic) point rc corresponds to a marginally
stable configuration, where the pair flows without changing its interparticle distance and orientation;
see Fig. 4(a). Not too large deviations from this state result in the sphere orbiting around this elliptic
point. These dancing trajectories would have rather unusual appearance when considered in the
laboratory frame: While one sphere travels downstream, the other sphere revolves around a point
comoving in space with the first sphere; see Fig. 4(b). The phase plane at x > 0 is characterized
by two disconnected regions of closed trajectories shown in Fig. 3 by the blue curves. The region
to the left of the separatrix (blue) that crosses x = rs resembles the BG’s closed trajectories. The
trajectories around the elliptic point (rc, 0) are solely due to the presence of the wall. The lowest red
curve is an open trajectory similar to the BG’s: After the encounter the vertical separation is restored
to its initial value. In contrast to that, along the (red) trajectories circumventing the elliptic point,
the vertical separation of the particles reverses sign after the encounter. We call these “swapping
trajectories,” since they seem to correspond to the numerical findings of Ref. [7] at z0 ∼ a, where
trajectories with particles swapping their vertical positions after the encounter in a channel flow
were reported (careful consideration of the figure presented in Ref. [7] reveals slight changes of
the vertical coordinates which seem to be a higher order effect than that considered here). The
phase portrait for the evolution of interparticle distance along the swapping trajectory obtained in
Ref. [7] numerically, agrees with that predicted here theoretically. To prove that the sign-reversal of
the vertical separation predicted here implies swapping, it has to be shown that the center of mass
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FIG. 3. The phase portrait in the symmetry xz plane at finite z0 = 5. The fore-and-aft and top-down
symmetries survive the wall perturbation in the leading order. The phase portrait exhibits two critical
(equilibrium) points: the saddle (hyperbolic) point rs and the neutral equilibrium (elliptic) point rc, representing
a completely different topology from the BG theory in Fig. 2. As z0 → ∞, the topology of the phase portrait
is preserved, while the critical points are being shifted to infinity.

of the pair is not displaced vertically as a result of the encounter. We leave the rigorous proof for
future work, focusing here on the evolution of interparticle distance only. Thus, the use of the term
“swapping trajectories” here, strictly speaking, refers to open trajectories with sign-reversal of the
vertical separation following the encounter.

The three-dimensional trajectories are more complex. The circle of radius rc around the z axis
provides the critical curve with V (r) = 0. The configurations with r on that circle are stationary, so
that for instance there is a stationary pair where only the y coordinates of the particles are different.
Displacements from these stationary configurations result in closed trajectories that loop around the
critical circle; see Fig. 5. In contrast with the symmetry plane, where the BG trajectories display no

FIG. 4. (a) There is a unique value of the streamwise separation distance between two particles, x = rc,
flowing along the same streamline of the Poiseuille flow, for which they flow steadily without changing their
configuration. The stability of such motion is marginal, cf. panel (b). The value rc = 4z0 is confirmed in the
numerical simulations of the Navier-Stokes equations for z0 = 5. (b) Trajectories that pass through points
around the stationary point x = rc, z = 0, crossing x axis at distance larger than 2

√
2z0, exhibit a peculiar

dancing dynamics. In the coordinate frame comoving with the trailing (left) particle, the leading (right) sphere
follows an elongated closed orbit around (rc, 0). Similar trajectories hold outside the symmetry plane.
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FIG. 5. The blue line depicts the closed trajectory that forms a loop around the critical circle of radius rc

(whose segment is shown by the green line) for z0 = 5. The trajectory can be shrunk to a (necessarily critical)
point by continuously changing the initial conditions. The red line shows the BG trajectory that starts from the
same initial condition as the blue line. The period of revolution along the closed trajectory is 1165.

behavior similar to dancing, some of the three-dimensional BG trajectories do look rather similar
(notice that it was not stressed in the original work or in Ref. [5]); see Fig. 6 for comparison.

We emphasize the topological difference between the phase portrait in Fig. 3 and that of the
BG theory in Fig. 2. There are two disconnected regions of closed trajectories. In one region the
particles orbit each other, similar to the z0 = ∞ approximation, however, the volume of this region
is finite. The other region contains dancing closed trajectories and at large x2 + y2 it is bounded
by the surface of revolution |z| ∝ z0(x2 + y2)−3/2. This is similar to the BG bounding surface,
|z| ∝ (x2 + y2)−3/2, however, boosted by the large z0 factor. In both cases the volume of the phase
space domain containing closed trajectories diverges, so the divergences in the second order in
particle concentration stress calculations of Ref. [15] are not regularized by the wall. At finite z0

the two regions of closed trajectories are separated by a region of a new type of open swapping
trajectories that, in contrast to the BG theory, cross the x axis. Then the top-down symmetry, which
holds remarkably in the presence of the wall, implies that for open trajectories that cross the x axis,
the vertical component of the interparticle distance reverses its sign, as in numerically observed
swapping trajectories [7]. At least some features of the presented topology, derived theoretically at
z0 � a, work accurately down to z0 = 5a, as demonstrated by our in-house numerical simulations
of the Navier-Stokes equations.

In Sec. II we present the detailed derivation of the evolution equation for the interparticle
distance in the wall-bounded shear flow. Section III demonstrates why the wall presents a singular
perturbation of the BG theory. In Sec. IV we review the BG trajectories that serve as the reference
point of our study. We present the results of the numerical solutions of the derived evolution equation
in Sec. V. Section VI presents full solution of equation of motion in the dancing-swapping region.
Section VII presents the confirmation of the theory by direct numerical simulations of the motion of
a pair of spheres in the Poiseuille flow. In Sec. VIII we conclude our results, discuss the applicability
of the BG theory, and formulate some open questions.
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FIG. 6. Three-dimensional BG trajectory (red curve) of the sphere in the frame comoving with the
reference sphere. The closed trajectory has a geometrical center on the y axis. In contrast to the trajectory
in Fig. 5, this curve cannot be shrunk to a point by a continuous change of the initial conditions. That point
would have to be critical and the BG phase space does not admit those. For this trajectory, a distant wall is only
a regular small perturbation. The period of revolution is 120.

II. EVOLUTION OF THE DISTANCE BETWEEN TWO PARTICLES TRANSPORTED
BY A SHEAR FLOW NEAR WALL

In this section we derive the autonomous evolution equation for the distance r(t ) between two
spheres transported by the Poiseuille flow. We make the simplifying assumption that both spheres
are much closer to one of the bounding walls than the other. Thus, the particles are effectively
transported by the shear flow and not the parabolic velocity profile. The hydrodynamic interaction of
particles transported by an unbounded shear flow are well-studied and their velocities V 0

α, α = 1, 2
were considered in Ref. [4]. This analysis serves as a starting point of our study. We also assume
that the distance to the wall is much larger than the particles’ radii. We derive the particles’ relative
velocity as a sum of V 0

α and the correction velocity δV α . The correction velocity is not necessarily
smaller than V 0, as our solution is not a perturbation around the solution for an unbounded shear
flow.

A. Direct approach

We set the problem and consider its formulation using the flow for infinitely separated walls as a
reference. The problem of two spheres driven by the Poiseuille flow is described by

∇p = η∇2u, ∇ ·u = 0, u(z = 0) = u(z = h) = 0,
(1)

ux(∞) = z(z − h)∇x p0

2η
, u(Sα ) = V α + �α×(x − xα ),

where α = 1, 2 are the indices of the spheres, xα are the coordinates of the centers, and Sα is the
surface of the αth sphere. We designate the flow by u, and the translational and rotational velocities
of the spheres by V α and �α . The constant pressure gradient ∇p0 = −|∇x p0|x̂ drives the flow in
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the positive x direction, η is the fluid viscosity, z is the vertical coordinate and h the channel height.
We assume that the spheres have equal radii a, although most of the calculations below can be
done without this assumption. We will use below a as the unit of length so that the radii are 1. We
assume that the particle inertia is negligible so that the values of V α and �α are determined from
the conditions that the total force and torque from the fluid on either particle is zero,∫

Sα

tdS = 0,

∫
Sα

(x − xα ) × tdS = 0, (2)

where we have introduced the surface traction t , which can be written via the stress tensor σik as

ti(x) = σik (x − xα )k

a
, σik = −pδik + η(∇iuk + ∇kui ), (3)

where x belongs to Sα . We observe that if the spheres are much closer to the wall at z = 0 than at
z = h, then we can use different boundary conditions in Eq. (1),

u(z = 0) = 0, u(∞) = γ̇ zx̂, γ̇ = h|∇x p0|
2η

, (4)

where we introduced the effective shear rate γ̇ in terms of the parameters defining the Poiseuille
flow. The boundary conditions at Sα are unchanged. Without the boundary condition at z = 0 we
reduce to the problem of motion of two spheres in an unbounded shear flow considered in Ref. [4].
We designate all quantities of this problem by the superscript zero. Thus, u0 is the unbounded shear
flow for the two spheres with translational and rotational velocities V 0

α and �0
α , which obey Eq. (2)

with t = t0. We look for the solution as superposition of u0 and the flow perturbation δu (where the
use of δ does not imply smallness of δu). We thus have

∇δp = η∇2δu, ∇ · δu = 0, δu(z = 0) = −u0(z = 0), δu(∞) = 0,
(5)

