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The dissolution of a body into quiescent water leads to density stratifications at the
interfaces that drive buoyant flows. Where the stratification is unstable, the flow destabi-
lizes into convective solute plumes. By analogy with the Rayleigh-Bénard instability where
concentration replaces temperature, this phenomenon is known as the solutal Rayleigh-
Bénard instability. Here we report experiments of the dissolution of inclined rectangular
blocks made of salt, caramel, or plaster in aqueous solutions of various concentrations.
The solute flows along the block while forming plumes before they detach and sink. This
flow along the block organizes the emission of plumes within longitudinal parallel stripes
with a well-defined millimeter-scale wavelength. The instability of the flow reflects on the
concentration field in the boundary layer, which engraves longitudinal grooves onto the
block. These grooves interact with the flow and turn into a paving of three-dimensional,
cuplike patterns that grow in size and propagate upstream. These bedforms are reminiscent
of the scallop bedforms observed on the walls of cave or icebergs. Whereas the block
interface is highly dynamical and evolves through time, it remains flat on the global scale
and recedes at a stationary rate. We derive scaling laws for the receding velocity and the
pattern genesis at the inclined interface that are based on a concentration boundary layer
of constant thickness, which is controlled by the flow instability but where neither the
patterns nor the flow along the block play any role. We apply these results to the formation
of sublimation patterns.

DOI: 10.1103/PhysRevFluids.5.053802

I. INTRODUCTION

A water flow and its interaction with a topography modifies the rate of phase transition,
dissolution, or precipitation of a body. In nature, the coupling between the geometry and the mass
transfer drives the formation of recognizable patterns at different scales. These can be erosion
patterns like river meanders, cyclic steps, rillenkarren, lapiaz, ice ripples, dissolution flutes and
scallops, regmaglypts on meteorites, or deposition shapes like travertines, stalactites, icicles, or
brinicles. These patterns are not geological curiosities only but are markers of the hydrodynamic
processes, which often control the global erosion process. The identification of erosion and
deposition patterns is therefore a key to infer flow and thermodynamic conditions. It is especially
valuable because these structures are quite resilient and give information on the long term, not only
for Earth but also for other planetary bodies that are difficult to instrument.

Here we study the dissolution of rectangular blocks immersed in still aqueous solutions in
the case where the solute stratification it engenders is buoyancy unstable [1]. The concentration
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boundary layer destabilizes to form plumes that drive a convective flow of solute. This heteroge-
neous flow influences the concentration field at the interface, which patterns the dissolving body.

Several studies address the growth or dissolution of solids into aqueous solutions and the
subsequent turbulent solutal convective flow [2–10]. Most of them do the parallel with the Rayleigh-
Bénard instability, where the buoyancy is not due to the thermal expansion of the liquid but to the
gradients of solute concentration. These studies are either motivated by industrial applications from
a chemical engineering perspective [5,6] or by geophysical questions such as the sequestration of
CO2 in porous rocks [11–14] or the formation of patterns like brinicles or corrugations on the ice
cap of brackish lakes or in magma chambers [7,8,15–17].

Our experimental study stands out from these previous studies by addressing the dissolution
of inclined blocks. The inclination of the block gives a direction to the dissolution flow. As a
result, the instability of the flow and the primary patterns are longitudinal with a well-defined
wavelength. The latter interplay between the dissolution flow and the shaped topography gives
rise to dynamical three-dimensional structures that propagate upstream the dissolution flow. In the
next section (Sec. II) we detail our experiments with caramel, salt or plaster blocks, which are fast
dissolving materials. The caramel being transparent, we can follow the pattern formation in real
time. In Sec. III we derive scaling laws for the dissolution rate and for the characteristic time and
wavelength of pattern formation in the case of inclined bodies. We compare the scaling laws to
the experimental data in Sec. IV. We show in particular that the solute flow along the block and
the dynamics of patterns at the block interface have little if any influence on the global dissolution
rate. Finally, we put our work in perspective in a geomorphological context. In Sec. V we make the
connection between the dissolution and sublimation patterns such as penitentes. In conclusion, we
link our work to the dissolution cavities observed in nature and compare the free dissolution patterns
we observe in our experiments with their counterparts shaped by an externally imposed stream.

II. EXPERIMENTS

We investigate the dissolution of rectangular blocks of either caramel, salt (NaCl), or plaster
(gypsum) immersed in quiescent aqueous solutions. We systematically vary the inclination of the
block and the solute concentration of the solution.

