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A millimetric bouncing droplet sustained on a vibrating bath becomes a moving wave
source (particle) through periodically interacting with the local wave field it generates
during the droplet-bath impact. By virtue of such particle-wave duality, the macroscopic
hydrodynamic system imitates enigmatic behaviors of the quantum realm. Here we show
that it is possible to create an integrated pilot-wave field to better prescribe the droplet
trajectories, via amplified bath capillarity. This is demonstrated with a liquid metal droplet-
bath system in which the local wave field generated by droplet bouncing is superposed by
the global wave field induced by bath meniscus oscillation. The resulting dual pilot-wave
configuration enables a class of directional chasing motions of two bound dissimilar
droplets (heterodimers) in multilevel hydrodynamic traps (orbits), featuring two quantized
regime parameters, namely, the interdroplet binding level and the orbit level. We investigate
the dynamics of the vibrating liquid metal bath, with its level-split ring-wave field and its
peculiar vortex field being highlighted. We also rationalize the exotic droplet motions by
considering the interdroplet particle-wave interactions mediated by the integrated pilot-
wave field. It is revealed that a temporal bouncing phase shift between the two droplets
in the heterodimers, due to size mismatch, gives rise to their horizontal propulsion, while
their spatial binding regime exclusively determines the collective chasing direction. It is
further evidenced that the horizontal in-orbit chasing motion is directly related to vertical
droplet bouncing. Our findings unveil the integrated pilot-wave field as a trail towards
improved droplet guiding, thereby extending the hydrodynamic particle-wave analogy to
optical systems and beyond.
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I. INTRODUCTION

A hydrodynamic pilot-wave system features millimetric bouncing droplets self-propelling on
a vibrating fluid bath. The droplet behaviors emerging from the system strongly depend on the
dynamics of both the bath and the droplets [1,2]. The study of the former, which dates back
to Michael Faraday [3], has been focusing on the nonlinearity and threshold instability of the
periodically forced bath [4]. This classic problem has been greatly enriched by the introducing
of discrete wave sources (bouncing droplets of the same fluid) to the system by Yves Couder,
Emmanuel Fort, and co-workers [5,6]. It has been shown in their pioneering works that, below
the Faraday threshold γF , a vertically bouncing droplet can be long-term sustained and also be
carefully tuned to walk horizontally through a particle-wave association, that is, the droplet interacts
with the waves it generates on the bath. The creation of particle-wave duality in a macroscopic
hydrodynamic system has profound influences and meaningful implications since wave-mediated
motions are frequently encountered in various physical systems, from the classical interpretation
of the electron-phonon wave interactions of Cooper pairs in the Bardeen–Cooper–Schrieffer theory
of superconductivity [7] to biological locomotions on water surface [8] and to astronomical-scale
planetary/stellar motions in the gravitational wave field [9], which themselves might not be readily
accessible. Considerable efforts have been made ever since to explore both individual [10–20] and
collective droplet behaviors [21–25] in the droplet-bath system, in particular for their quantum
analogies [10,12,14,16,18].

Despite the diversity of previously observed droplet behaviors, they mostly share the same
particle-wave association regime in which the horizontal droplet motions are solely piloted by the
droplet-generated local wave field, either by the droplets themselves or by their partners. To a large
extent, such a single pilot-wave configuration restricts the search for informative droplet motions
to a narrow acceleration range close to but below γF , where the walking conditions are satisfied
[1,26]. One exception is the ratcheting droplet pairs reported by Eddi et al. [21] and Galeano-Rios
et al. [25], a configuration that enables switchable horizontal motions of dissimilar droplet pairs at
accelerations well below γF .

It has been demonstrated that tuning bath dynamics favors better prescribing droplet trajectories.
However, it is typically realized through either auxiliary bath modifications (e.g., engineered bath
structures [17,18,24,27–29]) or bath movement control (e.g., a rotating bath frame [13,15]). In
particular, Sungar et al. [27,28] has demonstrated that protruding pillars above the vibrating bath
surface can lead to a hydrodynamic effect reminiscent of the optical Talbot effect. To enrich the
content of the pilot-wave hydrodynamics as well as to extend its implications, strategies that enable
new droplet motion regimes and at the same time avoid previous formalities will be highly desirable.
To this end, an attempt is made here to achieve improved droplet guiding without compromising the
simplicity and elegance of this classical system.

