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Thermal evolution of a metal drop falling in a less dense, more viscous fluid
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The initial state of terrestrial planets was partly determined, during accretion, by the fall
of metal drops in a liquid magma ocean. Here we perform systematic numerical simulations
in two-dimensional cylindrical axisymmetric geometry of these falling dynamics and
associated heat exchanges at the scale of one single drop for various initial sizes and
ambient viscosities. We explore Reynolds number in the range 0.05–48, viscosity ratios
in the range 50–4000, Weber number in the range 0.04–5, and Peclet number in the range
70–850. We show that heat exchange between the two phases occurs predominantly at
the front section of the drop. Our systematic, parametric study shows that the thermal
boundary layer thickness, the depth and time for equilibration, the Nusselt number, and
the magma ocean volume affected by thermal exchanges all scale as power laws of the
Peclet number. Because of drop distortions, these scaling laws deviate from the classical
balances considering only heat diffusion through a laminar thermal boundary layer. Finally,
when considering a temperature-dependent viscosity of the ambient fluid, we show that
a low-viscosity layer surrounds the drop, which influences the thermal evolution of
nondeformable, low-Reynolds-number drops only and decreases the breakup distance for
some limited breakup modes.

DOI: 10.1103/PhysRevFluids.5.053801

I. INTRODUCTION

Core formation of terrestrial planets is a complex process contemporaneous with planetary
accretion [1,2]. Its fluid dynamics and thermodynamics have been addressed in numerous studies
(e.g., Refs. [3–8]). During the last stages of, e.g., Earth accretion, giant impacts likely occurred
between the proto-Earth and up to Mars-sized differentiated bodies [9]. The kinetic energy
released during such collisions [10,11], the radioactive heating caused by the disintegration
of short-lived radio elements [12], and the heat dissipation resulting from the conversion of
potential energy during core formation and core/mantle separation [13], melt part or all of the
Earth mantle [11]. Following each impact, the iron core of the impactor thus spread and sank
into a deep magma ocean. There, the metal further fragmented into blobs of different sizes,
ranging from millimeter drops up to kilometer diapirs before assembling with the Earth protocore
([4,8,14,15]). Thermochemical exchanges occurred between the fragmented metal drops and the
liquid magma ocean during their sinking, determining the initial thermal and chemical state of
the planet ([4,16–18]). Past studies have provided many scenarios to characterize and quantify
the thermochemical exchanges. References [17] and [19] modelled the diffusive equilibration
through a laminar thermal boundary layer of, respectively, a cloud of uniform drops and a large
diapir of iron. Reference [18] further evaluated the influence of drop deformations in Ref. [17]
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scenario. Reference [20] solved the fully coupled dynamical and thermal/chemical equations, but
for a fixed spherical geometry only. Reference [4] used experiments where a large volume of
immiscible fluid falls into a less dense ambient to show that the smallest scale of turbulence—rather
than diffusion through a laminar boundary layer—leads to rapid thermochemical equilibration, even
before fragmentation. Reference [7] confirmed this conclusion in their analog model, measuring the
global cooling of a large volume of hot Galinstan after its fall through a deep tank of viscous oil.
Yet a systematic temporal description of heat exchanges at the scale of one falling, freely evolving
drop, is still missing.

Importantly, the magma ocean viscosity highly depends on its evolving temperature and pressure
[21]. Therefore, the viscosity ratio between the magma ocean and iron drops can vary by several
orders of magnitude as a function of depth, of time after impact, etc. Following and extending an
abundant literature in different contexts (e.g., Refs. [22–26]), analog experiments in Refs. [7,8] and
numerical simulations at the scale of one metal drop in Ref. [27] showed that the viscosity contrast
indeed plays an important role in iron drops shape, velocity, and fragmentation. Reference [27]
predicted that thermochemical exchanges should increase with drop deformation and oscillations;
but they did not explicitly solve for the fully coupled dynamical and thermal equations. This is
the purpose of the present paper. Open questions include the following: How and where do heat
exchanges occur? Do the drop deformation/oscillations indeed favor heat exchanges? What are the
characteristics time and depth needed to reach equilibration between the two phases? And what is
the influence of a temperature-dependent viscosity of the magma?

The paper is organized as follows. Section II introduces the physical and numerical models, with
the governing equations, the nondimensional parameters, and the numerical method. Section III
presents in detail a reference case, describing its mechanical and thermal behavior, average
temperature evolution, heat transfer at the drop interface, and the magma ocean volume heated
during the drop sinking. In Sec. IV, we present the main numerical results from our systematic
parametric study and derive generic scaling laws for the above detailed parameters. Section V then
focuses on changes induced by a temperature-dependent viscosity in the magma ocean. Conclusions
and future works are outlined in Sec. VI.

II. PHYSICAL AND NUMERICAL MODELS

A. Governing equations

We consider an initially spherical, liquid metal drop of radius R, falling in an initially motionless,
less dense and more viscous surrounding fluid (i.e., a magma ocean) under the action of gravity. The
initial temperature of the liquid drop and of the magma ocean strongly depends on the growth history
of the protoplanet before the impact and on its initial heating caused by short lived elements [13].
Here we consider that the liquid metal drop is hotter than the magma ocean, with uniform initial
temperatures in both phases. Both phases behave as Newtonian, incompressible, and immiscible
fluids with uniform surface tension and constant density and viscosity within each fluid at first.
In Sec. V, we also consider a temperature-dependent magma ocean viscosity. The dynamical and
thermal evolution of the falling drop and ambient liquid is governed by the Navier-Stokes and heat
transfer equations, describing

(i) The mass conservation:

∇ · u = 0, (1)

with u the fluid velocity vector (m s−1).
(ii) The momentum conservation:

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ ·
{

− PI + μ[∇u + (∇u)T ]

}
+ ρg + Fst, (2)
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with ρ the fluid density (kg m−3), μ the fluid dynamic viscosity (Pa s), t the time (s), P the fluid
pressure (Pa), g the gravitational acceleration (m s−2), Fst the surface tension force (N m−3) and I
the identity matrix.