Salt blocks come from Himalayan mines. They are typically 10 cm long, 5 cm wide, and 2.5 cm
thick and have a density of ρs = 2348 ± 5 kg m−3. We stick to blocks aluminum lugs with silicon
sealant to hold them into the saline solution. We mix tap water and table salt to prepare solutions
of various concentrations. The measured density of the saturated brine is ρsat = 1197.3 ± 1 kg m−3

at 22 ◦C. Caramel is made with saccharose, tap water, and a few drops of lemon juice (acid) to
favor the caramelization reaction. We cast hot caramel into silicon molds of 10 × 10 × 3 cm or
5.5 × 2.5 × 2 cm to obtain rectangular blocks. An allen wrench is embedded in the block to hold it
in the solution. The color of caramel is controlled during cooking to ensure that blocks are of similar
properties and constant density (ρs = 1540 ± 10 kg m−3). We either mix tap water and caramel or
tap water and saccharose to prepare the syrups. The measured density of the saturated caramel
solution is ρsat = 1450 ± 10 kg m−3. We made the plaster block by pouring a 5.5 × 2.5 × 2 cm
silicon mold with a mix of fine powder of plaster of Paris and water. The density of the block
is ρs = 1859 ± 5 kg m−3, and we measured a density difference of 1.8 ± 0.6 kg m−3 between the
saturated solution and water.

An experiment consists in immersing a block at room temperature (between 19 ◦C and 24 ◦C)
at the center of a glass tank which is 40 cm long, 20 cm wide, and is filled with the solution to
a depth of 20 cm. We capture the receding of the bottom and top interfaces with a camera (see
Fig. 1). Caramel blocks are transparent so that we can also record the formation and the evolution of
patterns on the bottom interface. To do so, we light the block from behind and either take pictures
of the bottom interface thanks to an inclined mirror put into the tank or take frontal pictures with the
camera positioned underneath and the tank tilted at the same angle as the immersed block (Fig. 2).
We cannot observe the patterns on the salt and plaster blocks when immersed. They are opaque and
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FIG. 1. (a) Side view of a caramel block dissolving into water. The initial block is 6 cm long and makes
an angle of 62◦ with the horizontal. Except in the vicinity of the top corner, the overall inclination of the
receding bottom interface does not change over time. On the contrary, the top interface dissolves faster at
the top (upstream) than at the bottom (downstream). (b) Details showing solute threads detaching from tips at
the bottom interface.

interfaces appear blurry because of the gradient of the solute concentration and consequently of the
refractive index of the solution in the vicinity of interfaces. We take salt and plaster blocks out of
solutions to observe the patterns.

Figures 1 and 2 show side views and bottom views of the evolution of an inclined caramel block
immersed in water. The block dissolves, interfaces recede, and we observe different flows and block
dynamics depending on the orientation of the block walls. Threads of solute-laden fluid escape
from the block interfaces pointing downwards and sink while the solute flows all along the block
walls pointing upwards (Fig. 3). The inclination of the block enforces a downward direction to
the flow on either interface. On the bottom interface, the solute flows downwards before detaching

FIG. 2. Pattern formation. Bottom view of a caramel block dissolving into water. The block makes an angle
of 60◦ with the horizontal. The top of the first picture corresponds to the block end. The block is lit from the
back, crests and peaks appear dark. Parallel stripes rapidly form beyond an entry length from the block end.
Then stripes cross and evolve into scallops that propagate upstream. The white dashed line and arrows show
the entry length on the first picture. See Ref. [19] for a movie showing a time lapse of the pattern formation
and evolution.
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FIG. 3. Left: Schlieren picture of a salt block dissolving into water. The block is 9 cm long and makes an
angle of 45◦ with the horizontal. One sees the very different solute flows on the interfaces facing upwards and
downwards. On the bottom interface, the solute-laden fluid also flows along the block before detaching because
the block is inclined. This flow has some inertia, as observed at the bottom corner of the block. One also sees
that the solute-laden fluid poorly mixes with the bath solution but sinks and accumulates at the bottom of the
tank. This picture is a snapshot of a movie that is available online, see Ref. [18]. Right: Schematic view of the
dissolution-driven flow.

(see Fig. 3 and a supplementary movie, Ref. [18]). Using particle image velocimetry, we measured
a typical along-block downward velocity of 1.5 cm/s at a distance of 10 mm beneath the bottom
interface of a caramel block dissolving in water with an inclination of 60◦ and of 2 cm/s at a distance
of 8 mm beneath a salt block dissolving in water with an inclination of 40◦. The differences in
solute transport depending on the orientation of the block interface go along with a different erosion
velocity and shaping of the block walls. The block dissolves faster at interfaces facing downwards
than at interfaces facing upwards. Moreover, while the walls facing upwards remain smooth, patterns
form on the walls facing downwards. For the experiment shown in Fig. 2, longitudinal parallel
stripes with an initial wavelength of 0.4 mm are observed a few seconds after immersion. These
stripes extend on the whole length of the block after a given “entry” distance from the top. Then
the wavelength increases with time, and longitudinal stripes evolve into chevrons and then into
cuplike patterns named scallops by geologists, that propagate upwards, i.e., upstream. After an hour,
scallops are 7.6 mm wide, 6.3 mm long, and propagate at a velocity of about 3 × 10−3 mm/s. They
have the typical shape of rounded troughs and acute peaks with an asymmetry between the upstream
and downstream sides. A movie of the pattern formation and evolution is available, see Ref. [19].
Although patterns grow, evolve, and propagate on the bottom interface, its overall inclination does
not change over time (but in the vicinity of the top corner), and the global receding velocity is found
remarkably constant through time, as shown in Fig. 4. A similar result is obtained in simulations of
Rayleigh-Bénard convection with a melting boundary, which show a constant receding rate of the
mean position of the boundary while patterns are growing [20].