The superposition nature of waves implies that foreign wave fields other than the droplet-
generated local wave field can be introduced to provide further confinements for the droplets. One
mechanism to produce such an additional wave field in the droplet-bath system could be dynamic
meniscus, since a vibrating fluid bath is always attended by an oscillating meniscus at its boundary
region due to capillarity [30]. Generally, the oscillating meniscus is considered as a troublesome
feature which previous studies tried to circumvent, since it brings both experimentation difficulties
and theoretical assessment complexities to the system [4,31]. By contrast, here we significantly
magnify the capillary effect by selecting a liquid metal droplet-bath system. We show that the
previously believed problematic oscillating meniscus can produce a global pilot-wave field, which
is indeed advantageous for droplet guiding. Directed by the dual pilot-wave field, dissimilar droplet
pairs in our system are able to exhibit well-defined collective orbital motions with double quantized
states.

In one-to-one correspondence, we show that the hydrodynamic particle-wave association directed
by an integrated pilot-wave field is reminiscent of the wave-matter interaction in optical systems,
and the chasing droplet pairs become counterparts of optical heterodimers—two optically bound
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particles of unequal sizes [32,33]. It has been demonstrated that a perpendicular incident light
(electromagnetic waves) can trigger transverse motions of optical heterodimers, since the size
mismatch between the two particles leads to their asymmetric interactions (scattering) in the
presence of the external electromagnetic wave field. When a second electromagnetic field (a
circular optical trap) is further applied to create a global confinement, the collective motions of
the heterodimers are guided along the optical trap, resulting in optically directed orbital chasing
motion [32]. In the optical system, the spatial interparticle distance and the motion trajectory of
the heterodimers are modulated by the interparticle electrodynamic interaction (optical binding)
and the predefined global electromagnetic wave field (optical trap), respectively [32]. We show
that directed by an integrated hydrodynamic pilot-wave field, the particle-wave association between
the droplets and the local wave field generated by their partners provides the interdroplet binding,
whereas the global wave field acts as a multilevel hydrodynamic trap which leads to orbital motion.
Strikingly, despite the fact that the optical heterodimers and the hydrodynamic heterodimers interact
with wave fields of different natures, their motion regimes (e.g., configuration and direction) are,
however, surprisingly alike. In addition, the directional transverse motions in both systems stem
from the symmetry breakdown of their respective particle-wave association, which itself is a result
of the breakdown of size symmetry. Therefore, it is attempting that the theoretical frameworks that
describe the two systems, which feature different physical interactions and distinct scales, may
share a similar form. Encouragingly, the results reported here demonstrate the possibility to extend
the hydrodynamic pilot-wave analogy to other wave-mediated systems as well as the feasibility to
guide droplet motions with an integrated pilot-wave field.

II. SYSTEM CONFIGURATION

The system configuration used in this study is sketched in Fig. 1(a). A cylindrical glass container
(inner radius rB = 38 mm) is fixed on an electromagnetic shaker (not shown) to form the vibration
platform [34]. The container is filled with a liquid metal layer of thickness h1 = 10.0 ± 0.5 mm. The
liquid metal used here is a eutectic alloy of gallium and indium (EGaIn, 75.5% Ga and 24.5% In
by weight percentage) which has the lowest melting point of the Ga-In binary system: Tm ∼ 15 ◦C,
density ρ1 = 6280 kg m−3, and viscosity ν1 = 5.13 × 10−7 m2 s−1. The liquid metal is covered
by an alkaline electrolyte top layer (0.5 mol L−1 NaOH aqueous solution, h2 = 10.0 ± 0.5 mm,
ρ2 = 1012 kg m−3, ν2 = 9.32 × 10−7 m2 s−1) to prevent the oxidation of the liquid metal surface so
that it behaves as a simple fluid. Consequently, the droplet-bouncing “trampoline” in the current case
is a liquid metal-electrolyte interface with an exceedingly high interfacial tension σ (0.456 N m−1

measured with the pendant drop method). Before each experiment, the platform is checked and
adjusted carefully with a level gauge to minimize off-axis vibration.