(iii) The heat conservation:

ρCp

[
∂T

∂t
+ u · ∇T

]
+ ∇ · [−k∇T ] = 0, (3)

with Cp the heat capacity at constant pressure (J kg−1 K−1), T the fluid temperature (K), and k
the fluid thermal conductivity (W m−1 K−1). No heat source is considered in our model. In this
work, we ignore the effect of viscous heating. Viscous heating during km-scale metal diapir sinking
can significantly increase the temperature of the diapir and of the surrounding material depending
on the viscosity contrast between the metal and silicate phases [13,28]. When considering the full
mantle/core separation within terrestrial planets, viscous heating should be accounted for in the heat
budget [29]. In this study we focus on small droplets (millimeters to centimeters in radius) falling
over short distances (up to 200 times their radius). Our results (not shown here) confirm that thermal
contribution from viscous heating is negligible at such small scales.

To monitor the interface between the falling drop and the magma ocean, we use the level
set method, a Eulerian and implicit method frequently used in multiphase flow problems (e.g.,
Ref. [30]). The level set function φ equals to 1 in the metal drop and 0 in the ambient liquid and
rapidly changes through the interface, whose position is determined by the isocontour φ = 0.5. The
transport and reinitialization of the level set function φ are governed by:

∂φ

∂t
+ u · ∇φ = γ∇ ·

[
ε∇φ − φ(1 − φ)

∇φ

| ∇φ |
]
, (4)

with γ (m/s) and ε (m) the reinitialization parameters. γ determines the reinitialization amount: A
suitable value for γ is the maximum velocity magnitude experienced in the model. ε determines the
layer thickness around the interface and is equal to half the size of the characteristic mesh in the
region explored by the interface. The density and dynamical viscosity are evaluated using the level
set function:

ρ = ρm + (ρd − ρm)φ, (5)

μ = μm + (μd − μm)φ, (6)

where subscripts “m” and “d” denote the magma ocean and the liquid metal drop, respectively. The
surface tension force is determined by:

Fst = ∇ · T = ∇ · {σ [I + (−nnT )]δ}, (7)

with σ (N/m) the surface tension coefficient, I the identity matrix, n the interface normal unit vector,
and δ the Dirac δ function, nonzero only at the fluid interface. The interface normal unit vector is
calculated as

n = ∇φ

| ∇φ | . (8)

The level set parameter φ is also used to approximate the δ function by a smooth function [31]
defined by

δ = 6 | φ(1 − φ) || ∇φ | . (9)

Note that in this work, we focus on thermal exchanges only and do not calculate the chemical
exchanges between the two phases, which are also extremely interesting from a geological point
of view (see, e.g., Ref. [32]). Indeed, the main difficulties in solving for chemical exchanges are
(i) the small value of the chemical diffusivities and (ii) the presence of a partition coefficient at the
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TABLE I. Symbol definitions and values of the physical and nondimensional parameters used in this study.

Symbol Value or range

Magma ocean density ρm 3500 kg m−3

Metal drop density ρd 7500 kg m−3

Metal drop viscosity μd 0.005 Pa s
Magma ocean viscosity μm 0.25–20 Pa s
Initial drop radius R 4–25 mm
Surface tension coefficient σ 1 N m−1

Magma ocean heat capacity C pm 667 J kg−1 K−1

Metal heat capacity C pd 800 J kg−1 K−1

Magma ocean conductivity km 10 W m−1 K−1

Metal conductivity kd 100 W m−1 K−1

Viscosity ratio Rμ 50–4000
Density ratio Rρ 2.14
Reynolds number Re 0.05–48
Weber number We 0.04–5
Peclet number Pe 70–850
Nusselt number Nu 1–6

metal/magma interface, meaning that species concentration at the moving interface is discontinuous
[32]. Such challenges are at present beyond the scope of our numerical study. We nevertheless
argue that the main conclusions shown here for heat exchanges also give some clues for chemical
exchanges and hence should be accounted for in geochemical models of planet building [33].

B. Physical and nondimensional parameters

The main parameters that characterize the dynamical and thermal evolution of a falling drop in
a more viscous medium are the viscosity, density, thermal conductivity, heat capacity, and initial
temperature of the two fluids; the initial drop size; the gravity; and the surface tension between the
two phases. In the geophysical problem of interest (i.e., core formation), the magma ocean viscosity
and the metal drop initial radius vary over a wide range of values, while the other parameters are
roughly constant (even if rigorously, the thermal conductivity and heat capacity of a magma ocean
moderately depend on its composition (e.g., Refs. [34,35]), and the thermal conductivity and heat
capacity of metal drops moderately depend on temperature and pressure (e.g., Refs. [36,37]). Hence
in this study, we vary these two parameters R and μm, in the accessible, relevant ranges 4–25 mm
and 0.25–20 Pa s, respectively, while we keep all the other parameters fixed at their representative
geophysical values (see Table I).

In our simulations, the drop falls from rest, accelerates until reaching a constant terminal
velocity, possibly with small oscillations around it, and exchanges heat with the ambient liquid.
We continue our simulations until the drop reaches a stable dynamical regime and its temperature
contrast with the ambient reaches less than 20% of its initial value. During the fall, we monitor
the average velocity V and the average temperature T of the drop (minus the initial ambient
temperature). The dynamical and thermal evolution of each drop is then characterized by the
following output dimensionless numbers, where we use the terminal average velocity (note that if it
has not yet reached a steady value by the end of the computation, we use estimate from our previous
study [27]):

(i) The Reynolds number (Re = ρmV R
μm

) is the ratio of inertial to viscous forces. Three different
regimes are possible: The Stokes regime corresponds to Re < 1 where the viscous effects dominate;
the intermediate regime corresponds to Re = 1 − 500 where both viscous and inertial forces
are important; and the Newtonian regime corresponds to Re > 500 where the inertial forces are
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TABLE II. Dimensional and nondimensional parameters for all performed simulations used in this study.
Peh is the grid Peclet number (see Sec. II C).