Figure 5 shows the evolution of patterns at the bottom interface of a salt block when immersed
into water. The dissolution scenario we described applies for all the dissolution experiments we
performed. However, the characteristic time and length scales depend on material, initial bath
concentration, or inclination of the block. We measure the initial wavelength of longitudinal stripes
λs, the characteristic growth time Ts for their formation, and the global erosion velocity ḣ of the block
wall pointing downwards for blocks of caramel or salt for different inclinations and concentrations
of solutions and for one block of plaster into water. Figure 6 shows early longitudinal stripes
observed on the bottom wall of caramel blocks immersed in syrups of different concentration. The
initial wavelength as the characteristic time for their formation increases with the bath concentration.
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FIG. 4. Position h taken in the middle of the bottom interface (plain points) and of the top interface (empty
points) as a function of time t for a caramel block making an angle of 62◦ with horizontal dissolving into water.
The black line shows a linear fit. We measure positions along lines normal to the initial interfaces. We average
the receding velocities from the measurements along five different lines along the block. The mean receding
velocity of the bottom interface is ḣ = −2.78 × 10−3 ± 3 × 10−5 mm/s.

The interface recedes faster when the concentration of the bath solution is smaller. We also observe
that the initial wavelength and growth time increase, and the interface recedes slower when the
inclination angle of the block increases (see the Supplemental Material for tables and plots of the
raw data [21]).

III. SCALING LAWS: A SOLUTAL RAYLEIGH-BÉNARD INSTABILITY

The rate of dissolution (or precipitation) of a solid block depends on the difference between the
concentration of the solution at the block interface and the saturation concentration. The simplest yet
reasonable dependency assumes a linear relationship with a constant characteristic dissolution (or
precipitation) velocity, which contains the chemical kinetics [22,23]. The equation of conservation
of the mass flux per unit of area reads

ρs
∂h

∂t
�n = α(Ci − Csat )�n, (1)

where ρs is the density of the solid and α the characteristic dissolution velocity. Ci and Csat are the
mass concentrations of the solution at the interface and of the saturated solution, respectively. �n is a
unit vector, normal to the solid interface.

For a flat and horizontal interface, if the dissolution process generates a density stratification that
is buoyancy stable, only the diffusion drives the mass transport into the solution. Then, when putting
a block in the solution, the concentration at the interface increases towards the saturation value on a
characteristic time D/α2, where D is the coefficient of diffusion of the solute. The receding velocity
of the dissolving block decreases with time, and for large times, the interface position withdraws as
the square root of time [23].

If the dissolution process generates a density stratification that is buoyancy unstable, a completely
different scenario occurs. When immersing the block, it starts dissolving and a front of dissolved
medium moves away from the solid interface. On small lengths, close to the solid interface,
the diffusion drives the transport. But beyond a characteristic length, the gravity takes over the
transport. As a result, the concentration front destabilizes into plumes [24] (see Fig. 7). This
instability is a solutal Rayleigh-Bénard instability where concentration replaces temperature and

053802-5



CAROLINE COHEN et al.

20 mm

173 mm
top

top

(c)(b)(a)

(e)(d)

98 mm98 mm 192 mm

-2
-1

0

1

2

120110100908070605040302010

(f)

h 
(m

m
)

longitudinal position (mm)

g top

FIG. 5. Pattern formation. Bottom view of a salt block after 5 min (a), 10 min (b), 20 min (c), and 1 hour
(d, e) of immersion into pure water with an inclination of 60◦ with the horizontal. Image (d) is lit from the
back. Image (e) shows the asymmetry and pointy tips of dissolution patterns. Graphic (f) shows a line profile
along this block. The slope on the stoss side seems parallel to the gravity in the vicinity of the tip. After an
hour of immersion, the standard deviation of the topography is 0.62 mm.

the same scaling laws apply as previously observed by [2,7,9,15,25,26]. Identically, it can be seen
as a Rayleigh-Taylor instability of a thin film whose thickness and concentration are controlled
by diffusion [25,26]. In the classical Rayleigh-Taylor instability, the interface between two fluids
of different density destabilizes when the heavier fluid is above the lighter one. The growth rate
of perturbations is larger for small wavelengths. However, for nonmiscible fluids, surface tension
prevents the shorter wavelengths from growing and the most unstable wavelength is given by the
capillary length. For a thin film, when the surface tension goes to zero, the characteristic wavelength
is given by the thickness of the film. Brown did the linear stability analysis in two dimensions (2D)
for a horizontal thin film of a viscous liquid above an inviscid fluid and in contact with a solid wall
at its upper limit [27]. The most unstable wavelength λf and its associated growth rate σf are [27,28]

λf � 3 δ & σf � 0.32 δ�ρ g/ηf , (2)

where δ is the thickness of the destabilizing film, �ρ the apparent density, ηf the dynamic viscosity
of the fluid in the film, and g the gravity acceleration. In Brown calculation there is no diffusion
nor tangential stress at the interface because the outer fluid is inviscid. This last simplification holds
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FIG. 6. Bottom view of caramel blocks (55 × 25 mm) dissolving into aqueous solutions of different
caramel concentrations. From left to right, the densities of solutions are ρb = 1006, 1108, 1229, 1303,

and 1403 kg m−3. The inclination of blocks ranges between 70◦ and 75◦.