δu(Sα ) = δV α + δ�α×(x − xα ),

where we introduced deviations of the velocities and of the surface traction from their values in an
infinite domain,

δV α = V α − V 0
α, δ�α = �α − �0

α, δt = t − t0. (6)

The deviations of the velocities are fixed by the condition that the deviation from the surface traction
obeys Eqs. (2) with δt instead of t . We notice that the flow u0(z = 0) in Eq. (53) is induced by
the spheres, since the unperturbed flow vanishes at z = 0. Thus, u0(z = 0) vanishes at infinity as
necessary for consistency of the boundary conditions at the plane and at infinity. For the distant wall
the flow u0(z = 0) can be simplified. This flow obeys the integral representation (see the derivation
in Appendix A),

u0
i (x) = γ̇ δi1z −

∑
α

∫
Sα

Yil (x − x′)t0
l (x′)dS

8πη
; Yil (r) = δil

r
+ rirl

r3
, r = x − x′, (7)

where Yil is the Oseen tensor or the Green’s function of the Stokes flow in an unbounded fluid [2].
If the vertical positions zα of the centers of both spheres are much larger than their radii, a, then the
asymptotic expansion of u0(z = 0) in a/zα is obtained by Taylor expansion of Yil (x − x′) in Eq. (7)
near x′ = xα . Using the condition of zero force we find that, at the leading order,

u0
i (z=0)≈ 1

8πη

∂

∂xm

∑
α

Yil (x − xα )Sα
lm|z=0; Sα

lm ≡
∫

Sα

[
(x − xα )mt0

l (x) − δml (x − xα )pt0
p (x)

3

]
dS,

(8)

where the traceless tensor Sα
lm is [4] the force dipole strength of sphere α. The δlm term can be

added since ∇lYil = 0. The force dipole strengths obey a general form derived in Ref. [4]. We have
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S1
lm = S2

lm = Slm with

3Slm(r)

10πηa3γ̇
= (δlxδmz + δmxδlz )(1 + K ) +

[
rl (xδmz + zδmx ) + rm(xδlz + zδlx )

r2
− 4xzδlm

3r2

]
L

+ 2xz

r2

(
rl rm

r2
− δlm

3

)
M, (9)

where the scalar functions K , L, and M depend on the interparticle distance r/a only (we omitted
the prime in the notation of Ref. [4], as the spheres have identical radii in our case). These functions
can be completely found only numerically and are considered below as given. We can use Eq. (8)
instead of the boundary condition at z = 0 in Eq. (53). The first reflection [1] gives the leading order
approximation for δV α as in the Lorentz solution for a sphere in the presence of a distant wall [1].
The compact expansion can be found below from integral representations.

B. Integral equation for velocities

Here we derive the integral equation that determines the particle velocities. For future general-
ization to the case where the distances from the spheres to both walls are comparable we perform
the derivation starting from the full formulation given by Eq. (1). We use the integral representation
of the flow [12,16,17],

ui(x) = (2η)−1δixz(z − h)∇x p0 − (8πη)−1
∑

α

∫
Sα

Sil (x, x′)tl (x′)dS′, (10)

where the Green’s function Sil is symmetric, Sil (x, x′) = Sli(x′, x); see, e.g., Ref. [18]. This function
is defined by uS (x) = Sik (x, x0)gk/(8πη), where uS is the Stokeslet due to point force acting
between two parallel plates,

−∇pS + η∇2uS + gδ(x − x0) = 0, ∇ · uS = 0, uS (z = 0) = uS (z = h) = 0,

uS (x2 + y2 → ∞) = 0. (11)

The function Sik is independent of g and it was derived in Ref. [11]. We study the velocities V α

by using the integral equation for the surface traction t (x). This equation is obtained by taking x in
Eq. (10) to the surface of one of the spheres which gives

(Vα )i + [�α × (x − xα )]i = (2η)−1δixz(z − h)∇x p0 −(8πη)−1
∑
α′

∫
Sα′

Sil (x, x′)tl (x′)dS′, (12)

cf. Ref. [18]. This equation holds for all x on Sα with α = 1, 2. Together with the conditions of zero
forces and torques it determines V α , �α and the surface traction uniquely [2]. We use the assumption
h � zα , meaning that the wall at z = h is much further from the spheres than the one at z = 0. We
can therefore approximately assume Sil (x, x′) ≈ Gil (x, x′) where Gil (x, x′) is the Stokeslet near a
plane wall defined by

−∇p′ + η∇2u′ + gδ(x − x′) = 0, ∇ · u′ = 0, u′(z = 0) = u′(x → ∞) = 0,

u′(x) = (8πη)−1Gil (x, x′)gl . (13)

The demand that Sil (x, x′) ≈ Gil (x, x′) when both x and x′ belong to the spheres quantifies the
assumption that one of the walls is much further than the other. In practice the difference between
distances to the upper and lower walls does not have to be too large for the equation to hold. With
zα 
 h and this assumption, Eq. (12) becomes

(Vα )i + [�α × (x − xα )]i = γ̇ δixz −(8πη)−1
∑
α′

∫
Sα′

Gil (x, x′)tl (x′)dS′. (14)
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We introduce the decomposition of Gil (x, x′) into the Stokeslet in an infinite space and the wall
correction G̃il ,

Gil (x, x′) = Yil (r) + G̃il (x, x′), (15)

with r = x − x′, as above. The contribution G̃il is induced by the images located at the reflection
(x′)∗ = (x′, y′,−z′) of the source position x′ = (x′, y′, z′) with respect to the plane z = 0. It was
found in Ref. [19] that the image singularities are a point force of the same magnitude as the source,
but with an opposite sign, a stokes-doublet, and a source-doublet, see definitions in the paper. We
can write the formula in Ref. [19] as follows:

G̃il (x, x′) = −Yil (R) + 2z′G(1)
il (R) + 2z′2G(2)il (R), G(1)

il = (2δ3l − 1)∂lYi3,
(16)

G(2)
il = (1 − 2δ3l )(R2δil − 3RiRl )

R5
,

where R = x − (x′)∗ is the distance from the images and there is no summation over repeated
indices. The symmetries of the Green’s functions Gil (x, x′) = Gli(x′, x) and Yil (x, x′) = Yli(x′, x)
imply the symmetry G̃il (x, x′) = G̃il (x, x′), which can be confirmed directly.

We compare Eq. (14) with the similar equation for two spheres driven by the unbounded shear
flow that was considered above. The equation can be obtained by dropping G̃il above, see Eq. (7),
which yields

(
V 0

α

)
i + [

�0
α×(x − xα )

]
i = γ̇ δixz −(8πη)−1

∑
α′

∫
Sα′

Yil (x − x′)t0
l (x′)dS′. (17)

Subtracting Eq. (17) from Eq. (14) we find

(δVα )i + [δ�α×(x − xα )]i + (8πη)−1
∑
α′

∫
Sα′

G̃il (x, x′)t0
l (x′)dS′

= −(8πη)−1
∑
α′

∫
Sα′

Gil (x, x′)δtl (x′)dS′. (18)

Provided that t0(x) is known, this is an integral equation on δt (x) which also obeys the conditions
of zero forces and torques given by Eqs. (2) with δt replacing t . So far we have not made any
approximations besides that the spheres are much closer to one of the two walls of the channel.

C. Asymptotic solution for a distant wall

We consider the solution of Eq. (18) in the limit of a distant wall. The last (source) term in the
left hand side of this equation, in contrast with the rest of the terms, does not involve properties of
δu. If it is dropped, then we find Eq. (14) with γ̇ = 0, that is the equation for two inertialess spheres
moving near the wall in the fluid at rest, which unique solution is trivial—zero translational and
angular velocities.

In fact, Eq. (18) coincides with the equation for the velocities of an inertialess swimmer,
composed of two spheres, that swims near a plane wall at z = 0. In this case, the propulsion is
powered by the swimming stroke prescribed by the velocity distribution at the spheres’ surface as
given by that last term.

When both spheres are separated from the wall by a distance much larger than a the asymptotic
series solution can be obtained via the Taylor expansion of G̃il (x, x′) near the centers of the spheres,
cf. Sec. II A. Indeed, both arguments, x and x′, of G̃il (x, x′) are confined in Eq. (18) to one of the
spheres (possibly different ones). In this range G̃il (x, x′) is a slowly varying function of its arguments
because zα � a and the image of x′ under this condition is separated from each sphere by a distance
much larger than the radius, cf. with the Lorentz solution [1] and also the Appendix of Ref. [20].
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This observation does not depend on the separation between the spheres that can be nonetheless
arbitrary. Thus, we write Eq. (18) as

(δVα )i + [δ�α×(x − xα )]i +
∑
α′

∫
Sα′

G̃il (xα, x′)t0
l (x′)dS′

8πη

+ (x − xα )k
∂

∂xk

∑
α′

∫
Sα′

G̃il (x, x′)t0
l (x′)dS′

8πη

∣∣∣∣
x=xα

+ . . .