During the experiment, the bath is forced vertically with a sinusoidal acceleration γ (t ) =
γ 0 cos (2π f t ), where γ 0 is the peak driving acceleration, f the driving frequency (fixed at 40 Hz),
and t denotes time. γ 0 can be continuously adjusted from zero to well beyond the Faraday threshold
γ F = 3.2 g (the liquid metal-electrolyte interface) of the current system with an accuracy of ±
0.05 g, where g is the gravitational acceleration. Note that the Faraday threshold γ F may be altered
under the influence of the meniscus waves in our system. In the current study, γ F is measured as
the threshold value when the meniscus wave pattern breaks. In addition, the Faraday threshold of
the upper electrolyte-air interface is found to be higher than that of the liquid metal-electrolyte
interface located below. Therefore, the Faraday waves of the electrolyte-air interface do not emerge
within the acceleration range in which the droplet motions are investigated. A plastic pipette is
used to generate millimetric liquid metal droplets which can be long-term sustained and readily
manipulated on the bath. The extrusion volume of the pipette is adjusted to control the size of
droplets, and the actual droplet size is measured by post-image analysis. The uncertainty of droplet
size measurement is within 5%. To place the droplets on the liquid metal-electrolyte interface, the
tip of the pipette is inserted near the interface to avoid any air entrainment. The vertical/horizontal
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FIG. 1. (a) Schematic side view of the liquid metal droplet-bath system. The bath is filled with a bottom
liquid metal layer and a top alkaline electrolyte layer. The vibrating bath and the bouncing droplet induce
a global wave field WG and a local wave field WD, respectively. (b) Schematic top view of the directional
orbital-chasing motion of the liquid metal heterodimers and the definition of the regime parameters. λG and
λD represent the wavelength of WG and WD, respectively. (c) The regime diagram of the orbital-chasing
motion. (◦) The large droplet DL chases the small droplet DS; (�) DS chases DL; (♦) DS chases DL but the
heterodimers either cease or derail before a full-circle orbiting is completed (partial orbiting regimes); (�)
high-orbit levels in which the confinement becomes too weak to sustain the heterodimers. Regimes requiring
dl > 2rn are geometrically invalid and left blank. (d) Top-view snapshots of the orbiting heterodimers with
different binding levels l (n = 2 fixed). (e) Top-view snapshots of the orbiting heterodimers in different orbit
levels n (l = 1 fixed). The arrows indicate the direction of orbiting and chasing.

droplet motion and the evolution of the bath wave field are captured by a high-speed camera
with recording frequency up to 3200 Hz. For the vertical-view recordings, a LED light source
is illuminated from the opposite side of the bath to the camera, while for the horizontal-view
recordings, the light source is illuminated from above the bath, atop the camera.
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III. HORIZONTAL DROPLET MOTION

A. The orbital-chasing motion and regime diagram

Provided that suitable droplet size and forcing conditions are satisfied, two dissimilar liquid metal
droplets autonomously form a locked pair (heterodimer) and start revolving collectively yet stably
around the bath center, following the annular rings of the global wave field WG [Figs. 1(b)–1(e) and
Video 1 of the Supplemental Material [35]]. As will be detailed later, the so-called simple bouncing
mode is excited in the current system, where the droplets impact the bath once per bath vibration
[1]. Noticeably, the chasing liquid metal heterodimers take discrete interdroplet binding distance dl

[Fig. 1(d)] and orbit radius rn [Fig. 1(e)], where l and n represent the binding level and the orbit
level, respectively. As presented in the regime diagram in Fig. 1(c), modulating the variable set
(l, n) produces highly diversified orbital motion regimes of the heterodimers. See Video 2 of the
Supplemental Material [35] for a demonstration of different regimes.