for a viscous outer fluid when its dynamic viscosity is small compared to that of the fluid in the
thin film and/or when the wavelength is large compared to the thickness of the film. Lister and Kerr
extended the calculation for two fluids of different finite viscosities [29]. For two fluids with equaled
dynamic viscosities, they found λf � 3.8 δ [29]. Hereafter, we denote Rλ the ratio between λf and
δ. Naturally, σf scales as the inverse of the characteristic settling time of a particle of diameter δ in
terminal Stokes velocity over a length equal to its diameter.

The front between the layer of dissolved medium and the solvent is unstable when the gravity
overcomes the diffusion to transport the dissolved mass and concentration. Thus, the thickness δ of
the destabilizing film is such that the growth time scale of the instability 1/σf equals the diffusion
time over δ, δ2/D, which gives

δ ∼ 1.5

(
D ηf

�ρ g

)1/3

. (3)

In a system where the outer bath is much deeper than δ, the solute transport that the dissolution
generates is always unstable and the onset of the instability corresponds to a constant value of the
solutal Rayleigh number Rac [7,9,24]:

Rac = �ρ gδ3

Dηf
. (4)

Solute diffusion and viscosity stabilize the interface and tend to increase the film thickness δ, while
gravity drives the instability and tends to decrease δ. The mean viscosity ηf and density ρf inside
the film depend on the concentration of the solute-laden fluid.

We observe in experiments that the dissolution rate reaches a stationary state, i.e., the mass fluxes
balance. In one dimension, the conservation of mass in a stationary regime reads

−ρsḣ = −D
∂C

∂x
(x) + C(x)[v(x) − ḣ], (5)

where x is the normal distance from the solid interface and v the flow velocity in the laboratory frame
(like ḣ). The diffusion coefficient D is taken constant. In the solution, the flow and the diffusion of
the solute concentration balance the dissolution of the solid, which is made of one species only.
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FIG. 7. Sketch of the first steps of the dissolution process in a transverse plane. Time increases from top
to bottom. The instability selects the thickness of the concentration layer and the wavelength of solute threads.
It produces a modulation of the solute concentration at the interface, which shapes the dissolving block. The
concentration at the interface of the block is larger above a thread (+) than between threads (−). The block
dissolves faster where the concentration at the interface is smaller [Eq. (1)].

At the solid interface, the solute transport is diffusion dominated, while it is advection dominated
beyond the unstable solute layer, which gives three different equations for the dissolution flux:

−ρsḣ = α(Csat − Ci ) (6)

∼ D
(Ci − Cb)

δ
− β ḣ Ci (7)

∼
(

Cf − ρf − Cf

ρb − Cb
Cb

)
4(ρf − ρb)gcos θδ4

3ηfλf
2 . (8)

The first balance of solute flux per unit of surface is given by the kinetics of dissolution [Eq. (1)].
The second line is the diffusion-dominated flux of mass at the solid interface. At the interface, the
flow does not penetrate the solid but the normal velocity is not necessarily zero, because the density
of the solid and of the liquid may be different, v(0) = ḣ(1 − β ), where β is the ratio between the
density of the solid and the density of the liquid at the interface (β = ρs/ρi). The gravity takes over
the transport a distance δ from the solid interface within flowing threads with a wavelength λf (see
Fig. 7). Thus, between threads and outside the mixture film, the concentration may be reduced to the
one of the outer bath. The unstable solute layer assimilates to a boundary layer. Inside the boundary
layer, the diffusion overcomes the advection so that the concentration decreases monotonically from
the concentration Ci at the interface to the concentration Cb of the outer bath, almost linearly if D
does not depend on C [24]. The concentration gradient at the interface scales like (Cb − Ci )/δ.
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The third line is the advection flux of mass at the boundary between the solute layer of thickness
δ and the outer bath. It is buoyancy driven. The dissolution increases the concentration within the
flowing film from the concentration of the outer bath Cb to the (mean) one of the film Cf . The scaling
of the flow velocity corresponds to a two-dimensional lubrication flow of a fluid of density ρf and
viscosity ηf inside a thin film of thickness δ confined between a rigid wall (the dissolving block)
and an inviscid fluid of density ρb (the outer bath). The flow is driven by a characteristic pressure
gradient 2δ(ρb − ρi )g�/λf and fed half a thread (see Fig. 7). Threads have a wavelength λf , which
scales like δ [Eq. (2)]. g� is the effective gravity for the growth of the instability. It should take into
account the possible inclination of the dissolving interface. When the dissolving block makes an
angle θ with the horizontal, g� = gcos θ . It is the only way we take into account the inclination
of the block, and we neglect the longitudinal flow. Between threads, a flow of the bath solution at
concentration Cb renews the water inside the solute layer. The factor in front of Cb comes from the
conservation of water inside the solute layer. This ratio is always close to 1. To obtain the scaling
Eq. (8), we further assume that the thickness of threads is negligible compared to the distance λf