= −
∑
α′

∫
Sα′

Gil (x, x′)δtl (x′)dS′

8πη
, (19)

where dots stand for higher-order terms in the Taylor expansion. The asymptotic solution can be
obtained by requiring that the equation holds at every order in max[a/z1, a/z2] (the case of disparate
zα seems to be of little interest so z1 ∼ z2 can be assumed below though this is not necessary for the
analysis). The zero-order term determines the particle velocities,

(δVα )i = −
∑
α′

∫
Sα′

G̃il (xα, x′)t0
l (x′)dS′

8πη
, (20)

where δtl is zero at this order. This formula can be simplified by noting that G̃il (xα, x′) is a smooth
function of x′ on each of the spheres for the same reasons as before due to the symmetry G̃il (x, x′) =
G̃li(x′, x). The zero-order term in the expansion vanishes by the condition of zero force. We thus
find that

δVαi = − Slm

8πη

∑
α′

∂G̃il (xα, xα′ )

∂ (xα′ )m
+ o

(
a

zα

)
, (21)

which is a more rigorous derivation of the result that might also be obtained using reflections as
described in the beginning of the section. The use of an integral representation allows us to precisely
formulate the validity conditions and to provide a transparent structure of the asymptotic series. It is
important for the further analysis that the derivation does not assume any a priori relation between
V 0

α and δV α . Actually, the absolute value of the velocities δV α would be smaller than V 0
α , however,

this need not to be true for the relative velocities which are of main interest here.

D. Evolution equation of interparticle distance

The velocity of the relative motion of the spheres is described by V = V 2 − V 1 that, at the
leading order, obeys

Vi = V 0
i + Slm

8πη

∑
α′

[
∂G̃il (x1, xα′ )

∂ (xα′ )m
− ∂G̃il (x2, xα′ )

∂ (xα′ )m

]
. (22)

The relative velocity in an unbounded shear flow V 0 can be written as [4]

V 0
i (r) = γ̇ zδi1 − γ̇ Bzδi1

2
− γ̇ Bxδi3

2
− γ̇ (A − B)xzri

r2
, (23)

where r = x2 − x1. The first term in the right-hand side (RHS) is the driving shear flow. The
remaining terms, due to hydrodynamic interactions, are described by the functions A and B, which
depend on |r| = r only. These functions are considered, similarly to K , L, and M above, as given [4].
We observe that V 0 is determined uniquely by the distance between the particles and is independent
of the particles’ center of mass. Thus, the evolution of r(t ) without the wall is autonomous, i.e., the
time derivative of r(t ) is determined uniquely by the instantaneous value of r(t ). We demonstrate
that the evolution of r(t ), described by Eq. (22), remains autonomous. This means that we can
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neglect in V , which is a function of xi, the dependence on the center-of-mass coordinate (x1 + x2)/2.
Since the horizontal coordinates of the center of mass are irrelevant by translational invariance
in the horizontal directions, we need to consider only the dependence on z0 = (z1 + z2)/2. This
coordinate would not change at all without the hydrodynamic interactions and the particles would
move in straight lines parallel to the wall. The interactions cause temporal variations of z0; however
these occur only over the scale of these interactions which is the radius a. Moreover, this change
is small by the assumption that max[a/z1, a/z2] 
 1. This allows us to consider z0 = (z1 + z2)/2
as constant during the whole time of the interactions giving V = V [r(t ), z0(t )] ≈ V [r(t ), z0(t0)],
where t0 is arbitrary. For δVi ≡ Vi − V 0

i we have

δVi = Slm

8πη

∑
α′

[
∂G̃li(xα′ , x1)

∂ (xα′ )m
− ∂G̃li(xα′ , x2)

∂ (xα′ )m

]

= Slm

8πη

∑
α′

∂

∂ (xα′ )m

[
Yli(xα′ − x∗

2 ) − Yli(xα′ − x∗
1 ) + 2z1G1

li(xα′ − x∗
1 ) + 2z2

1G2
li(xα′ − x∗

1 )

− 2z2G1
li(xα′ − x∗

2 ) − 2z2
2G2

li(xα′ − x∗
2 )

]
, (24)

where we used Eq. (16). The derivatives in the above equation can be written via the tensors

T (1)
lim (r) ≡ −∂Yli(r)

∂rm
= r2(rmδil − riδlm − rlδim) + 3rirl rm

r5
;

T (2)
lim (r) ≡ ∂G1

li

∂rm
= (1 − 2δ3i )

(
δimδ3l − δi3δlm − δilδ3m

r3

− 3ri(rmδ3l − r3δlm − rlδ3m)

r5
+ 3(δi3rl rm + δil r3rm + δimr3rl )

r5
− 15rir3rl rm

r7

)
;

T (3)
lim (r) ≡ ∂G2

li

∂rm
= −3(1 − 2δ3i )

(
rmδil + δimrl + δlmri

r5
− 5rmrirl

r7

)
, (25)

where we used Eqs. (15) and (16). We also observe that

xα′ − x∗
α = (xα′ − xα, yα′ − yα, zα′ + zα ). (26)

Thus, we find

δVi = Slm

8πη

[
K11

lim − K12
lim + K21

lim − K22
lim

]
;

Kkn
lim = T (1)

lim (xk − x∗
n ) + 2z jT

(2)
lim (xk − x∗

n ) + 2z2
j T

(3)
lim (xk − x∗

n ). (27)

We write above z2 = z0 + r3/2 and z1 = z0 − r3/2, where r3 = z2 − z1 is the vertical component of
the distance r. We use xα − x∗

α = 2zα , so that

T (k)
lim (x1 − x∗

1 ) = T (k)
lim (0, 0, 2z0 − r3); T (k)

lim (x2 − x∗
2 ) = T (k)

lim (0, 0, 2z0 + r3). (28)

Similarly, using x1 − x∗
2 = (−r1,−r2, z1 + z2) = (−r1,−r2, 2z0) and x2 − x∗

1 = (r1, r2, 2z0), we
find

T (k)
lim (x1 − x∗

2 ) = T (k)
lim (−r1,−r2, 2z0); T (k)

lim (x2 − x∗
1 ) = T (k)

lim (r1, r2, 2z0). (29)

The last equations provide the velocity in Eq. (27) in terms of r and z0. We consider z0 as a constant
given by the initial configuration, see the discussion after Eq. (23). The remaining terms in Eq. (24)
depend only on r, providing an autonomous equation for r.

The detailed form of the evolution equation for r in Cartesian coordinates is given by Eqs. (B1)–
(B4) in Appendix B. The more compact form is found by employing the cylindrical coordinate
system with x = ρ cos φ, y = ρ sin φ, z = z. We find using the identities xẋ + yẏ = ρρ̇ and −yẋ +
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xẏ = ρ2φ̇ and the definitions s2 ≡ ρ2 + 4z2
0 and σ ≡ r2 − s2 that (here and below we set γ̇ = 1 by

passing in the equation of motion for r to dimensionless time γ̇ t),

ρ̇ = zcφ

[
1 − B

2
− ρ2(A − B)

r2
+ 5ρ2P

3r4s5
+ 10z0R

r4σ 2
+ 5ρ2σ

2r4s7

(
P + 2

(
ρ4 − s2ρ2 + 4z2z2

0

)
M

)]
. (30)

Here, we have introduced cφ = cos φ, P = r2s2(L − M ) + 3(ρ4 + 4z2z2
0 )M and R = r4(1 + K +

L) + 2z2ρ2M; see definitions in Eqs. (9) and (23). The dynamics of cφ is

ċφ = z

ρ

(
c2
φ − 1

)[B

2
− 1 + 5ρ2σL

2r2s5
− 10z0

r2σ 2
(r2(1 + K ) + z2L)

]
. (31)

Finally, the dynamics of z reads

ż = ρcφ

[
−B

2
− z2(A − B)

r2
+ 5

(
ρ2 − 16z2

0

)
σR

2r4s7
+ 5z2P

3r4s5
+ 10z2z0

r4σ 2
(r2L + (2z2 − ρ2)M )

]
. (32)

Further noting that ρ4 − s2ρ2 + 4z2z2
0 = ρ2(ρ2 − s2) + 4z2z2

0 = −4z2
0ρ

2 + 4z2z2
0 = 4z2

0(z2 − ρ2),
the evolution equation for ρ can be rewritten as

ρ̇ = zcφ

[
1 − B

2
− ρ2(A − B)

r2
+ 5ρ2P

3r4s5
+ 10z0R

r4σ 2
+ 5ρ2σP

2r4s7
+ 20ρ2z2

0σ

r4s7
(z2 − ρ2)M

]
. (33)

It can be readily seen using |s| ∼ z0 and |σ | ∼ z2
0, that at fixed r we have δVi ∼ z−3

0 upon varying
z0. Similarly if we fix z0 then δVi ∼ r−2 upon varying r. The inverse cubic dependence on z0

is nontrivial. Derivatives of G̃il (r) contain terms of order r−2 which would give z−2
0 behavior in

Eq. (21), cf. the dependence of T k
lim on r in Eq. (25). Following rules for tensorial transformations

upon the sign reversal of the argument, see, e.g., Eqs. (28) and (29), the leading order z−2
0 terms

cancel.
We remark that finding the next order correction to V in the inverse distance to the wall would

involve the quadratic surface moments originating from t0. These were not considered previously
and would be quite demanding to compute; see Eq. (20). It would also require considering the
contributions in the second line of Eq. (19). The corresponding exceedingly complex calculations
are beyond the scope of the present paper. We take here the practical approach of trying to push our
leading order calculation to smaller z0 and compare the analytical prediction with the results of the
direct numerical simulations.