Simulation R (mm) μm (Pa s) Rμ Re We Pe Peh 	T (K)

no. 1 8 20 4000 0.05 0.04 70 0.43 100
no. 2 8 10 2000 0.2 0.15 137.26 0.84 100
no. 3 8 5 1000 0.76 0.52 254 1.55 100
no. 3a (T -dependent μm) 8 5 1000 0.81 0.59 271 1.65 100
no. 3b (T -dependent μm) 8 5 1000 0.98 0.85 327 2 1000
no. 4 8 1 200 9.5 3.23 635 3.89 100
no. 5 8 0.5 100 21.8 4.26 728.36 4.46 100
no. 5a (T -dependent μm) 8 0.5 100 22.4 4.48 747.6 4.57 100
no. 5b (T -dependent μm) 8 0.5 100 23.52 4.94 785 4.8 1000
no. 6 8 0.25 50 47.6 5 793.73 4.86 100
no. 6a (T -dependent μm) 8 0.25 50 47.6 5 793.73 4.86 100
no. 6b (T -dependent μm) 8 0.25 50 47.6 5 793.73 4.86 1000
no. 7 4 1 200 2.2 0.34 145.67 0.89 100
no. 8 6 1 200 5.67 1.53 378.19 2.32 100
no. 9 10 1 200 12.7 4.61 847.42 5.2 100
no. 10 25 1 200 45 23.2 3008 18.45 100
no. 10a (T -dependent μm) 25 1 200 41.13 19.5 2745 16.8 1000

dominant. Here the Reynolds number ranges from 0.05 to 48, and hence our drops are in the Stokes
to intermediate regimes.

(ii) The Weber number (We = ρmV 2R
σ

) compares the inertial and surface tension forces. It governs
the deformation, breakup, and terminal shape of a drop (see, e.g., Refs. [27,38]). When We < O(1),
the drop remains spherical without any change of its morphology, while increasing Weber number
leads to stronger and stronger deformation, then to fragmentation above a threshold which increases
with the viscosity ratio, starting from ∼3 for viscosity ratio �1 (see, e.g., Refs. [27,39]). Here the
Weber number ranges from 0.04 to 5, considering stable, potentially deformable drops only.

(iii) The Peclet number (Pe = ρmC pmV R
km

) compares the rate of heat advection to diffusion at the
drop scale. Here the Peclet number ranges from 70 to 850, so heat transfer is strongly affected by
advection.

(iv) The Nusselt number [Nu = R∇T .n
(Tint−Tm )

] compares the measured, averaged heat transfer at the

drop interface to a purely conductive case, with Tint the mean temperature at the interface and Tm

the magma ocean temperature far from the drop. Here the Nusselt number ranges from 1 to 6, hence
confirming the important role of advection in heat transfer.

All relevant parameter values are given in Table I.

C. Numerical model

We solve Eqs. (1)–(4) using axisymmetric simulations with COMSOL Multiphysics software,
based on the finite-element method. The details of our 17 runs for this study are listed in Table II.
Each run represents 2 to 4 weeks’ computation time on a biprocessor, eight-core, 3.2- to 3.6-GHz
workstation. The axisymmetric geometry assumption is validated in Ref. [40] for a Weber number
up to 120. For the dynamics, we use open conditions at the top and bottom boundaries and no-slip
conditions at the lateral boundary. For the temperature, we consider no flux conditions at all
boundaries. The computational domain must be large enough to allow for convergence without
any wall effects. Here we chose an axisymmetric cylinder of size (r × z) = (12R × 200R), which
is sufficiently large to reach a statistically steady motion (see our previous study [27]) and to follow
equilibration up to a 80% decrease of the initial temperature anomaly.
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FIG. 1. A zoom illustrating our adaptive mesh (left) and the method for mesh evolution over time when the
drop reaches the bottom of the finest mesh region (right).

To capture precisely the dynamical and thermal evolution of the drop, a fine mesh is required.
For that, we use an adaptive mesh with a high resolution in the drop vicinity. As shown in Fig. 1, we
divide our domain into several regions where the cell sizes vary between h = 0.015R and h = 1.5R.
As detailed in Ref. [27], the simulation is programed to stop when the drop reaches the bottom of
the finest mesh region: The whole mesh pattern is then translated and the simulation is restarted on
this new grid [see Fig. 1 (right)].

Mesh convergence has been checked, always using standard Lagrange mesh elements of type P2-
P3 (quadratic for the pressure and temperature fields and cubic for the velocity field). In Ref. [27],
we showed that a mesh size h = 0.025R (or smaller) allows us to capture the falling drop dynamics.
Here we further performed two tests for the resolution of thermal transfers. In the first one, we
compare the numerical and analytical heat transfers by thermal diffusion from a motionless spherical
drop. The analytical solution for the radial temperature profile from the drop center to a given
distance (r) is given by [41]

T = 0.5T0

[
erf

R + r

2
√

Dt
+ erf

R − r

2
√

Dt

]
− T0

r

√
Dt

π
[e

−(R−r)2

4Dt − e
−(R+r)2

4Dt ] (10)

with T the temperature anomaly (T0 its initial value) and D the thermal diffusivity (m2 s−1). Figure 2
(left) shows the excellent agreement of our numerical results.

For the second test, we calculated, for different minimum grid sizes h = 0.05R, 0.035R, 0.025R,
0.015R, 0.01R, the normalized average drop temperature as a function of normalized time for our
reference case no. 4 in Table II (see details in next section). Figure 2 (right) shows a reasonable
convergence of the numerical results from h = 0.015R, with a relative maximum error �3.5%,
while the drop mass during the course of this simulation does not change by more than 0.4% from
its initial mass. Therefore, we confirm that our mesh h = 0.015R captures correctly the thermal
evolution of the metal drop.