Among all the regimes, we observe two types of interdroplet binding which lead to chasing
motions in opposite directions. Note that the chasing direction here is defined by the size of the
leading droplet of a heterodimer rather than the direction of its angular velocity, as the orbiting can
always be changed from clockwise to anticlockwise or vice versa by switching droplet position.
In the short-range binding regime [l = 0,◦ in Fig. 1(c)], the heterodimers advance with the large
droplet (DL) chasing behind the small droplet (DS), while in the long-range binding regimes [l � 1,
� and ♦ in Fig. 1(c)], DL takes the lead (DS becomes the follower) and thus the chasing reverses.
The motion of the long-range binding liquid metal heterodimers is particularly similar to that of the
optical heterodimers [32], but the achievable regimes in the hydrodynamic system appear to be more
diversified than its optical counterpart. It should be pointed out that two dissimilar droplets placed
in adjacent orbits can also form a special type of long-range binding heterodimers (mostly realized
when l = 1 and 2). However, this kind of cross-orbit motion will not be detailed in the current study.

We note that the center of the global orbital motion of the liquid metal heterodimers is located
at the bath center rather than along the two-droplet alinement. The latter is the case for the orbiting
walker pairs as demonstrated in Refs. [1], [6], and [20]. We shall also point out that, different
from the ratcheting droplet pairs [21,25], the chasing direction of the heterodimers is exclusively
determined by the binding regime l, and it is not observed to reverse as we progressively sweep γ 0
from the bouncing threshold γ B all the way to the Faraday threshold γ F . These distinct features
indicate the emergence of new particle-wave association mechanisms in the current system.

B. The parametrics and quantization of the orbital motion

We combine high-speed imaging and post-visual tracking to analyze the horizontal orbital motion
of individual droplets to shed light on their collective behaviors. The motions of the heterodimers
are captured from above the bath at the same frequency as the driving acceleration ( f = 40 Hz). In
doing so, no out-of-plane motion of the bath will be seen, although it is constantly vibrating, thereby
improving the tracking accuracy. Using the method described in Refs. [36] and [37], the typical error
for horizontal motion tracking can be kept less than 1/10 of the characteristic droplet diameter.
Examples of the horizontal droplet motion tracking are presented in Video 3 of the Supplemental
Material [35]. The orbiting trajectories of individual droplets in the x-y plane in different orbit
levels n (l = l fixed) are plotted against t in Fig. 2(a), which shows well-defined trajectories and
long-term stability of the orbital motions. Further analyses reveal a definitive feature of the collective
droplet motions in the current system that the orbital motion is accompanied by cyclically repeated
instantaneous variations. For instance, calculating the horizontal orbiting velocity of the droplets
shows that, while the magnitude of their cycle-averaged velocity v̄ remains constant, that of their
instant velocity v changes constantly yet periodically [Fig. 2(b)]. Interestingly, when comparing
Fig. 2(a) and Fig. 2(b), it is evident that v changes precisely at the same frequency (i.e., the same
number of cycles) as the orbiting motion, and even the fluctuations are well repeated for all cases.
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FIG. 2. (a) The orbiting trajectories of the large droplet DL(red) and the small droplet DS (blue) featuring
different orbit levels n (l = 1 fixed). (b) The magnitudes of the instant velocity v and the average velocity v̄ of
the heterodimers in (a) as a function of time. The errors in the measurement of v and v̄ are < 0.2 mm s−1 and
< 0.04 mm s−1, respectively.

Also, we note that there exist noticeable differences in the velocity as well as that the velocity
changes between DS and DL.

As shown in Fig. 3(a), time-dependent v directly results in instantaneous variations of dl , even
when the two droplets are close to each other (l = 0, small binding distance). Again, two locked
droplets always experience changes in dl , but the cycle-averaged value d̄l remains constant. It is
confirmed that dl also changes at the orbiting frequency of each heterodimer. In addition, we find
that d̄l is exclusively determined by the binding level l and it is independent of both the orbit level n
and the driving acceleration γ 0 [Fig. 3(b)]. This evidence suggests that the orbital-chasing motion
of the heterodimers in the current system is affected locally in the orbits. As will be discussed in
the next section, the perturbations the heterodimers experience during their orbital motion indeed
originate from a peculiar vortex structure formed on the vibrating liquid metal bath. Nevertheless,