The equations of motion have symmetries that can be described as the properties of the velocity
components,

Vρ (ρ,−φ, z) = Vρ (ρ, φ, z), Vρ (ρ, φ,−z) = −Vρ (ρ, φ, z), Vφ (ρ,−φ, z) = Vφ (ρ, φ, z),

Vφ (ρ, φ,−z) = −Vφ (ρ, φ, z), Vz(ρ,−φ, z) = Vz(ρ, φ, z), Vz(ρ, φ,−z) = Vz(ρ, φ, z). (34)

These properties allow to confine the study of the trajectories r(t ) to z � 0, 0 � φ � π/2, besides
the constraint r � 2.

The main result of this section is the evolution equation for the distance between two spheres
freely suspended in a shear flow near the wall,

ṙ = V (r) = V 0(r) + δV (r). (35)

Here V 0(r), given by Eq. (23), describes hydrodynamic interactions due to shear in unbounded flow
and δV describes the effects of the wall, given at the leading order by Eqs. (B1)–(B4). Despite that
the wall is assumed to be distant, its effect is not small even for large channels.
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(a) (b)

FIG. 7. The ratio Vz/V 0
z for z0 = 20 (a) in the xz plane and (b) along the x axis. The presence of the wall

increases the velocity at x � z0 by a constant large factor of order z2
0. The two critical points are the neutral

equilibrium point rc = 4z0 = 80 and the saddle point rs = (32z3
0/15)1/5 [see the inset in (b)].

III. SINGULAR EFFECT OF THE WALL AT FAR DISTANCES

In this section we demonstrate that the wall is a singular perturbation of the relative motion
between the two spheres. Regardless of how large z0 is, its influence cannot be entirely neglected.
For any fixed r we have V (r) = V 0(r) for z0 → ∞. However, for any fixed z0 � 1 there are large
r for which some velocity components satisfy |δVi| � V 0

i . There is a competition between the
different parameters: the hydrodynamic interactions are small by a/r whereas the interaction with
the wall is small by a/z0. As a result at r given by a power of z0, whose exponent is determined by
the details of the power laws of the particle-particle and particle-wall interactions, the interactions
with the wall may dominate the evolution of r. The resulting topology of the trajectories of the
relative motion is hence different, as we will describe in the following sections. First, we illustrate
the differences numerically.

Trajectories that pass through points with y = 0 belong to the xz plane by symmetry, as
Vy(y = 0) = 0. We consider the remaining components Vx and Vz as functions of x and z in the
xz plane. We can restrict the analysis to positive x and z due to the symmetries described in the
previous section. For the streamwise component of the velocity the wall is a regular perturbation:
the ratio Vx/V 0

x is everywhere close to 1. Thus, for z0 = 20 the maximal deviation of Vx/V 0
x from

1 is seen numerically to be less than 1%. Consider for instance the ratio at x = y = 0 where
the only nonzero components are V 0

x (0, 0, z) = (1 − B(z)/2)z and δVx(0, 0, z) = 10zz0[1 + K (z) +
L(z)]/(z2 − 4z2

0 )2, see Eqs. (23) and (B1). When z ∼ 2 all B(z), K (z), L(z) are finite and less than
unity [4]. By taking the ratio we find that δVx/V 0

x ∼ 10/z3
0 
 1 at z0 � 1. At large distances V 0

x
is dominated by the driving shear flow, see Eq. (23), and it is much larger than δVx because the
symmetry imposes proportionality of δVx and z, see Eq. (B1). Similarly, in other cases, Vx/V 0

x ≈ 1.
Thus, for practical purposes we can set

Vx(r) ≈ V 0
x (r) =

[
1 − B(r)

2

]
z − [A(r) − B(r)]x2z

r2
, (36)

which at large distances reduces to the carrying shear flow difference given by z. The situation is
quite different for Vz/V 0

z in Fig. 7. We see that when the spheres are close, the difference is negligible
and Vz ≈ V 0

z . However, the situation is quite different at large separations. From Eq. (23) we obtain
that for a wall at infinite distance,

V 0
z (r) = −Bx

2
− (A − B)xz2

r2
, (37)
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which can be further simplified at large r using

A(r) = 5

r3
+ O

(
1

r5

)
, B(r) = 16

3r5
+ o

(
1

r6

)
; (38)

see Ref. [4]. We thus find that

V 0
z (r)≈− 8x

3r5
− 5xz2

r5
, (39)

which is negative at x > 0. We observe from Eqs. (38) that the order of corrections is quite high so
this formula might hold already at r � 3–4. For δVz we have from the equations in Appendix B that

δVz(x, 0, 0) = 10xz2
0

(
16z2

0 − x2
)

(
x2 + 4z2

0

)7/2 [1 + K (x) + L(x)]. (40)

This can be simplified at large x following Ref. [4],

K (r)≈− 2

r5
, L(r)≈− 5

2r3
, M(r)≈ 25

2r3
, r � 1, (41)

by neglecting K and L compared to unity in Eq. (40). These functions decay fast with r, implying
that

δVz(x, 0, 0)≈ 10xz2
0

(
16z2

0 − x2
)

(
x2 + 4z2

0

)7/2 (42)

must hold already at x = 3 where the spheres are rather close. We also find for the ratio of velocities

δVz(x, 0, 0)

V 0
z (x, 0, 0)

= 15x5z2
0

(
x2 − 16z2

0

)
4(x2 + 4z2

0 )7/2
; x � 1. (43)

The corrections are of order higher than 1/x so in practice this formula works at rather small x.
The ratio on the left-hand side of Eq. (43) equals −1 at x obeying the condition

15x5z2
0

(
x2 − 16z2

0

) + 4
(
x2 + 4z2

0

)7/2 = 0. (44)

This equation has two solutions. The first one is obtained when x 
 2z0 and hence 15x5 = 32z3
0

leading to rs = (32z3
0/15)1/5. This expression for the critical point, obtained from the x � 1

approximation given by Eq. (43), is indistinguishable from the numerical solution of Vz(x, 0, 0) = 0
with the full velocity given by Eqs. (B1)–(B4), at least down to z0 = 5 which is the smallest z0

considered in this work (we have rs ≈ 3 at z0 = 5). This is reasonable in view of the remarks after
Eqs. (39), (42), and (43). To find the other solution we notice that x2 = 16z2

0 + δ with δ 
 16z2
0

solves the equation giving rc ≈ 4z0. Both rs and rc are much larger than unity at z0 � 1 confirming
the consistency of the approach and can be used for z0 � 5.

The obtained points obey Vz(rc, 0, 0) = Vz(rs, 0, 0) = 0. Moreover, Vx(x, 0, 0) = Vy(x, 0, 0) = 0
since both Vx(x, y, z) and Vy(x, y, z) are odd functions of z; see Eq. (B5). Thus, the points on the x
axis with x = rs and x = rc are the critical points with V = 0. We demonstrate below that these are
a saddle point and a stationary point, respectively.

Finally, we would like to emphasise the singular nature of the perturbation due to the long-range
interaction at finite z0. For motions in the plane y = 0, at large but finite z0, there are locations
r for which the wall-normal component of the velocity Vz is much larger than the BG velocity,
see the z0 = 20 case in Fig. 7. In fact, for x � z0, the ratio δVz(x, 0, 0)/V 0

z (x, 0, 0) becomes an
x-independent constant of order z2

0 � 1. The wall contribution to the velocity is opposite in sign to
the BG velocity. If we consider two particles on the same streamline of the unperturbed flow with
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y = z = 0, then the only nonvanishing, z component of the velocity Vz(x, 0, 0) is

Vz = 10xz2
0

(
16z2

0 − x2
)

(
x2 + 4z2

0

)7/2 [1 + K (x) + L(x)] − xB(x)

2
. (45)

In the BG limit of z0 → ∞, taken at fixed x, the first term drops, reducing the velocity to
V 0

z (x, 0, 0) = xB(x)/2, see Eq. (37), and at large distances xB(x)/2 ≈ 8/(3x4), see Eq. (38). In
contrast, at any finite z0, for x � z0, the range not considered in the BG approximation, the
contribution due to the wall, described by the first term in Eq. (45) behaves as z2

0x−4. We find,
using that the functions K (x) and L(x) vanish at large distances by Eq. (41),

lim
x→∞

δVz(x, 0, 0)

V 0
z (x, 0, 0)

= lim
x→∞

20z2
0

(
x2 − 16z2

0

)
B(x)

(
x2 + 4z2

0

)7/2 = 15z2
0

4
. (46)

Thus, the interaction between particles flowing along the same streamline is dominated by the
wall term at x � z0. This sets in nonuniformly. We see from Fig. 7(b) that for z0 = 20 the
absolute value |Vz(x, 0, 0)/V 0

z (x, 0, 0)| grows fast with x. It crosses zero (which corresponds to
|δVz(x, 0, 0)/V 0

z (x, 0, 0)| = 1) at the critical saddle point (32z3
0/15)1/5 ≈ 7, a value smaller than the

half of z0. One might have expected that r � z0 guarantees at least a qualitative validity of the BG
theory, however, it does not. The ratio |δVz(x, 0, 0)/V 0

z (x, 0, 0)| rapidly grows with x, becoming of
order one hundred already at x ≈ 30. However, after reaching the maximum, it decreases to the value
1 at the critical point at x = 4z0. Only at x � 4z0 the asymptotic law |Vz(x, 0, 0)/V 0

z (x, 0, 0)| ∼ z2
0

starts to apply. We find numerically that the curve |Vz(x, 0, 0)/V 0
z (x, 0, 0)| starts flattening at

x ∼ 200 when its value is about one thousand. The approach to the limiting value of 1500, imposed
by Eq. (46), is quite slow: e.g., at x � 450 the ratio is about 1400. We conclude that, at the considered
value of z0, the wall dominates the interactions at all x � z0/2, excluding a small neighborhood of
the neutral equilibrium critical point rs.