Finally, the grid Peclet number Peh = V h
Dint

, with Dint= Dd +Dm
2 the mean thermal diffusivity, is an

appropriate parameter in the convection-diffusion equation to determine whether the heat transfer in
the system corresponds to numerical artifacts or not. Reference [42] found very accurate solutions
for grid Peclet number up to 10. As shown in Table II, our runs in this study remain below this
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FIG. 2. Left: Comparison of our numerical results with the analytical results in Ref. [41] for the radial
profile of the normalized temperature anomaly for a nondeformable and immobile drop. Right: Comparison
of the time evolution of the normalized mean temperature anomaly determined with different mesh sizes for a
deformable and mobile drop (simulation no. 4 in Table II).

criterion for stability, except for run no. 10, which we hence do not consider for heat transfer studies
in the following sections.

III. REFERENCE CASE

In this section, we present our reference case, from which, in the next section, we then change
the drop size keeping the viscosity ratio constant, and the magma ocean viscosity keeping the drop
size constant. This reference case corresponds to simulation no. 4 in Table II: The drop initial radius
is 8 mm, the magma ocean viscosity is 1 Pa s, the metal viscosity is 0.005 Pa s (viscosity contrast
200), and the initial temperature difference between the metal drop and the magma ocean is 100 K.

The drop motion from rest and its thermal evolution are shown in Fig. 3. The spherical
drop accelerates due to gravity and rapidly deforms into a spherical cap. Then, surface tension
equilibrates inertia at the drop interface and prevents any further change in morphology. Higher
temperatures are concentrated at the front of the drop, while the thermal wake behind the drop
expands as a function of time. To characterize this dynamics, we define and compute the following
quantities.

A. Average drop velocity

During its fall, the drop mean velocity varies with time depending on the drop morphology. In
our simulations, we compute it as:

V (t ) =
∫
v

U (r, z, t )[φ(r, z, t ) � 0.5]dv∫
v
[φ(r, z, t ) � 0.5]dv

, (11)

with U (r, z, t ) the local velocity magnitude (m/s), dv = 2πrdrdz accounting for axisymmetric
cylindrical geometry, and [φ(r, z, t ) � 0.5] the Boolean operator allowing to only capture the iron
drop volume. Note that we use the mean magnitude velocity of the drop, which is actually very close
to its average falling velocity (change of less than 3% in our reference case) because vertical motions

largely predominate. We normalize V (t ) by the free fall Newton velocity UN =
√

	ρgR
ρm

and time by

the diffusion time tdif = R2ρmC pm

km
. Figure 4 shows the result for our reference case. The drop rapidly

accelerates from rest up to t∗ = 0.02, then several small oscillations occur before converging toward
its asymptotic terminal fall velocity, which we use to compute the output dimensionless numbers.
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FIG. 3. Dynamical and thermal evolutions of the metal drop as a function of time for simulation no. 4 in
Table II. The color presents the temperature anomaly normalized by its initial value T ∗. The black solid line
separates the metallic material from the magma ocean. From left to right, the time normalized by the thermal
diffusion time is t∗ = 0, 0.01, 0.02, and 0.05.

B. Average temperature evolution of the metal drop

As shown in Fig. 3, the liquid drop exchanges heat with the liquid magma ocean and loses its
heat as a function of time and depth. We determine the mean average temperature anomaly of the
drop compared to the magma ocean as:

T (t ) =
∫
v

T (r, z, t )[φ � 0.5]dv∫
v
[φ � 0.5]dv

. (12)

FIG. 4. Normalized average velocity of the metal drop as a function of normalized time for simulation no.
4 in Table II.
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FIG. 5. Normalized average temperature anomaly of the metal drop as a function of normalized time (left)
and depth (right) for simulation no. 4 in Table II. The black lines represent our numerical results and the red
dashed lines with stars represent the exponential fits from Eq. (13). The correlation coefficient for the two fits
is 0.9999.

We normalize T (t ) by its initial value, giving T ∗(t ). Its evolution for the reference case as a function
of time or as a function of depth of its center of mass (normalized by the initial radius R) is shown
in Fig. 5. After a rapid adjustment of the initial temperature jump at the interface, T ∗ decreases
exponentially toward equilibrium. We determine the best exponential fits according to

T ∗ = e(−t/tc ) and T ∗ = Cze
(−z/lc ), (13)

where Cz is a constant (see Fig. 5 in red with stars). In geophysical science, the characteristic time
(tc) and length (lc) for equilibration are very important parameters [7], used to set the degree of
equilibration between iron and silicate of magma ocean in planet building models [33]. Note that
chemical equilibrium is more difficult to reach than thermal equilibrium because of the lower value
of the chemical diffusivity. The chemical equilibration between the metallic phase and the magma
ocean is a key process and constraints on this dynamics contribute to our understanding of the core
formation in terms of timing. However, it is also a process that is complicated to compute because
of the presence of a partition coefficient at the interface. The results shown below for thermal
equilibrium may be considered as first-order trends for chemical equilibrium that will nevertheless
deserve a dedicated study.

C. Volume of heated magma during the drop sinking

The magma ocean temperature increases during the fall of the drop, especially in its wake. It
is important in geophysics to quantify how much of the magma is contaminated (here, thermally
affected) by the formation of the iron core: This would for instance affect the initial structure and
heat budget of the Earth’s mantle. In our simulations, we calculate the volume of magma ocean
affected by thermal exchange as:

Vo =
∫

v

[T > TC][φ � 0.5]dv, (14)

with TC a chosen temperature anomaly (K) and [φ � 0.5] the Boolean operator allowing to only
capture the magma ocean volume. An example of the captured volume of heated magma ocean is
shown in Figure 6 (left). We performed tests with several TC corresponding to 0.1, 1, and 10 K.
Results of the volume normalized by the initial drop volume as a function of the drop depth are
shown in Figure 6 (right). The three curves corresponding to different equilibrium degrees are
parallel, until a depth equals to 50R where TC = 10 K is strongly affected by thermal diffusion
in the magma ocean. The same behavior would of course take place at longer time/depth for the
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FIG. 6. Left: Volume of heated magma ocean (TC = 1 K) once the drop reaches a time t∗ = 0.067 and a
depth z = 37R in our simulation no. 4 in Table II. Right: Normalized heated magma volume as a function of
normalized depth for different values of TC .

other TC . But our purpose here is to look at the relative initial behavior before the diffusion effect
dominates, depending on the drop radius and magma viscosity. In the following, for our parametric
study, we thus compare heated volumes considering TC = 1 K at three different depths: 10R, 20R,

and 30R.