FIG. 3. (a) Binding distance dl variations of the heterodimers at different binding levels l (n = 2 fixed).
(b) Cycle-averaged binding distance d̄l in different orbiting regimes as a function of the normalized driving
acceleration γ 0/g. (c) Quantization of the orbital motion of the liquid metal heterodimers. In all figures, the
solid lines and scatters represent experimental data, and the dashed lines are their linear fittings.
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as shown in Fig. 3(c), the discrete values of d̄l and rn both fall onto a linear curve, leading to the
quantization of the orbital chasing motions:

d̄l = (l − εl )kl , l = 1, 2, 3, . . . , (1)

rn = (n − εn)kn, n = 1, 2, 3, . . . . (2)

One exception is the short-range binding regime l = 0 where d̄0 ∼ (dL + dS )/2 with dL and dS being
the diameters of DL and DS , respectively. The physical implications of the slopes (kl = 6.6 mm,
kn = 6.5 mm) and offsets (εl = 0.2, εn = 0.4) of the fitting curves of Eq.(1) and Eq.(2) can be
related to the wave parameters of different pilot-wave fields, a point that will be addressed later.

IV. BATH DYNAMICS

A. The profile of the bath wave field

One important observation from the orbital motions of the liquid metal heterodimers is that their
trajectories are always confined in the concentric rings (orbits) formed on the bath (Figs.1 and 2).
Such circular confinements are provided by a global annular wave field WG, the formation of which
is revealed at the bath vibrating onset. As shown in Fig. 4(a), the bath side views (slightly oblique
to show the wave field) captured at its vibration onset show unambiguously that the annular ring
patterns are formed by the traveling wave fronts emitted from the bath boarder (see Video 4 of the
Supplemental Material [35]). When a single droplet is deposited on the vibrating bath, the local
wave field WD generated by the droplet impact superposes to WG, resulting in the formation of the
dual pilot-wave field [Fig. 4(b)]. We note, however, that no orbital motion is observed in the single
droplet scenarios (see Video 5 of the Supplemental Material [35]).

The wave fronts constructing WG are indeed generated by a significant meniscus of the liquid
metal bath oscillating at the driving frequency f (harmonic) [4]. A quantitative assessment of the
scale of the meniscus-influenced region as well as the surface profile of both the quiescent bath
and the vibrating bath is further performed using a customized micropositioning stage. A sharp-tip
stainless-steel probe, which will not be wetted by the liquid metal, is used to detect its surface (liquid
metal-electrolyte interface). Since the liquid metal surface is highly reflective, small distortions on
its surface upon contact become readily distinguishable, which is recognized as the detecting of the
surface during the measurement. With the assistance of a micropositioning stage, both the vertical
(z) and radial (r) positions of the probe tip are determined with micrometer resolution. The bath
vibrating amplitude 
z in Fig. 4(c) is obtained by subtracting the measured bath vertical profile
under vibration by its quiescent profile [Fig. 4(d)]. Note that the current method picks up only the
vibrating maxima of the bath surface, and therefore the profile curves in Fig. 4(c) represent the
vibrating amplitudes (maximum displacement in the z direction) along the radial direction over a
whole vibrating period rather than the instantaneous profiles of the bath. The measured vibrating
amplitude indicates the total energy of the waves since on the curves the kinetic energy is fully
converted into potential energy.

As shown in Fig. 4(d), a giant (∼10 mm) meniscus-influenced region can be seen from the
bath profile. The formation of such an anomalous meniscus can be explained by Zisman’s rule
[30]: The high-energy liquid metal surface in contact with the relatively low-energy surface of the
glass container adopts a nonwetting regime, a configuration resulting in a large contact angle (large
meniscus), despite that the capillary length of the liquid metal lC = √