between threads.
The equilibrium between the dissolution kinetics and the diffusive flux sets the concentration

at the solid interface [Eqs. (6) and (7)]. The concentration Ci has two asymptotic expressions,
depending on the ratio between the dissolution velocity α and the characteristic diffusion velocity
over δ: D/δ. When the transport at the interface is limited by the diffusion, i.e., D/(αδ) � 1,
the concentration at the interface is close to the saturation concentration. On the other hand,
when the transport is limited by the dissolution kinetics, i.e., D/(αδ) � 1, the concentration at
the interface is close to the concentration of the outer bath. For the dissolving materials we
consider, the dissolution is limited by diffusion and we assume Ci = Csat (see the Supplemental
Material [21,30,31]). The interested reader will find the scaling laws in the other limit in [24].
We assume a linear concentration profile in the mixture film so that the average concentration is
Cf = (Csat + Cb)/2. Finally, we assume a linear relationship between density and concentration, i.e.,
ρ = ρ0 + C(ρsat − ρ0)/Csat, where ρ0 is the density of the solution when C = 0. Then β = ρs/ρsat

and the density contrast reads ρf − ρb = (ρsat − ρb)/2. Combining Eqs. (7) and (8) gives

δ ∼ (
3Rλ

2
)1/3

[
ρs

ρs − βCsat

D ηf

(ρsat − ρb) gcos θ

]1/3
(

Csat − Cb

Csat − Cb
ρsat−Csat

ρb−Cb

)1/3

and (9)

ḣ ∼ −
(

1

3Rλ
2

)1/3[D2 (ρsat − ρb)4 gcos θ

ηf (ρs − βCsat )2 ρs

]1/3
Csat

ρsat − ρ0

(
Csat − Cb

ρsat−Csat

ρb−Cb

Csat − Cb

)1/3

, (10)

where Rλ is the ratio between the wavelength λf of the buoyant instability and the thickness δ

of the solute layer as given by the analysis of the Rayleigh-Taylor instability (for nondiffusing,
homogeneous fluids) [27,29].

The instability of the flow naturally reflects on the field of concentration at the solid interface.
Above the flowing thread, the concentration should be maximum and the solid dissolution rate
should be minimum (see Fig. 7). The instability of the flow prints onto the solid, and we expect that
the first observed wavelength of patterns at the solid interface corresponds to the wavelength of the
flowing threads:

λs ∼ (
3Rλ

5)1/3
[

ρs

ρs − βCsat

D ηf

(ρsat − ρb) gcos θ

]1/3
(

Csat − Cb

Csat − Cb
ρsat−Csat

ρb−Cb

)1/3

. (11)

Patterns grow because of a differential rate of dissolution imposed by a modulation of the solute
concentration at the interface. The differential dissolution velocity should scale like the global
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erosion velocity ḣ [24] so that the characteristic growth time Ts for the formation of patterns, i.e., to
observe a given or detectable aspect ratio, should scale like λs/ḣ:

Ts ∼ (
9Rλ

7
)1/3

[
ηf

2(ρs − βCsat )ρs
2

D (ρsat − ρb)5 (gcos θ )2

]1/3
ρsat − ρ0

Csat

(
Csat − Cb

Csat − Cb
ρsat−Csat

ρb−Cb

)2/3

. (12)

These scaling laws are somewhat different than the previous scalings [9,24,25]. Here, we derive
the scaling laws from the conservation of mass, assuming a stationary dissolution flux, while
previous scalings are based on a constant critical Rayleigh number [Eq. (4)], i.e., derived assuming
that the thickness δ of the boundary layer is such that the system is at the instability threshold. The
two differences are the terms (ρs − βCsat ) and [Csat − Cb(ρsat − Csat )/(ρb − Cb)]/(Csat − Cb) ≡ 


in our scalings instead of ρs and 1, respectively, in previous scaling laws. The value of 
 increases
with the bath concentration. It varies between 1 and 1.13 for salt and between 1 and 2 for caramel.
This term does not change the quantitative values of the scaling laws very much. The term with
the factor β depends on the dissolving material. For usual natural materials, which have a very low
saturation concentration (i.e., Csat � ρsat), the difference is incidental. It is not negligible for salt
and caramel, for which β, Csat, ρsat, and ρs are 1.96, 317 kg m−3, 1197 kg m−3, and 2348 kg m−3,
and 1.06, 968 kg m−3, 1450 kg m−3, and 1540 kg m−3, respectively.