D. Heat transfer at the drop interface

To evaluate the Nusselt number, we compute the mean temperature anomaly and the mean
temperature gradient at the interface, using, respectively,

Tint =
∫
v

T φ(1 − φ)dv∫
v
φ(1 − φ)dv

, (15)

∇Tint =
∫
v
∇T φ(1 − φ)dv∫
v
φ(1 − φ)dv

, (16)

where φ(1 − φ) allows us to capture only the interface region between the two phases. Figure 7
shows the temperature gradient in and around the drop at a given time for our reference simulation.
Most heat transfer between the metal drop and the magma ocean occurs at the drop front side, while
the back half only accounts for about 15% of the total. The existence of a hot thermal wake and the
external recirculation behind the drop that encapsulates and entrains magma with the sinking drop
are the main reasons limiting back thermal exchanges [27,43].

A close view of the temperature field and of the thermal boundary layer is shown in Fig. 8. We
define the thermal boundary layer thickness as the distance from the drop interface to a point where
the temperature anomaly reaches 1% of its interfacial value. The boundary layer is very thin at the
drop front section, where most thermal exchanges are carried out. It significantly increases behind
the drop. An example of thickness measurement is shown in Fig. 8 (right) at the thinnest position,
i.e., at the front of the drop. In order to give a global estimate around the drop, we also define the
average boundary layer thickness as

δTav = Tint

∇Tint
. (17)
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FIG. 7. Temperature gradient (K/m) in and around the drop for our reference simulation no. 4 in Table II
at time t∗ = 0.055.

IV. PARAMETRIC STUDY AND SCALING ANALYSIS

We now present our systematic exploration of the parameter space, changing the magma ocean
viscosity or the drop initial radius as shown in Table II, from our reference simulation no. 4. We
then analyze our results in terms of scaling laws. In particular we determine the influence of the
Peclet number on the dimensionless parameters defined in the previous section: the time and length
of equilibration, the normalized thermal boundary layer thickness, the Nusselt number, and the
dimensionless magma ocean volume affected by thermal exchanges.

A. Time and length of equilibration

As expected from previous studies of drop dynamics, but largely neglected in geophysical
applications (see, e.g., discussions in Refs. [8,27]), the characteristic time and length of equilibrium
depend on the viscosity contrast between the metal drop and the magma ocean. As presented in
Fig. 9, increasing the viscosity ratio increases the required time for thermal equilibration (Fig. 9,

FIG. 8. Left: Temperature anomaly (color scale) and contour of the thermal boundary layer (red line)
around the drop (black line) for our reference simulation no. 4 in Table II at time t∗ = 0.067. Middle: zoom at
the drop front. Right: Temperature profile of the thermal boundary layer in front of the drop and determination
of the local boundary layer thickness.
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FIG. 9. Characteristic time (left) and length (right) of equilibration as a function of the viscosity contrast
[see Eq. (13)].

left), mostly because a larger ambient viscosity limits advective heat exchanges. We can further
observe in Fig. 9 (left) two different slopes corresponding to two different dynamical regimes of the
drop: For Rμ > 1000, the drop remains spherical and the equilibration characteristic time is highly
dependent on the viscosity ratio, while for Rμ < 200, the drop deforms which limits the influence
of Rμ. The evolution of the equilibration length is nonmonotonic (Fig. 9, right), because the magma
ocean viscosity also influences the falling velocity. Globally, with a more viscous ambient fluid, the
thermal equilibrium between the two phases occurs less deeply in the magma ocean once the stable
drop is formed, as we predicted in our previous work [27].

The drop size at a given viscosity ratio also influences the thermochemical equilibration (for a
fixed spherical shape, see Ref. [20]). Increasing the initial radius of the liquid metal drop decreases
the surface of exchange over volume initial ratio and increases the drop falling velocity: We thus
expect an increase of both the characteristic time and length, as confirmed in Fig. 10. In Ref. [27], we
predicted that increasing the drop initial radius also leads to surface extension due to drop distortion,
hence to faster equilibration compared to a purely spherical drop: This effect is, however, limited,
because drop deformation mostly occurs at the back of the drop, while heat exchange takes place
mostly at the front.

Those two series of results can be rationalized by considering dimensionless properties as a
function of the Peclet number. Here we normalize the equilibrium time by the thermal diffusion
time and the equilibrium length by the initial drop radius. Results are shown in Fig. 11. The thermal
equilibrium time for a high Peclet, spherical drop theoretically scales as Pe−0.5 (see, e.g., Ref. [32]).

FIG. 10. Characteristic time (left) and length (right) of equilibration as a function of the drop initial radius
[see Eq. (13)].
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FIG. 11. Dimensionless equilibrium time (left) and length (right) as a function of the Peclet number.

Here we find

t∗
c = 2.45Pe−0.59±0.01, (18)

where the shown uncertainty in the exponent comes from considering separately numerical
simulations performed while changing the viscosity ratio and those performed while changing the
initial sphere radius. This acceleration of the equilibration compared to the theoretical model may
be a signature of the drop deformation at large Peclet. Indeed, performing the same fit only on the
subset of data points where the drop remains spherical gives an exponent 0.51 ± 0.01.

Correspondingly, the length needed to reach the equilibration increases monotonically with
Peclet number following

l∗
c = 2.37Pe0.41±0.01, (19)

in agreement with a quasiconstant falling velocity, i.e., lc = V × tc. In conclusion, when the flow
advection measured by the Peclet number increases, thermal equilibration occurs faster but deeper
in the magma ocean (after drop formation), which is of importance for Earth’s building models [33].