σ/(ρ1 − ρ2)g ∼ 3.0 mm is
comparable to that of common fluids (e.g., water lC ∼ 2.7 mm). The fact that the meniscus which
introduces the global wave field is governed by the relative surface energy of the contacting phases
implies that the realization of an integrated pilot-wave field is not limited to the liquid metal droplet-
bath system demonstrated here. Systems using common working fluids can also reproduce similar
effects by choosing nonwetting (super-hydrophobic or oleophobic) materials or by reducing the size
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FIG. 4. (a) Time-lapse side-view snapshots (slightly oblique) of the liquid metal bath at the vibrating onset.
From top to bottom, t = 0.00 ms, 22.23 ms, 41.67 ms, and 86.12 ms. (b) Side-view snapshots of a single droplet
bouncing on the vibrating bath (with no horizontal motion). The superposition of the droplet-induced local
wave field WD and the global wave field WG can be seen from the bottom panel. (c) Bath vibrating amplitude

z measured along the radial direction r at different driving accelerations as indicated. (d) Surface profile of
the quiescent liquid metal surface. (e), (f) Top-view snapshots featuring the maximum bath deformation at the
bath center due to meniscus oscillating (e) and the maximum localized bath deformation induced by droplet
impact (f). The maximum size of the dark region (deformed liquid metal surface) at the bath center (e) and the
droplet impact site (f) is indicated. γ 0 = 2.2 g.

scale (equivalently, the Bond number), for instance, using sessile drop configuration, to amplify
capillarity and generate a significant boundary curvature.

Emitted by the oscillating meniscus, the amplitude of the propagating wave fronts is affected by
two competing processes. The wave amplitude is damped by viscous dissipation while amplified due
to the shrinking geometry (diameter) of the waveform when propagating towards the bath center. As
shown in Fig. 3(c), the measured surface profiles increase radially towards the bath center in a near-
periodic fashion, indicating a stronger influence of the latter. This is guaranteed by the insignificant
influence of viscous dissipation (relative to inertial and surface energy) in the current system, as can
be expected from its marginal Ohnesorge number Oh = ν1

√
(ρ1 − ρ2)/(σλG) ∼ 7 × 10−4, where

λG = 6.4 ± 0.3 mm is the measured wavelength of WG. We note that λG can also be deduced from
the dispersion relation of surface waves interfacing two finite fluid layers [34,38],

ω2 = (ρ1 − ρ2)gk + σk3

ρ1 coth (kh1) + ρ2 coth (kh2)
, (3)
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where ω = 2π f is the angular velocity and k = 2π/λG is the wave number. Solving Eq. (3) for
the current system gives k = 0.96 mm−1 and therefore λG = 6.5 mm, which matches well with the
measured value. As discussed earlier, the surface profile measurement picks up only the maxima of
the bath vibrating amplitude, so the periodic surface profile indicates a standing-wave nature of WG.
This argument can be understood given the superposition of the inward-propagating wave fronts by
the outward-propagating ones reflected at the bath center. The traveling-to-standing-wave transition
can also be inferred from the vibrating onset process of the bath (Video 4 of the Supplemental
Material [35]), which shows that the transition is completed after the first few bath vibrations.

We proceed to discuss the vibration modes of the liquid metal bath in a cylindrical coordinate
(r, φ), where φ is the azimuthal angle. Considering a circular bath under vertical vibration and
excluding the influence of the dynamic meniscus, one would expect its instantaneous surface profile
to be modulated by


z(r, φ, t ) = A0 cos (ωt ) cos (iφ)Ji(2πri, j/λG), (4)

where A0 is the vibration amplitude at r = 0, Ji(x) is the order i Bessel function of the first kind,
i and j are integers indicating the vibration modes, and ri, j = μi

j/rB with μi
j being the root of the

equation J ′
0(x) = 0 [39]. The formation of the axisymmetric global wave field WG (concentric rings)

requires the vibration to be independent of φ, which leads to i = 0. Equation (4) then becomes


z(r, t ) = A0 cos (ωt )J0(2πr0, j/λG). (5)

Equation (5) suggests that the surface profile is a zero-order Bessel function J0(2πr0, j/λG). This
axial excitation mode (independent of φ) is the predominant mode in our system according to our
experimental observation. Equation (5) also means that the actual orbit radius rn should satisfy
J0(2πrn/λG) = 0. For the sake of simplicity, we use a linear correlation to approximate rn, which
should still provide sufficient accuracy to describe the current system [Fig. 2(c)].