The strong changes of V induced by the presence of a wall described in this section imply that
the phase portrait is very different from that obtained in the limit z0 → ∞. In the next section, we
therefore start from reviewing the reference z0 = ∞ case.

IV. TRAJECTORIES FOR INFINITELY DISTANT WALLS

We describe briefly the seminal results in Ref. [4] pertaining the relative motion of two spheres
in unbounded shear flow, as determined by the equation of motion ṙ = V 0(r). The trajectories can
be obtained from the two integrals R2 and R3 (notice a different labeling of the axes compared to
Ref. [4]; we have y and z, and correspondingly R2 and R3, switched):

R2 = y exp

[∫ ∞

r

B(r′) − A(r′)
1 − A(r′)

dr′

r′

]
;

R2
3 = z2 exp

[
2

∫ ∞

r

B(r′) − A(r′)
1 − A(r′)

dr′

r′

]
−

∫ ∞

r

B(r′)r′dr′

1 − A(r′)
exp

[
2

∫ ∞

r′

B(r′′) − A(r′′)
1 − A(r′′)

dr′′

r′′

]
. (47)

We consider trajectories in the symmetry xz plane (y = 0) where R2 = 0. The trajectories are given
in the form z = z(r) where (r2 = x2 + z2),

z2(r)=R2
3 exp

[
2

∫ ∞

r

A(r′) − B(r′)
1 − A(r′)

dr′

r′

]
+

∫ ∞

r

B(r′)r′dr′

1 − A(r′)
exp

[
2

∫ r′

r

A(r′′) − B(r′′)
1 − A(r′′)

dr′′

r′′

]
. (48)

There are two types of trajectories: open and closed trajectories corresponding to R2
3 > 0 and R2

3 <

0, respectively. The regions in phase space occupied by open and closed trajectories are separated
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by the separatrix zs(r) whose equation is found by setting R3 = 0,

(zs)2 =
∫ ∞

r

B(r′)r′dr′

1 − A(r′)
exp

[
2

∫ r′

r

A(r′′) − B(r′′)
1 − A(r′′)

dr′′

r′′

]
. (49)

We can obtain zs(r) at large r using Eq. (38),∫ r′

r

A(r′′) − B(r′′)
1 − A(r′′)

dr′′

r′′ ≈
∫ r′

r

5dr′′

r′′4 = 5

3

(
1

r3
− 1

r′3

)
.

The separatrix equation becomes (this asymptotic form was not presented in Ref. [4]),

(zs)2 ≈ exp

(
10

3r3

) ∫ ∞

r

16dr′

3r′4 exp

(
− 10

3r′3

)
= 8

15

[
exp

(
10

3r3

)
− 1

]
≈ 16

9r3
≈ 16

9x3
, (50)

which shows that the separatrix asymptotically approaches the x axis [6]. The surface obtained by
rotation of this curve around the z axis separates closed and open three-dimensional trajectories.
The volume of closed trajectories is infinite due to divergence of two dimensional integral of
(x2 + y2)−3/2.

We could not obtain a description of the particle-pair motion by integrals similar to R2 and R3

in the presence of the walls. For some trajectories, however, the wall is a small perturbation so
that V (r) ≈ V 0(r) holds everywhere along the trajectory. The trajectory equation is then x(t ) =
x0(t ) + δx(t ) where x0(t ) is a BG trajectory and δx(t ) represents just a small modification. An
example of these trajectories is the trajectory a in Fig. 11. These trajectories can be described with
integrals of motion Ri = R0

i + δRi where δRi is a small perturbation of the functional form of the Ri

due to the wall. This perturbation can be found from perturbation theory. However, this is of limited
use since we are interested in trajectories for which the wall contribution is not small.

V. TRAJECTORIES FOR A WALL AT FINITE DISTANCE

Here, we present the results of numerical simulations of the evolution equation of the interparticle
distance obtained in Sec. II D. We apply the algorithm proposed in Ref. [21], which allows us to
compute the hydrodynamic interactions in a system of N spheres in a creeping flow. The algorithm
is based on the multipole expansion of the Lamb solution for the fluid velocity field. We applied it to
describe the motion in a system of two force- and torque-free solid spheres of unit radius in a shear
flow for different distances r between the centers. Namely, for given components of the shear flow
field and the vector r connecting the sphere centers, we compute the velocity V in Eq. (22). Thus,
we determined the functions A, B, K , L, and M for r � 2.01 using the formulas in Ref. [4]. When r
approaches the value r = 2 the algorithm requires a very large number of spherical harmonics into
the solution expansion, which leads to a very large system of linear equations for the coefficients of
the harmonics.

The functions A and B were therefore smoothly continued to r = 2 using the asymptotic forms
for almost touching spheres given by

A(r) = 1 − 4.077(r − 2) + O[(r − 2)3/2], B ≈ 0.406 − 0.78

ln[(r − 2)−1]
. (51)

The derivative of B diverges at r = 2, while the functions A, K , L, and M are finite in the limit
of touching spheres, r → 2 and can be continued from r � 2.01 to r < 2.01 using a linear Taylor
series approximation. A similar approach was used in Ref. [5], where, however, continuation was
used only below 2.0002. Our main interest is in the behavior at larger r so we did not undertake
the detailed solution for the small values of r − 2. A higher resolution is needed for the precise
evaluation of the impact of the wall on the nearly touching BG trajectories and is left for future
work.
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FIG. 8. The phase portrait in the xz plane for z0 = 5 (a) and z0 = 10 (b). The BG separatrix obeying z2 =
16/(9x3) at large x is depicted by the dashed (grey) line. For any finite z0, the phase portrait contains two
disconnected regions of closed trajectories, in contrast to one region at z0 = ∞. Region I, where all trajectories
are closed and the spheres are close to each other, is similar to that at z0 = ∞. Region II is also similar to the
z0 = ∞ case: all the trajectories are open and the vertical separation after the interaction returns to its original
value. Region III has no counterpart at z0 = ∞. This region contains both closed and open trajectories (see
Fig. 12 for a more detailed description). The trajectories passing not far from the stationary point rc are closed,
orbiting around this point. The swapping open trajectories instead are characterized by a sign reversal of the
vertical component of the separation vector after the encounter. The region of swapping trajectories is bounded
from one side by the closed trajectories around rc and from the other side by open nonswapping trajectories.

Here, the equations of motion are generated employing the velocities given by the contributions
Eqs. (23) and (27). These equations are solved numerically using the custom code in Mathematica,
which reduces the integration step when the trajectory approaches the vicinity of r = 2. In this
region, the different trajectories are very close to each other and one has to resolve them accurately.
This necessity is obvious already from the BG trajectories in the symmetry plane. All trajectories
when the spheres pass in close vicinity to r = 2 are closed. In other words, the trajectories that cross
the z axis at z obeying 2 � z � 2 + � are closed; however, those crossing at z > 2 + � are open
where � is a small number. The quantity � obeys the equation

(2 + �)2 =
∫ ∞

2+�

B(r′)r′dr′

1 − A(r′)
exp

[
2

∫ r′

2+�

A(r′′) − B(r′′)
1 − A(r′′)

dr′′

r′′

]
, (52)

as readily seen from Eq. (49). The evaluation of � from this equation (not done in Ref. [4]) is
beyond our scope here. Note, however, that Ref. [5] provide � ∼ 10−5.

The smallness of � implies that small perturbations can readily turn closed trajectory into an
open one, which is indeed what the distant wall does as shown in Fig. 8. The resolution of these
small-scale effects demands high numerical precision.

To construct the separatrices (defined here as curves separating regions of qualitatively different
behavior) in the xz plane for given value of z0 we first find the critical point on the x axis (rs, 0, 0)
where the approximate value of rs is given in Sec. III. One separatrix (red curve in Fig. 8) is stable,
see Fig. 3 and thus is computed using integration of the original equations. The other separatrix
(blue curve in Fig. 8) is unstable as seen from Fig. 3. Thus, it is found by backward integration in
time, for which it is stable, until the trajectory reaches the z axis. All the trajectories below the blue
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FIG. 9. The separatrices for z0 = 20 corresponding to the initial point (rs cos φ, rs sin φ, 0) with φ = 7π/90.

curve (region I) are closed, while those between the red and blue curves (region II) are open—they
correspond to nonswapping trajectories. The trajectories between the red curve and the x axis (region
III) can be divided into two classes—open swapping trajectories (brown, black curves in the inset of
Fig. 12) and closed trajectories characterized by a very large separation between the spheres (green,
blue curves), see the captions of the Figures and detailed theory in the next section.

We next consider three-dimensional trajectories. The axial symmetry of the governing Eqs. (30)–
(32) implies that the saddle points reside in the xy plane on a circle with radius rs. For each point on
this curve one can construct the corresponding separatrices in 3D (see Fig. 9, where the third neutral
direction is given by the circle r = rc, not shown). All the separatrices belong to some surface of
rotation (Fig. 10) which is obtained by the rotation of the curves in Fig. 12 around the z axis.