IV. RESULTS AND DISCUSSION

To calculate these scaling laws one has to chose values for the coefficient of diffusion D and for
the viscosity ηf . We take the value of ηf that corresponds to the assumed mean concentration in the
film, i.e., for (Csat + Cb)/2. We measured the viscosity as a function of the solute concentration for
solutions of caramel, saccharose, and salt (see Supplemental Material [21]). Because the saturation
concentration of plaster in water is very weak, we take the viscosity of water for the plaster
experiment. For D, we take the value that corresponds to the saturated concentration, i.e., the
expected one at the block interface. It is determined from handbooks for salt and plaster and from the
tabulated value at zero concentration for saccharose, which we extrapolate to the value at saturation
using the Stokes-Einstein relation. See the Supplemental Material for values of these parameters
[21]. These choices are not critical in the case of plaster, whose saturation concentration is very
weak, and in the case of salt, for which D barely depends on concentration and the viscosity changes
by a factor of 2 between the pure water and the saturated brine [32]. However, these choices are not
insignificant in the case of caramel; the viscosity value of the saturated syrup is 4 × 104 times larger
than the value of water. Most previous studies do not address the values of these coefficients, which
is justified for materials with a small value of Csat without impact on these parameters.

Figure 8 compares the experimental results to the scaling laws without prefactors, which include
Rλ. The various dependencies of the erosion velocity and the initial wavelength of patterns with
the density contrast, the block inclination, and, for caramel, the viscosity through the solute
concentration are verified over several decades. We find a prefactor of about 0.18 for the dissolving
velocity of salt blocks, which is very close to the expected order of magnitude [∼0.29 with Rλ = 3.8,
Eq. (10)]. For the dissolving velocity of caramel blocks the prefactor is larger and equals 2.7 when
the expected one is about 0.34 (with Rλ = 3). The choices we do for the values of D and ηf may
explain the different prefactors for experiments with salt and caramel. Note that the scaling laws
compare well to the measurements, even if derived neglecting the solute flow along the dissolving
block and the dynamics of patterns at the interface. Patterns are ignored, and the inclination of the
block is taken into account only through the projection of the gravity, which gives good agreement
with experimental data (Fig. 8). This is a noteworthy result for predictions in natural environments.

A horizontal interface dissolves faster than an inclined one. This result suggests that a polygonal
or rounded object should not keep a constant shape while dissolving. This is different from recent
observations of Davies Wykes et al., who report that the gravity-driven dissolving velocity of a
block does not depend on its inclination [10]. This may be ascribed to the limited range of their
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FIG. 8. Measurements of erosion velocity ḣ, first observed wavelengths of patterns λs, and growth
characteristic time Ts as a function of scaling laws (without prefactor) for experiments with salt and plaster
blocks (a) and with caramel blocks (b). Vertical and horizontal error bars show the resolution or dispersion of
measurements and the scaling confidence interval due to parameter uncertainties, respectively. Colors stand for
the varied parameter: (a) green– pure water with θ ranging between 6◦ and 87◦; orange– saline solutions of
density ρb ranging between 1000 and 1189 kg m−3 and θ � 30◦; blue– saline solutions of density ρb ranging
between 997 and 1197 kg m−3, and various inclinations θ . The yellow point corresponds to gypsum into pure
water with θ � 52◦. The line in the first graphic shows a power law with an exponent 1/3. The lines in the two
other graphics show relations of proportionality with constants equal to 0.2 for ḣ and 42 for λs. (b) ḣ graphic:
green– pure water with θ ranging between 0 and 88◦; orange– sucrose solution with density ρb ranging between
1000 and 1320 kg m−3 and θ � 73◦–75◦; blue– caramel solution with density ρb = 1403 kg m−3 and θ = 75◦.
(b) λs and Ts graphics: green– sucrose solution of density ρb = 1150 kg m−3 with θ ranging between 45◦ and
85◦; orange– sucrose solution with density ρb ranging between 1000 and 1320 kg m−3 and θ � 73◦–77◦, blue–
caramel solution with density ρb ranging between 1000 and 1430 kg m−3 and θ � 70◦–75◦. The coefficient of
proportionality of black lines are 2.7 for ḣ, 75 for λs, and 1.5 for Ts. The Supplemental Material shows tables
and plots of the raw data [21].

experiments and the weak dependency at small angles [−ḣ ∝ cos1/3 θ , Eq. (10)] and/or to the
relative small size of objects they consider. The instability fully develops after an entry length (see
Fig. 2), and the differences in macroscopic receding velocity should affect the overall shape of the
object if the latter is way larger than the size of patterns.

Our experiments where blocks are inclined clearly show a characteristic wavelength for the initial
stripes that longitudinally extend all along the block. The initial wavelength of patterns we measure
agree with the scaling law of the most unstable wavelength of the flow instability [Fig. 8, Eq. (11)].
Like for the erosion velocity, the observed prefactor is closer for experiments with salt (∼40 instead
of ∼13) than for experiments with caramel (∼75 instead of ∼8.8). Note that measurements may
deviate from the scaling law at small values. However, this could be ascribed to experimental issues
like an initial roughness of the solid surface or to the difficulty of measuring the very first wavelength
when the patterns evolve rapidly.