B. Heat exchanges

Simply equilibrating large-scale heat advection along the drop surface with heat diffusion
through the thermal boundary layer perpendicular to it, the theoretical size of the thermal boundary
layer normalized by the drop radius classically scales as Pe−0.5: This was verified numerically in
Ref. [20] for a rigid falling sphere. As shown in Fig. 12 (left), we also recover this scaling at the
drop front, where most heat exchange occurs: The best fit gives

δ∗
T = 2.53Pe−0.5±0.01. (20)

With the deformable drops considered here, however, the boundary layer thickness strongly
varies around the metal drop: We thus compute a characteristic average value δTav from Eq. (17),
normalized by the initial radius. Results are shown in Fig. 12 (right), with the best-fit scaling law

δ∗
Tav

= 10.7Pe−0.6±0.01. (21)

Over the explored range, the average thickness is at least three times larger than the front one.
The larger-than-expected 0.6 exponent might again be a signature of drop distortion at large Peclet
number.

Then, by definition, the Nusselt number averaged over the drop surface should scale as 1/δ∗
Tav

.
This is indeed recovered, as shown in Fig. 13 with the best-fit scaling law

Nu = 0.08Pe0.63±0.02. (22)

Note that Nu varies over time in many cases in this study: We consider here its time-averaged value.
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FIG. 12. Dimensionless thickness of the thermal boundary layer at the drop front as a function of Peclet
number (left). Dimensionless average thickness of the thermal boundary layer around the drop as a function of
Peclet number (right).

Comparing this result with the one obtained in the previous section, we also recover that the
typical dimensionless time for equilibration t∗

c scales like 1/Nu, as expected. This proves the self-
consistency of our measurements.

C. Volume of heated magma ocean

In the wake of the drop, the magma ocean is thermally affected by its passage. Because of heat
diffusion within the magma ocean, the affected volume widens with time. But on the short times, at
a given depth of the drop z, it can be estimated by simply balancing the heat that has passed through
the drop interface with the heat accumulated in this volume of magma ocean, whose temperature
has increased by a given amount larger or equal to TC . We then predict

Vo∗ = Volume of heated magma

Initial drop volume
∼ 3

Nu

Pe

z

R

	T0

TC
, (23)

with 	T0 the initial temperature difference between the two phases. Results in Fig. 14 show a
good agreement with a small relative error for various depths z = 10R, 20R, 30R and temperature

FIG. 13. Nusselt number as a function of Peclet number
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FIG. 14. Dimensionless heated magma ocean volume as a function of X , and comparison with our scaling
law (23). Our numerical results are represented with different symbols for different given depths.

contrast TC = 1K , using the previously determined scaling for Nu. This volume can be compared to
the volume crossed by the falling drop, which writes in its dimensionless form

V ∗
crossed = πR2z

4/3πR3
= 3z

4R
, (24)

which also scales linearly with depth. Our result does not exhibit any strong increase of the volume
effectively contaminated vs. this simple geometrical estimate: this is because, even in our most
turbulent cases, the falling drop encapsulates in its wake a small volume of silicate and entrains
it toward the deep, while the rest of the ambient fluid remains largely motionlesss or laminar. No
additional mixing is generated. Our conclusion should nevertheless be re-evaluated in the presence
of global magma motions, coming, e.g., from turbulent convection, depending on the typical excited
time- and length scales. But this is beyond the scope of the present paper. Our conclusion should
also be re-evaluated while considering large-scale viscous heating which, for a turbulent wake of a
large diapir or a large cloud of drops, might generate strong additional heating long after the iron
fall.

V. INFLUENCE OF A TEMPERATURE-DEPENDENT VISCOSITY

The magma ocean viscosity increases from the surface to the base of the magma ocean because
of the combined effects of temperature and pressure [21]. Those large-scale variations are irrelevant
in the context of our local study; nevertheless, during the drop fall over the typical length of ∼200R
considered here, the temperature of the liquid magma ocean increases because of heat exchanges
with the drop, therefore its viscosity decreases at a given pressure (i.e., depth) following the equation
in Ref. [21] for anhydrous liquid

μT = 0.00033e[6400/(T −1000)]Pa s. (25)

Here we investigate the influence of such a temperature-dependent viscosity on the dynamics,
stability, and thermal evolution of a drop. For a given initial viscosity ratio, the initial magma ocean
temperature is computed using (25), and we then consider an initial temperature difference with the
hot metal drop of 	T = 100 K or 	T = 1000 K. We focus on three reference cases, only changing
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FIG. 15. Thermal evolution of the nondeformable metal drop as a function of normalized time (left). The
color scale presents the temperature anomaly normalized by its initial value T ∗, and the black solid line shows
the surface of the metal drop. From left to right, t∗ = 0, 0.0167, 0.033, 0.05, and 0.067. The right figure shows
the temperature gradient (K/m) in and around the spherical drop. In this model, Re = 0.76, Pe = 254, and
Rμ = 1000 (simulation no. 3 in Table II).

the viscosity ratio (see Table II). Those cases are first presented in the absence of temperature-
dependent viscosity:

(i) The nondeformable drop case (simulation no. 3 in Table II, Re = 0.76 and Pe = 254) is
presented in Fig. 15. Drop’s shape remains mostly constant. The temperature is close to uniform
inside the drop because of internal recirculation and progressively decreases in the wake. Most heat
transfer takes place at the front.

(ii) The weakly deformable drop case (simulation no. 5 in Table II, Re = 21.8 and Pe = 728.36)
is presented in Fig. 16. The drop quickly deforms toward a spherical cap, associated with a strong
release of heat in its wake. The system then reaches a quasi-steady state, with the most surprising
feature being a more rapid temperature decrease in the drop than in the wake, leading to a positive
heat transfer from the silicate to the iron in the drop’s back. Nevertheless, most heat transfer still
takes place at the front.