At this point, it is instructive to compare the evolutions of the same representative initial
conditions for z0 = ∞ and finite z0. The evolution of conditions that produce closed BG trajectories
with small x2 + z2 in the limit z0 = ∞ is only weakly influenced by far wall (unless passing near
the BG separatrix where small perturbations are relevant), as in Fig. 6, see the caption. In contrast,
the trajectories with large x2 + z2 may be very different as shown in Fig. 5 where the wall changes
the evolution from an open trajectory to a closed one. The evolution of initial conditions leading to
open trajectories for z0 = ∞ may be only slightly changed by the wall, as in Fig. 11(a), or result in
swapping as for the case in Fig. 11(b).

VI. THEORY OF DANCING-SWAPPING REGION

In this section we analyze the trajectories in the dancing-swapping region III, as shown in Figs. 8.
We restrict the consideration to the symmetry plane y = 0. All trajectories in this region cross the
x axis. These trajectories are of two types, both are qualitatively different from the BG theory. The
swapping trajectories are open, each crosses the x axis at a single point x obeying rs < x < xs where
rs = (32z3

0/15)1/5 and xs = 2
√

2z0 is determined below. For these trajectories the difference of the
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FIG. 10. Surface of rotation formed by the separatrices that pass through (rs cos φ, sin φ, 0) with 0 � φ �
2π at z0 = 20. The green curves represent separatrices corresponding to φ = 0, π/36, π/18, 5π/36, π/4. The
trajectories inside the region formed by the blue surface are closed BG-type orbits, whereas the trajectories
inside the orange surface are either open swapping or closed dancing trajectories, as in region III in Fig. 12, cf.
Fig. 9.

z coordinates of the particles changes sign as a result of the hydrodynamic encounter (as for black
curve in Fig. 12). This sign-reversal corresponds to swapping of the vertical coordinates, see the
Introduction. The larger crossing coordinate is, starting from x = rs, the closer the trajectory is to
the x axis at large x. For the unique trajectory passing through x = xs the trajectory asymptotically
approaches the x axis indefinitely similarly to the BG’s separatrix, dividing regions of open and

FIG. 11. Comparison of representative open trajectories in the BG case (red) and in the case of a wall at
a finite distance z0 (blue): (a) typical open trajectories are qualitatively similar in both cases (z0 = 20); (b) for
some initial conditions the presence of the wall results in the appearance of a swapping trajectory (z0 = 5). The
black arrows indicate the direction of motion.
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FIG. 12. The dancing-swapping region III of Figs. 8 for z0 = 20. The red line is the region’s boundary that
crosses the x axis at (32z3

0/15)1/5. The dashed blue line separates open swapping and closed dancing trajectories
and crosses the x axis at xs = 2

√
2z0. The black dot is the equilibrium point (rc = 4z0, 0).

closed trajectories. Finally, the trajectories that pass through a point (x > xs, 0, 0) are closed, each
crossing the x axis at two locations.

First we observe that the evolution of trajectories in the dancing-swapping region III admits
r � 1 and thus can be simplified. It is readily seen numerically that, at least for z0 � 5 that are
of interest here, we have V 0

x (r) ≈ z within less than 15% accuracy, meaning that the BG velocity
difference is fully determined by the undisturbed shear flow. This is because the hydrodynamic
interactions’ correction to V 0

x (r) decays quickly with the spheres’ separation, see Eqs. (36) and
(38). We find from Eq. (36) that we can use Vx(r) ≈ z everywhere in region III. Moreover, we
observe that δVz(x, 0, z) − δVz(x, 0, 0) grows quadratically with z; see Appendix B. It is then found
that since small-z approximation holds (see below) then we can then use δVz(x, 0, z) ≈ δVz(x, 0, 0)
in the whole region III. Finally, we can use the reduced Eq. (42). We find that the evolution of the
trajectories in region III can be accurately described by the reduced system of equations,

ẋ = z, ż = − 8x

3r5
− 5xz2

r5
+ 10xz2

0

(
16z2

0 − x2
)

(
x2 + 4z2

0

)7/2 , (53)

where we assumed z0 � 5 and used Eq. (39). Furthermore, since region III is characterized by small
z then it is seen that r ≈ x and the second term in the RHS of the equation on z can be dropped.
Indeed, the ratio 15z2/8 of this term to the first term in the RHS is small at moderate x and not so
small at larger x. However, at larger x the time-derivative ż is determined by the third term. Thus,
the second term is uniformly small everywhere in III as we verified numerically, and Eq. (53) is
rewritten as

ẋ = z, ż = − 8

3x4
+ 10xz2

0

(
16z2

0 − x2
)

(
x2 + 4z2

0

)7/2 . (54)

054101-21



ITZHAK FOUXON et al.

The trajectories produced by this system in region III are indistinguishable from those produced by
the full V (r). The critical points of this approximate evolution obviously coincide with those ob-
tained in Eq. (44), so that, e.g., 10rsz2

0(16z2
0 − r2

s )/(r2
s + 4z2

0 )7/2 = 8/(3r4
s ) with rs = (32z3

0/15)1/5.
Eliminating time variable we arrive at

d

dx
z2 = − 16

3x4
+ 20xz2

0

(
16z2

0 − x2
)

(
x2 + 4z2

0

)7/2 . (55)

The trajectory that crosses the x axis at x = xi is given by the solution of the above equation and it
reads

z2 = 16

27x3
+ 20z2

0

(
x2 − 8z2

0

)
3
(
x2 + 4z2

0

)5/2 − 16

27x3
i

− 20z2
0

(
x2

i − 8z2
0

)
3
(
x2

i + 4z2
0

)5/2 . (56)

Setting here xi = rs and using the condition on rs provided after Eq. (54), we arrive at the equation
of the separatrix bounding the dancing-swapping region and separating it from region II (red line in
Fig. 8)

z2
II,III = 16

27x3
+ 20z2

0

(
x2 − 8z2

0

)
3
(
x2 + 4z2

0

)5/2 + 40z2
0

(
48z4

0 − 2r2
s z2

0 − r4
s

)
9
(
r2

s + 4z2
0

)7/2 , rs =
(

32z3
0

15

)1/5

. (57)

We further find the following asymptotic behavior

z2
II,III (x = ∞) = 40z2

0

(
48z4

0 − 2r2
s z2

0 − r4
s

)
9
(
r2

s + 4z2
0

)7/2 ≈ 5

3z0
, (58)

where the first equality holds down to z0 = 5 and the last equality assumes z0 � 1. The equations
confirm that region III has a finite width in z-direction, the fact underlying the validity of
δVz(x, 0, z) ≈ δVz(x, 0, 0). The last equality provides the scaling law of growth of region III as
the proximity to the wall decreases from z0 = ∞ to some finite value.

There is a unique value of xi = xs for which the last two terms in Eq. (56) vanish and the
trajectory asymptotes the x axis at large x. This value is determined by the condition x3

s = 4(x2
s +

4z2
0 )5/2/(45z2

0(8z2
0 − x2

s )). The solution is x2
s = 8z2

0 − ε with ε ≈ 8
√

3/(5
√

2). The corresponding
trajectory zsw is the separatrix of swapping and dancing trajectories,

z2
sw = 16

27x3
+ 20z2

0

(
x2 − 8z2

0

)
3
(
x2 + 4z2

0

)5/2 ; z2
sw(x ≈ 2

√
2z0) = 0. (59)

This asymptotic behavior of this separatrix at x � z0 is z2
sw ∼ 20z2

0/(3x3). Remarkably, this is the
same behavior as the BG asymptote given by Eq. (50), however, with a much larger coefficient.
Since the three-dimensional separatrix is obtained by revolution around the z axis, we conclude
that the volume of closed dancing trajectories is infinite. Thus, the wall does not regularize the
divergences in the stress calculation at the second order in concentration of Ref. [15]. The volume of
swapping trajectories is also infinite. Finally, we remark that long-distance behavior of trajectories
in regions I and II can also be described using the approach of this section; however, the global
behavior in those regions involves close positions of the spheres and demands the full formulas.

VII. DIRECT NUMERICAL SIMULATION OF A PARTICLE PAIR IN POISEUILLE FLOWS

In this section we provide supporting evidence of the existence of the neutral equilibrium point
(rc, 0, 0) from direct numerical simulations of the motion of a pair of particles in the Poiseuille
flow. We simulate the Navier-Stokes equations with appropriate boundary conditions at a Reynolds
number of 0.1 to approximate solutions of Stokes flows, as verified in previous work [12,22]. A
moderate distance from the wall (z0 = 5) is considered to examine the accuracy of the theory in
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conditions typical of microfluidic channels, cf. Refs. [9,10]. In this way, we provide confirmation of
the theory and demonstrate that it holds down to rather small z0.