Figure 8 shows that the characteristic growth time of patterns on caramel blocks properly scales
like λs/ḣ [Eq. (12)]. This raises the question of the pattern growth rate. Most of instabilities grow
exponentially at first in the linear regime. An exponential growth demands a coupling between the
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FIG. 9. Pattern dynamics. Bottom view of a caramel block dissolving into water. A V-shape pointing
downstream vanishes. The block makes an angle of 60◦ with the horizontal. Gravity points towards the bottom
of images. There is a 6-min time delay between snapshots. First image is taken 80 min after immersion.

cause and the effect. Such a coupling is not obvious here where the patterning of the block comes
from the buoyant instability of the dissolution flow. However, the flow instability can imprint onto
the dissolving solid only if the positions of flowing threads are stabilized. A possible interaction
between the patterns and the flow could rely on the spatial stabilization of dissolution plumes. The
position of plumes may be all the more stable (stationary) that a dissolution peak is developed
overhead. It is worth noting that the wavelength of initial patterns does not seem as well defined
as in our experiments with inclined blocks when interfaces are horizontal [9]. In our experiments,
the dissolution flow along the block could stabilize the transverse position of early plumes and limit
their interactions. Indeed, the longitudinal extension of early stripes is striking (Fig. 6). Note that
an outer flow, transverse to the growth direction of the instability, reduces the flow pattern to two
dimensions (longitudinal rolls) in Rayleigh-Bénard experiments with small gaps [33,34]. In our
experiments the transverse-to-growth-direction flow is the dissolution flow along the inclined block
itself. It is the opposite case of the Rayleigh-Bénard vortices in granular flows, where it is the flow
that “heats” the granular medium [35]. Anyway, without coupling between the amplitude of stripes
and their growth velocity, the amplitude of early stripes would grow linearly in time. Numerical
simulations could address this question effectively.

We observe experimentally that the initial longitudinal stripes do not last and turn into scalloplike
patterns that deepen, enlarge, elongate, and propagate upstream. This is definitely a true interaction
between the patterns and the dissolution flow. Figure 1 shows that solute plumes preferentially
detach the boundary layer from peaks. This explains the upstream propagation of patterns, the
reorientation of stripes, and the final concave shape of scallops with acute peaks and rounded troughs
as shown in Fig. 5. The buoyancy-driven dissolution tends to form and preserves singularities.
Following the solute flow along the solid interface, the concentration is larger, closer to the
saturation value, and the concentration gradient is smaller because of a thicker boundary layer
upstream from the peak, before the plume detaches, than downstream. Thus, near a peak where
a plume detaches, the dissolution flux is larger downstream than upstream from the peak. This
differential dissolution enforces the peak (and patterns) to propagate upstream. Because crests
channelize the solute flow, the initial longitudinal stripes are unstable. The propagation velocity
is maximum where plumes detach because the spatial variation of the solute flux is maximum there.
If we consider, for example, that a stripe is not perfectly longitudinal but makes a small angle with
the downstream flow, it will break and reorient where plumes detach because of an inhomogeneous
propagation velocity. The image sequence shown in Fig. 9 illustrates the propensity of patterns to
orient transversally.

V. ANALOGY WITH THE FORMATION OF PENITENTES AND SUBLIMATION PATTERNS

Penitentes are ice or snow spikes that form on high-altitude glaciers in sublimation conditions and
have recently been suspected on other planetary bodies [36,37]. They point in the direction of the

053802-12



BUOYANCY-DRIVEN DISSOLUTION OF INCLINED …

sun, which suggests that the sublimation is driven by the heat flux resulting from the light absorption
by the ice. Previous studies proposed a coupling between the ice topography and the sublimation
rate to explain the pattern formation [38–42]. Because of a curvature effect, a trough receives more
light than a peak and a perturbation of the topography grows. The corresponding linear stability
analysis, where heat and mass diffuse but without advection, does not predict the selection of an
initial wavelength [42]. Claudin et al. propose that the wavelength may be selected by the boundary
layer of an external air flow above the ice surface [42]. However, Bergeron et al. report that an air
flow above the snow surface prevents the formation of penitentes in their experiment [43].

We propose that penitentes first form by differential sublimation because of a buoyancy
instability in the flow of moist air above the ice surface, like for the dissolution patterns we report.
The initial ice peaks would then not form because of the coupling between the topography and the
radiative heat flux but would simply be a print of the air flow instability. The buoyancy instability
would be driven by moisture, because moist air is lighter than dry air.

The ice sublimates because the partial pressure of water vapor in the air is lower than the
equilibrium vapor pressure. At the ice interface, the air is almost saturated in water vapor with a
concentration Csat, which depends on the temperature. The incident light brings energy to sublimate
the ice but also to heat the (moist) air at the ice interface. The warming of air at the ice interface
enhances the instability, because the equilibrium vapor pressure of water in the air increases with
temperature and so does the buoyancy. Thereby, the energy balance must be resolved concurrently
with the equations of mass conservation. The incident light brings a characteristic heat flux, which
is absorbed by the ice. In a steady state of sublimation, the absorbed heat at the interface diffuses
in the ice, diffuses and convects in the air, and provides the energy for the sublimation. The
balance between the sublimation fluxes derived from the conservation of mass and derived from
the conservation of energy would allow the sublimation rate, the thickness of the buoyancy unstable
layer of moist air (and the wavelength between threads), together with the temperature of the air at
the ice/air interface to be calculated.