(iii) Finally, the strongly deformable drop case (simulation no. 6 in Table II, Re = 47.6 and Pe =
793.73) is presented in Fig. 17. Here the drop shape keeps oscillating over the whole depth because
of competing surface tension and inertial forces. This induces oscillatory temperature changes in the
wake, associated to periodic thermal plumes emitted from the drop sides and strong inhomogeneous
fluxes within the magma ocean. Nevertheless, heat transfers between iron and silicate are still largely
focused at the drop’s front, explaining that this case is not associated with any specific signature in
the previous section.

We now rerun those three cases using the previously defined temperature-dependent viscosity.

A. Drop dynamics

Figure 18 shows the normalized average velocity of each drop as a function of the normalized
time for constant magma ocean viscosity in black lines and for temperature-dependent viscosity with
	T = 100 K (	T = 1000 K) in red (blue) dashed lines. The normalized average velocity for the
nondeformable drop (Fig. 18, left) with 	T = 100 K increases moderately by about 4.8% compared
to the constant viscosity case, keeping the spherical shape without change in the morphology.
For 	T = 1000 K, the drop deforms from the back side and its velocity strongly increases by
about 26%; concomitantly, the average viscosity around the drop decreases by 93%, explaining
this significant dynamical change. Such significant changes of the drag in the Stokes regime for an
underformable drop were already addressed in Refs. [44,45].
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FIG. 16. Thermal evolution of the weakly deformable metal drop as a function of normalized time (left).
The color scale presents the temperature anomaly normalized by its initial value T ∗, and the black solid line
shows the surface of the metal drop. From left to right, t∗ = 0.015, 0.024, 0.033, 0.047, and 0.06. The right
figure shows the temperature gradient (K/m) in and around the deformable drop. In this model, Re = 21.8,
Pe = 728.36, and Rμ = 100 (simulation no. 5 in Table II).

FIG. 17. Thermal evolution of the strongly deformable metal drop as a function of normalized time (left).
The color scale presents the temperature anomaly normalized by its initial value T ∗, and the black solid line
shows the surface of the metal drop. From left to right, t∗ = 0.02,0.033,0.047,0.06, and 0.077. The right figure
shows the temperature gradient (K/m) in and around the deformable drop. In this model, Re = 47.6, Pe =
793.73, and Rμ = 50 (simulation no. 6 in Table II).
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FIG. 18. Comparison of the normalized average velocity field as a function of normalized time to show
the influence of a temperature-dependent viscosity for a nondeformable spherical drop (left), a weakly
deformable drop (middle) and a strongly deformable drop (right). The black lines present the constant magma
ocean viscosity. The red (blue) dashed lines present the temperature-dependent viscosity with 	T = 100 K
(	T = 1000 K).

On the contrary, for the weakly deformable drop (Fig. 18, middle) and the strongly deformable
drop (Fig. 18, right), no significant dynamical change is observed, despite a large viscosity decrease
in the associated thermal boundary layer (by 76% and 92%, respectively, for 	T = 1000 K; see
also Fig. 19). This indicates that the drop dynamics is already mostly inviscid in the absence of
temperature-dependent viscosity, as can be guessed from the corresponding values of the Reynolds
number (see caption of Figs. 16 and 17).

B. Drop fragmentation

In the most extreme previous case (the strongly deformable drop with 	T = 1000 K), Fig. 19
indicates that the hot silicate layer surrounding the drop has a viscosity value of the order 0.05 Pa s:
Assuming such a viscosity uniformly in the ambient magma ocean, our previous study [27] predicts
a rapid fragmentation, which is not observed here. Actually, the viscosity constrast at the interface
does not influence the drop stability, because the thermal boundary layer where the low viscosity is
localized is very thin in front of the drop, compared to any relevant dynamical length scale; besides,
the wake has no influence on the drop. Temperature-dependent viscosity only affects the drop’s

FIG. 19. View of the viscosity field (in Pa s) around the strongly deformable drop when a temperature-
dependent viscosity is considered.
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FIG. 20. Final form at breaking of the drop for a constant viscosity magma ocean (left) and a temperature-
dependent viscosity magma ocean with 	T = 1000 K (middle). On the right, view of the viscosity field (in
Pa.s) around the drop in the later case. In this model, Re = 50, Pe = 3330, and Rμ = 200 (simulation no. 10
in Table II).

dynamics and fragmentation when flows and temperature change on comparable scales in upfront
or sides locations.

To further prove this, we performed a simulation with a drop radius of 25 mm and a viscosity
ratio of 200 for constant magma ocean viscosity first and then for 	T = 1000 K–dependent magma
ocean viscosity (simulation no. 10 in Table II). Figure 20 (left) shows the jellyfish fragmentation
mode when constant magma ocean viscosity is considered (more details can be found in Ref. [27]).

The normalized time (t∗
bk = tbkV

2R

√
ρd

ρm
) and distance (d∗

bk = dbk
R ) of breakup equal 3.8 and 10.7,

respectively. For temperature-dependent viscosity (Fig. 20, middle), another jellyfish fragmentation
mode is observed, with time and distance of breakup equal to 2.3 and 5.6, respectively. Actually,
here the extended jellyfish membranes form filaments, where thermal effects are very important.
These membranes sink into a less-viscous medium whose thickness is comparable to the membranes
thickness (see Fig. 20, right). Thus, the filaments move freely in this zone with low viscous
constraints and finally separate from the drop volume, leading to fragmentation.

Note finally that the local dimensionless numbers, taken at the mean temperature (and associated
viscosity) of the thermal boundary layer, become Re = 1000, We = 19, and Rμ = 10. From Figs. 4,
12, and 13 of our previous study [27], we find consistent results for the fragmentation mode of the
drop, as well as for its time and distance of breakup, accounting for these dimensionless numbers
(to compare with our previous study, Re and We should be multiplied in this study by a factor 2
because in Ref. [27], Re and We were calculated using the drop diameter).