There is a number of methods for the numerical simulation of particle motion in viscous flows,
one of the most popular is Stokesian dynamics [23] that has been recently adopted for wall-bounded
flows [16,17]. Within this method the boundary integrals in Eq. (10) are expanded in infinite
series of multipoles. Truncation of the series, which is valid at large interparticle and particle-wall
distances is typically done at the stresslet level and produces an approximation to the flow from
which the particles’ velocities are derived using Faxén’s laws. The pairwise additive near-field
hydrodynamics is included explicitly by using the results of the lubrication theory [23], thereby
providing expressions that interpolate between the correct large- and small-distance hydrodynamics.
This is a powerful method particularly suitable for numerical analysis of many-particle systems.
Since we are only concerned with interactions of just two particles, the direct approach seems more
applicable. We therefore use interface-resolved, direct numerical scheme to obtain motions of the
particles and full solution of the ambient flow field. The particles are simulated either as solid
spheres using an immersed boundary method or as liquid droplets using the interface-correction
level set/ghost fluid method; see Refs. [10,22,24] and the Appendix B of Ref. [12] for detailed
descriptions of the governing equations and their numerical treatments. Note that, our computational
scheme does not neglect any details (up to the numerical precision) of the fluid motion throughout
a suspension, hence it is better suited for detailed studies of few hydrodynamically interacting
particles despite being computationally more expensive, cf. Ref. [16].

Figure 1 illustrates the schematic of the simulation setup. Here, two neutrally buoyant particles
are transported inside a rectangular channel of dimensions Lx, Ly, and Lz, that are at least an order-
of-magnitude larger than the particle radius a. The undisturbed flow is the Poiseuille flow shifted
backwards by a constant velocity so that the position of the first particle remains roughly unchanged
throughout the simulation [25]. The particle pair is initially placed adjacent to the bottom wall,
with z0 = 5 and Lz = 64. Lx and Ly are chosen to be large enough so that the imposed boundary
conditions (periodic or inflow/outflow) do not qualitatively affect the particle motion, which we
verified by checking that changes in Lx and Ly do not affect the results appreciably. Thus, we used
Lx = 12 and 24, and increased Ly from 60 up to 80.

Figure 13 depicts the vertical component of the relative velocity Vz of two solid particles at
various initial separations r/z0, obtained asymptotically upon their release. That is, we extract Vz

from the simulations when both particles are still approximately at the same vertical position z0

within the accuracy of 10−4. The theoretical values are computed according to Eqs. (39) and (43),
which apply since the minimal considered distance is 15. Remarkably, we observe a close agreement
between the theoretical prediction and the numerical simulation, from the smallest studied distance
of r = 3z0. This is despite that the simulations are performed in a pressure-driven channel flow in
the presence of two walls and z0 is not so large. The deviation of the numerical results from the
theoretical values at r/z0 � 5 is probably due to numerical confinement; as the particles are further
separated, larger computational boxes would be necessary to accurately isolate the interaction due
solely to the neighboring particle.

VIII. CONCLUSIONS

We presented here the theory of the hydrodynamic interactions of two spheres in a shear flow in
the presence of a plane rigid wall. This theory provides a reference for consistent direct numerical
or experimental studies of the particles’ trajectories. Some of the predictions of the theory have
been confirmed by direct numerical simulations in Poiseuille flow, demonstrating that neglecting
the farthest wall is a valid assumption and the theory holds at least down to distances from the wall
of five particle radii, z0 ≈ 5a.

The immediate use of our work is the determination of the limitations of the BG theory [4]; see
also Ref. [2]. Our theory indicates that for interparticle distances r/a much smaller than (z0/a)3/5

variations of the interparticle velocity with respect to the BG velocity is small. This condition,
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FIG. 13. Asymptotic vertical velocity of particle 2 relative to particle 1 as a function of the horizontal
separation, at z0 = 5a (cf. Fig. 1). We focus on the range where the theory predicts change of sign of the
velocity and the associated critical point. The theory is seen to hold accurate predictions even in geometrically
confined Poiseuille flows.

r 
 z3/5
0 a2/5, is stricter than the naive estimate r 
 z0. If this condition is not met, then the wall

correction to the BG interparticle velocity is not small. The trajectories are then significantly altered
in comparison with the BG predictions, both quantitatively and qualitatively.

Generally speaking our approach to the problem relies on finding the image of the full BG flow
that describes particles’ interactions in shear flow. It might be anticipated that the above critical
distance z3/5

0 a2/5 follows from the comparison of the scalings of the BG velocity with that of the
image. In fact, the distance ∝ z3/5

0 arises by comparing the BG relative velocity ∝ 1/x4 with that
∝ x/z3

0 due to the image flow; see Sec. III. However, we did not find a simple explanation for ∝ 1/x4

and ∝ x/z3
0 scalings.

Corrections due to the wall can also be relevant at r 
 z3/5
0 a2/5 despite their smallness. The

reason is that the global behavior of the BG trajectories passing near the separatrix is sensitive
to small perturbations. Thus, perturbations originating from the wall presence, Brownian noise,
gravity, finite roughness of the particles’ surface or any other source, may easily change the
global portrait of the interactions. All the closed trajectories of the classic BG solution [4] can
be altered quite significantly by small perturbations, since they all pass near the separatrix. Indeed
when particles, orbiting around each other in the symmetry plane, reach the vertical (side-by-side)
orientation, the maximal distance between them is of order of 10−5a; see Ref. [5]. The wall, even
a distant one, can produce a small upward displacement which would shrink the region of closed
trajectories. This is in fact what we see in the simulations where the separatrix in the presence
of the wall crosses the z axis at shorter distance from z − 2a than without the wall. However,
our simulations are not built for resolving distances as small as 10−5a so this initial observation
demands further, more accurate studies, which can take advantage of the evolution equation for the
interparticle separation derived here.

We notice that the problem considered here seemingly has a hidden symmetry. The presence
of the wall makes the top-down symmetry, which is displayed by the trajectories, nonevident.
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Moreover, it is not so evident why the separatrices form a surface of rotation in both the BG and our
cases.

Strictly speaking our analysis is not complete. The leading order correction that we found has
naive order of smallness z−2

0 , and not the actually holding z−3
0 . We found this from the detailed

calculation that revealed the vanishing of the z−2
0 contribution due to symmetry. It is possible that

the symmetry would be irrelevant for the next order term which has the naive order of magnitude of
z−3

0 and it cannot be neglected. We consider this scenario implausible and make the conjecture that
the next order term is actually O(z−4

0 ) and can be consistently neglected. Proving this conjecture
theoretically is a formidable task which was not undertaken here. It seemed more practical to test
the predictions that we made by direct numerical simulations of the motion of two spheres in a shear
flow in the presence of a wall. The performed numerical simulations of the Poiseuille flow closely
confirmed the predictions of our theory.

Another confirmation of our theory comes from the previous, unguided by the theory, simulations
of Ref. [7]. This work considered the shear flow between two parallel planes induced by the motion
of the upper plane. This problem, with both walls included, could be considered as in Sec. II by
using the Green’s function for the Stokes flow between two infinite planes [11], which however is
beyond the scope of the present paper. The interacting spheres in Ref. [7], however, were located
closer to the immobile lower wall which makes our theory applicable at least qualitatively. The
phase portrait of Ref. [7] for the evolution of the interparticle distance in the symmetry plane agrees
remarkably well with that provided here, though it lacks the neutral equilibrium point and the closed
trajectories revolving around it. The authors observed the saddle point at z0 = 4.8 with distance 10
between the walls. In this case, our theory applies only qualitatively. However, when we use our
formula (32z3

0/15)1/5 for the position of the saddle point, we find that our prediction agrees very
well with the numerical findings of Ref. [7]. All these provide strong evidence for validity of our
theory.

The complete proof showing that our open trajectories with sign-reversal of the vertical
separation describe swapping of the vertical positions requires the computation of the vertical
coordinate of the center of mass after the interaction. Although as we argued above, this seems
inevitable, a proof demands the study of the motion of the center of mass, which was not undertaken
here (the formulas of Sec. II can be used for this aim). For an unbounded shear flow, the motion of
the center of mass could be obtained using the shear resistance matrix, function of the instantaneous
distance between the spheres. This matrix can be written in terms of scalar coefficient functions,
similar to A and B, with the asymptotic form of this matrix obtained at large separations in Ref. [14]
(see also Ref. [5]). Considering this matrix and the solution for the interparticle distance as a
function of time as given, one can readily find the center of mass velocity as a function of time.
In our case the calculations are even more involved due to the presence of the wall. This is therefore
left for future work.

The numerical and experimental tests of our predictions may focus on the emergence of the
neutrally stable bound state, when the particle pair flows as a whole at some fixed distance from the
wall z0. The horizontal component of the interparticle distance in this state belongs to the circle of
radius 4z0, although at small z0 some deviations from 4z0 must occur.

The fluid inertia may have nontrivial effect on the relative motion of two spheres in shear
flow. It was observed in Ref. [26] that the BG trajectories are altered by finite but yet small
Reynolds number Re = 0.1. Besides the open and closed BG-type trajectories, the authors found
reversing trajectories that are similar to the swapping trajectories of Ref. [7], considered here, and
recirculating trajectories of Ref. [27]. The authors also observed spiralling trajectories, that do not
have a counterpart at zero Re, and did not observe the dancing trajectories discovered here. The
authors ascribed the observations to the effect of finite Re of unbounded shear flow, despite being
aware that reversing trajectories could be caused by the boundaries. At the same time they found
that variation of the computational domain in the streamwise direction does alter the trajectories, so
that the simulation results are influenced by the boundaries. The numerical simulations performed
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here demonstrate that the effects of the boundaries become negligible for the flow domain which is
twice longer in the streamwise direction than that used in Ref. [26]. Future work on the effect of
the finite fluid inertia must carefully and fully separate the effects by independent variation of Re
and z0 in wide intervals. Notice that even though our numerical simulations used finite Re = 0.1,
there is an excellent agreement with theoretical predictions corresponding to Re = 0, indicating
that the described phenomena should be attributed to the wall-bounded flow and not the weak fluid
inertia.