A full analysis of this problem is beyond the scope of our article. However, we can estimate
the first wavelength of buoyancy-driven penitentes for given temperatures of the moist air layer
and of the dry ambient air, which set the values of parameters like the saturation concentration of
the water vapor. For a dry atmosphere at −20 ◦C, if the ice interface is heated up to −5 ◦C, we
find λs � 32 mm according to Eq. (11), with the prefactor we measure for salt dissolution (see
Fig. 8).1 It compares to the typical centimeter scale observed in experiments [43]. Although it might
be annihilated in windy conditions, the buoyancy-driven sublimation and evaporation might make
non-negligible contributions to water budgets [44–47].

VI. CONCLUSION, FREE CONVECTION, AND PATTERNS IN NATURAL ENVIRONMENTS

Our experimental observation of dissolution of various solids in aqueous solutions evidences
the succession of two pattern formation mechanisms. First, a longitudinal instability develops with
the appearance of stripes carved on the surface and spaced out by a well-defined wavelength.
We source it to the buoyancy hydrodynamical instability due to the density stratification that the
dissolution generates. It ends up to the emission of solute plumes spatially separated. We show
that the inclination of the dissolving blocks stabilizes the location of the plumes in order to print
coherently the block surface. We confirm that this observed primary pattern follows scaling laws
based on the hydrodynamics only. At later times the stripes eventually turn into scallops. This
second mechanism involves strong interactions between the flow and the topography. The final
shape displays very stereotyped scallops, similar to some observed in nature, advocating for the
importance of the role played by buoyancy in natural systems.

1This value corresponds to D = 2.14 × 10−5 m2 s−1, ηf = 1.65 × 10−5 Pa s, ρsat = 1.314 kg m−3, ρb =
1.394 kg m−3.
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Underground cavities shaped by free convection in nature are reported in several environments,
including salt, gypsum, and limestone rocks. They occur as dissolutional chambers or vertical
breakdown structures and are confined systems [48]. The dissolutional chambers develop upwards,
and the buoyancy-driven flow shapes the cavity into an upside-down triangular prism or cone with a
flat horizontal ceiling [49]. This particular shape is another indication that free convection increases
the dissolution rate. Onto the top walls, centimeter cups with sharp edges named dissolution pits are
observed [50,51]. In our experiments with inclined blocks, the morphology of the dissolution pits
is reminiscent of the scalloplike patterns observed in unconfined systems such as caves or icebergs.
However, these last patterns are likely produced by the turbulent flow of a ground river or an ocean
current. An externally imposed flow should prevail on the buoyancy to drive the dissolution when
the turbulence of the flow decreases the thickness of the concentration boundary layer below the
one imposed by the solutal Rayleigh-Bénard instability [Eqs. (3) and (9)]. Regarding heat transfer,
numbers of studies address these questions [52,53].

Scallops shaped by an external flow have been successfully reproduced in laboratory flumes
with a turbulent flow over beds of plaster [54–56] or ice [57–59]. These studies report that mature
patterns in experiments have constant amplitude and longitudinal wavelength (periodicity in the
stream direction), which scale as one over the flow velocity. In the field, scallops could thus be
used as proxies of the flow [60,61]. Theoretically, Hanratty and Claudin et al. studied the pattern
formation on a bed sheared by a turbulent flow in the limit of deep flows [62,63]. Patterns arise
from the coupling between the dissolving topography and the turbulent viscosity at the solid
interface, which increases the solute transport [63]. Interestingly, the positive feedback is restricted
to small values of the hydrodynamic roughness of the flow and to a narrow range of wavelengths
which scale as one over the characteristic velocity of the flow [62,63]. Considering the relative
small aspect ratios of scallops observed in experiments and in the field, this result obtained in
the linear regime could explain the longitudinal wavelengths and amplitudes of mature scallops.
The three-dimensional shape of these scallops remains an open question. In our experiments,
the convective solute flow driven by the dissolution of inclined blocks shapes bedforms through
differential dissolution. Initial bedforms are longitudinal ridges which turn into three-dimensional
scalloplike patterns. Unlike the scallops in turbulent flows, the amplitude, width, and length of the
free dissolution scallops are not constant nor do they saturate in our experiments but increase with
time. Moreover, the free dissolution scallops propagate upstream, while scallops in turbulent flow
propagate downstream [54–56,59,60]. This difference in propagation direction reflects a different
shift between the topography and the erosion rate. The erosion must be maximum on the lee side
of free dissolution scallops and on the stoss side of scallops in a turbulent flow. If these last ones
propagate downstream but do not grow in size, the erosion is maximum at midslope. Despite the
different space shifts between the erosion rate and the topography, these two patterns look similar.
They exhibit sharp peaks and asymmetric profiles with a larger slope on the lee side than on the
stoss side. The peaks may, however, be more acute in our experiments, with a rather concave shape
upstream, while the stoss side of the peaks appear more rounded in flow experiments [54,55,60]. The
overall resemblance between in flow and free dissolution scallops incites one to link some aspects
of their morphogenesis. In both cases, the transverse topography could be due to an instability in the
dissolution flow only, while a true feedback between the topography and the solute flow should be
responsible for the longitudinal topography. The first observed patterns could be longitudinal ridges
in both cases, and they could trigger the transverse instability.
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