Hence, temperature-dependent magma ocean viscosity influences the drop fragmentation in the
filament forming regimes only. In such regimes, the results in Ref. [27] as a function of Re, We, and
Rμ already allow predicting fragmentation mode, breaking time and distance by considering local
values of the dimensionless numbers.

C. Thermal evolution

In Fig. 21, we compare the normalized mean iron temperature for each case as a function of
normalized time. For a nondeformable drop (Fig. 21, left), the average temperature for 	T = 100 K
(red dashed lines) and 	T = 1000 K (blue dashed lines) temperature-dependent viscosity decreases
by about 6.1% and 20.8% with respect to the constant viscosity case (black line). As a consequence,
it significantly changes the characteristic time and length of equilibration (see Table III). For a
weakly deformable drop (Fig. 21, middle), the average temperature evolution with 	T = 1000 K
changes only by about 13.6%; no difference is measured for a strongly deformable drop (Fig. 21,
right). As for the fall velocity, temperature-dependent viscosity influences significantly the thermal
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FIG. 21. Comparison of the dimensionless temperature as a function of normalized time for a nonde-
formable drop (left), a weakly deformable drop (middle) and a strongly deformable drop (right). The black lines
present the constant magma ocean viscosity. The red (blue) dashed lines present the temperature-dependent
viscosity with 	T = 100 K (	T = 1000 K).

evolution of nondeformable drops only (i.e., the drops in the Stokes regime). Note, finally, that in
the intermediate regime, the characteristics time and length of equilibration decrease slightly with
a temperature-dependent viscosity compared to the constant magma ocean viscosity case, whereas
in the Stokes regime, the equilibrium characteristic length increases with a temperature-dependent
viscosity, in contrast to the characteristic time of equilibration (see Table III).

Regarding the volume of heated magma ocean shown in Fig. 22, no significant change is observed
for all cases with 	T = 100 K (red dashed lines). The volume of heated magma ocean increases
by about 1.5 to 2 times compared to the constant viscosity case (black line) for 	T = 1000 K (blue
dashed lines) due to the initial larger temperature difference; but the curves remain parallel, hence
exhibiting no specific dynamical signature.

Finally, we have measured the heat transfer between the two phases for all drops with a
temperature-dependent viscosity. As shown in Table IV, in agreement with our previous ob-
servations, we do not notice any significant change compared to our scaling law for constant
viscosity, except maybe for the less deformable drop: Indeed, heat transfer is mostly due to
diffusive exchanges through a thin thermal boundary layer at the drop front, which are not
affected by temperature-dependent viscosity. The same conclusion was reached experimentally in
Ref. [45] in his study of diapiric magma transport through the lithosphere, hence in the limit of
small Reynolds number, nondeformable drop, and using an exponential form of the temperature-
dependent viscosity law. Associated numerical simulations in Ref. [44] in the limit of infinite Prandtl
number exhibited a very weak dependence on the total viscosity variation. Additional systematic
studies, both experimental and numerical, are necessary to explore the parameter range relevant to

TABLE III. The change in characteristics time and length for cases also studied with a temperature-
dependent viscosity.

Simulation 	T t∗
c l∗

c

no. 3 (constant magma ocean viscosity) 100 0.1 24.25
no. 3a (T -dependent μm) 100 0.0975 25.6
no. 3b (T -dependent μm) 1000 0.082 27
no. 5 (constant magma ocean viscosity) 100 0.05 35.14
no. 5a (T -dependent μm) 100 0.0496 33.33
no. 5b (T -dependent μm) 1000 0.045 31.25
no. 6 (constant magma ocean viscosity) 100 0.045 32
no. 6a (T -dependent μm) 100 0.044 29.4
no. 6b (T -dependent μm) 1000 0.042 27.7
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FIG. 22. Comparison of normalized heated magma ocean volume as a function of normalized time for a
nondeformable drop (left), a weakly deformable drop (middle) and a strongly deformable drop (right). The
black lines present the constant magma ocean viscosity. The red (blue) dashed lines present the temperature-
dependent viscosity with 	T = 100 K (	T = 1000 K).

our configuration. In the meantime, we suggest that using our scaling law [Eq. (22)] is the most
acceptable solution.

VI. CONCLUSIONS AND FUTURE WORK

We have carried out series of numerical simulations to characterize the thermal exchanges
between a falling drop and a viscous ambient fluid, exploring a new parameter range relevant for
the geophysical application of a hot liquid iron drop falling in a magma ocean. We have shown that
because of drop distortions, thermal equilibration properties slightly change from the theoretical
predictions based on diffusive heat exchanges through a laminar thermal boundary layer. We
have also tested that accounting for a temperature-dependent viscosity in the magma ocean barely
influences the obtained results, except for limited cases like nondeformable, low-Reynolds-number
drops or jellyfish fragmentation mode. Our most relevant results for geophysical application are
the scaling laws for the normalized length of equilibration and for the Nusselt number, which both
increase monotonically with the Peclet number as Pe0.41±0.01 and Pe0.63±0.02, respectively.

Future work should now consider (i) the presence of convection in the ambient magma ocean,
which could affect our conclusions providing the associated velocity at the drop scale is at least
of similar order as the falling drop velocity, hence requiring extremely turbulent regimes, and (ii)
chemical exchanges between iron and silicates, which will determine the initial chemical state of the
considered planet (see, e.g., Ref. [46]). Chemical and thermal constitutive equations being similar,
similar equilibration scaling laws and dynamics are nevertheless expected.

TABLE IV. Comparison of the Nusselt numbers for cases of temperature-dependent viscosity between our
numerical results and our scaling law for constant viscosity Eq. (22).

Simulation Nu: measured Nu: Eq. (22) Relative error (%)

no. 3a 2.65 2.72 2.6
no. 3b 2.95 3.07 4.1
no. 5a 5.15 5.17 0.4
no. 5b 5.21 5.33 2.3
no. 6a 5.28 5.36 1.5
no. 6b 5.35 5.36 0.2
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