Since the experiments of Refs. [8–10] used droplets and not rigid particles, we shall briefly
address how the results obtained for the rigid particles here would change for droplets. Close
interactions of rigid particles and droplets are quite different, both qualitatively and quantitatively;
see, e.g., Ref. [2]. However, at large separations, when the effects of the wall are most relevant,
the differences seem to be less significant. We have confirmed this again using direct numerical
simulations for two liquid droplets in the same setup as for the solid particles in Sec. VII. We
verified that Vz > 0 at r/z0 = 3 while Vz � 0 at r/z0 = 5. Thus, there is a point within this range
where the velocity vanishes, as in the case of rigid particles. Therefore at least the prediction
of the stationary point holds also in the case of liquid droplets. This suggests that the existence
of states of marginal equilibrium is a robust phenomenon for pair of particles flowing next to a
wall.

The theory presented here has direct generalisations to other distant boundaries. The developed
approach can also be used to study the hydrodynamic interactions between suspended particles
in other confined shearing flows, such as, e.g., Couette flow. The case of a third particle at
a finite distance from the pair of spheres in an unbounded shear flow is also of interest.
When the driving flow is enclosed between two parallel planes (i.e., a slit geometry), as in
Ref. [7], the inclusion of the second plane is required for a theoretical analysis, as suggested
above.

The present finding of stable configurations of pairs of particles due to hydrodynamic interactions
is probably due to the fact that the position of one of the three bodies in interaction—the wall—is
fixed. The question whether such configurations can exist for three or more flowing particles is left
for future work.
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APPENDIX A: INTEGRAL REPRESENTATION OF SHEAR FLOW ROUND SPHERES

We derive here the integral representation of the flow round spheres driven by shear in an
unbounded fluid. The flow obeys

∇p = η∇2u, u(∞) ∼ γ̇ zx̂, ∇ · u = 0, u(Sα ) = V α + �α × (x − xα ), (A1)

where γ̇ is the shear rate and as in the main text α = 1, 2 are the indices of the spheres and xα are the
coordinates of the centers. Translational and angular velocities are determined from the conditions
that the fluid applies to each particle zero net force and torque,∫

σikdSαk = 0,

∫
(x − xα ) × σikdSαk = 0, σik ≡ −pδik + η(∇iuk + ∇kui ), (A2)

where σik is the stress tensor. We use the Lorentz-type identity for x′ outside the volume of the
spheres,

ui(x′)δ(x′ − x) = ∂

∂x′
k

[
Yil (x − x′)σlk (x′)

8πη
+ ul (x′)
ilk (x − x′)

]
, (A3)
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where Yil is defined in Eq. (7) and 
lik defines the stress tensor of the Stokeslet. We have (our
definition differs from Ref. [2] by insignificant permutation of indices of the symmetric tensor 
ilk),

Yil = δil

r
+ rirl

r3
, 
ilk = 1

8π

(
∂Yil

∂rk
+ ∂Yik

∂rl

)
− riδlk

4πr3
= − 3

4π

rirl rk

r5
,

∂

∂x′
k


ilk (x − x′) = δilδ(x − x′). (A4)

Integrating Eq. (A3) over x′ outside the particles, we find

ui(x)=
∫

S∞

(
Yil (x − x′)σlk (x′)

8πη
+ ul (x′)
ilk (x − x′)

)
dS′

k −
∑

α

∫
Sα

Yil (x − x′)σlk (x′)dS′
k

8πη
, (A5)

where the direction of the normals is outward from the surfaces and S∞ is the spherical surface with
radius R taken to infinity. The prime designates that the integrals are over the x′ variable and the
term with an integral of 
 over the particle surfaces vanishes by the rigid body boundary condition
[2,12,18]. We observe that the disturbance of the flow caused by the spheres vanishes at infinity so
that

u ∼ γ̇ zx̂ + o(const ), σlk ∼ ηγ̇ (δlxδkz + δkxδlz ) + o(r−1).

We use these asymptotic forms for obtaining the integrals over S∞. Keeping the lowest order
nonvanishing term in the Taylor series of Yil (x − x′) in x,∫

S∞

Yil (x − x′)σlrdS′

8πηγ̇
= −xm

∫
S∞

(δlxz′ + x′δlz )
dS′

8πR

∂Yil (x′)
∂x′

m

.

We find using the form of Yik in Eq. (A4),

∂Yil

∂rm
= r2(rlδim + riδlm − rmδil ) − 3rirl rm

r5
, (A6)

and obtain, ∫
S∞

Yil (x − x′)σlrdS′

8πηγ̇
= −xm

2
〈(δlxz + xδlz )(xlδim + xiδlm − xmδil − 3xixlxm)〉, (A7)

where angular brackets stand for averages over the unit sphere,

〈xixk〉 =
∫

x=1

xixkdS

4π
= δik

3
, 〈xixkxlxm〉 = δikδlm + δilδkm + δimδkl

15
. (A8)

Further, by collecting the different terms,∫
S∞

Yil (x − x′)σlrdS′

8πηγ̇
= δizx + δixz

5
. (A9)

We consider similarly the remaining integral over S∞,∫
S∞

ul (x′)
lik (x − x′)dS′
k = γ̇

∫
S∞

z′
xik (x − x′)dS′
k = xmγ̇

∫
S∞

z′ ∂
xik (x′)
∂x′

m

dS′
k . (A10)

We have from Eq. (A4) that

∂
xik

∂rm
= 3

4π

(
5xrirkrm

r7
− rirkδmx + rixδmk + rkxδmi

r5

)
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and ∫
S∞

ul (x′)
lik (x − x′)dS′
k = 3xmγ̇ 〈(4xzrirm − zriδmx − xzδmi )〉. (A11)

We obtain using Eq. (A8),∫
S∞

ul (x′)
lik (x − x′)dS′
k = γ̇

(
4δixz − δizx

5

)
. (A12)

Collecting the terms in Eq. (A5), we obtain the integral representation given by Eq. (7) in the main
text. This representation leads to Eq. (17) in the main text when taking x on the surface of one of
the spheres and using the proper boundary condition. The representation could also be derived by
considering the standard integral representation for the correction flow u − γ̇ zx̂, which also obeys
the Stokes equation. In that approach one would need to evaluate integrals on the particles’ surfaces
instead of S∞ to find Eq. (7).

The integral representation in Eq. (7) gives readily the multipole expansion of the flow at large
distances x � x′, see Refs. [2,18]. The leading order term is provided in Eq. (8) of the main text
where we use the condition of zero force. This approximation holds at |x − xα| much larger than
the radii of the spheres.

APPENDIX B: DYNAMICAL EQUATIONS IN CARTESIAN COORDINATES

We can derive an explicit expression for δVi using Eqs. (9) and (25). To this end, we introduce
s2 = x2 + y2 + 4z2

0, σ = z2 − 4z2
0 and g2 = x4 + y4 + 4z2z2

0. We find after simplifications that δVi

can be written as sums over four components ck
i (we use dimensionless time γ̇ t),

δVx = 5z

r4

4∑
k=1

ck
x, δVy = 5xyz

r4

4∑
k=1

ck
y, δVz = 5x

r4

4∑
k=1

ck
z . (B1)

The components of δVx are given by

c1
x = y2[2s2x2 − (s2 − 5x2)σ ](r2L + 2x2M )

2s7
, c3

x = x2c3
y ,

c2
x = 2z0

σ 2
[(1 + K )r4 + (x2 + z2)r2L(r) + 2x2z2M],

c4
x = −x2σ

2s7
{r2(5y2 − s2)L + [s2(r2 + 2x2) − 5g2]M}, (B2)

where the components of δVy read

c1
y = [2s2y2 − (s2 − 5y2)σ ](r2L + 2x2M )

2s7
, c2

y = 2z0

σ 2
(r2L + 2z2M ),

c3
y = (s2 − 3y2)r2L + (3g2 − r2s2)M

3s5
,

c4
y = − σ

2s7
{r2(5y2 − 3s2)L + [s2(r2 + 2y2) − 5g2]M}. (B3)

Finally, the components of δVz are

c1
z = σ

2s7

(
s2 − 20z2

0

)
[r4(1 + K + L) + 2z2(r2 − z2)M], c2

z = 2z2z0

σ 2
[r2L + (3z2 − r2)M],

c3
z = z2c3

y , c4
z = y2z2

s5
(r2L + 2x2M ). (B4)
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We observe from Eqs. (23) and (B1)–(B4) that Vi = V 0
i + δVi obeys the symmetries,

Vx(−x, y, z) = Vx(x, y, z), Vx(x, y,−z) = −Vx(x, y, z), Vx(x,−y, z) = Vx(x, y, z),

Vy(−x, y, z) = −Vy(x, y, z), Vy(x,−y, z) = −Vy(x, y, z), Vy(x, y,−z) = −Vy(x, y, z),

Vz(−x, y, z) = −Vz(x, y, z), Vz(x,−y, z) = Vz(x, y, z), Vz(x, y,−z) = Vz(x, y, z). (B5)

These symmetries, which are rather simple in the case of the infinitely separated wall [4], are not
destroyed by the corrections due to the finiteness of the separation. They allow us to confine the
study of the trajectories to the octant x > 0, y > 0 and z > 0.
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