The formation of the global wave field WG provides an additional confinement which locks the
horizontal motion of the liquid metal heterodimers into its circular orbits. This implies that the
droplets acquire the centripetal force needed for their orbital motion from their impact with WG

and the impact should therefore be made at an inclined inward-facing wave front. The increasing
vibrating magnitude of WG towards the bath center [Fig. 4(c) and Eq. (5)] implies different effective
vibrating accelerations among different orbits, which can be recognized as a level splitting effect
[23]. Due to such level splitting, when the bouncing droplets are located in different orbits, both
their vertical and horizontal motions are expected to be altered when traveling in different orbits
even under the same driving acceleration.

B. The integrated pilot-wave field

Before accessing droplet motion, it is worthwhile to characterize the vibration amplitude of the
two components of the integrated pilot-wave field, WG and WD. With the radial profile of WG

known, we roughly estimate the relative magnitude of the two wave fields by comparing their
maximum deformation. Since the liquid metal surface is smooth yet highly reflective, the sufficiently
deformed regions on the bath (including the meniscus region at the bath border, the deformed bath
center, and the droplet impact site) deviate illuminating light away from the recording camera on
top, rendering these regions low brightness [Figs. 4(e), 4(f), and 5(a)]. The size of the dark regions
outlined at the bath center and the droplet impact site gives an indication of the vibration amplitude
of WG and WD, respectively (note that the scale of the meniscus-influenced region also can be
estimated by measuring the width of the dark annular band surrounding the bright region). Provided
that both WG and WD follow the similar profile of the zero-order Bessel function [25], the deformed
(dark) region revealed from the top views can be directly related to the vibration amplitude of the
two wave fields. Given the small deformation (on the scale of ∼ 0.1 mm) in the current case, a linear
approximation can be assumed, which suggests that the magnitude of WD is of the same order of
magnitude but significantly smaller (about half) in reference to that of WG.
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FIG. 5. (a) Top-view of the vibrating liquid metal bath showing the global annular wave field WG.
(b) Visualized vortex field at the liquid metal-alkaline interface and (c) the corresponding vorticity color map
(λ0 = 1.6 g).

C. The bath vortex field

Using a digital particle-imaging-velocimetry technique, we further demonstrate the formation
of a stable counter vortex pair at the liquid metal-electrolyte interface (Fig. 5 and Video 6 of
the Supplemental Material [35]). The flow at the interface is visualized by adding boron tracer
particles (average size 50 μm) to the bath. Boron particles are selected due to their good material
compatibility with the liquid metal and the alkaline solution, as well as their desirable density to
settle at the interface. The vortex motion is again captured at the driving frequency (40 Hz) to
filter out bath motion [Fig. 5(b)]. In our experiments, rotating the container to different azimuthal
positions can change the orientation of the vortex pair, and increasing the driving acceleration also
leads to the increase of the vortex current magnitude. However, the vortex pair is always found
to exist even though care is taken to level the bath. Based on our observations, we propose that
the vortex pair emerges as a result of the azimuthal excitation of the system. Apart from driving
the radial excitation mode, which is responsible for the formation of WG and independent of the
azimuth angle φ [Eq. (5)], periodic forcing can also give rise to φ-dependent azimuthal excitation,
when higher-order modes, other than the zero-order mode, are excited [Eq. (4)]. When i � 0, the
term cos(iφ) in Eq. (4) breaks the axisymmetric vibration, and the vibration begins to show φ

dependence. Since periodic displacement with a gradient along the vibration direction has been
shown to induce transverse flows [40,41], the azimuthal excitation should be primarily responsible
for the formation of the vortex field in the current system. The structure of the visualized vortex
field suggests that the vortex pair is formed through the J1(2πr1, j/λG) mode excitation.

Being aware of the existence of the countervortex pair, the instantaneous yet periodic variations
of v and dl in Fig. 2(b) and Fig. 3(a) can be rationalized. Regardless of their binding regimes,
the two droplets of the heterodimers are accelerated by one of the vortices, with which they share
the same horizontal rotating direction during half of the orbiting cycle, and are decelerated by the
countervortex during the other half cycle. Due to the mirror symmetry of the vortex pair, the two
competing processes cancel each other out after each cycle, rendering v̄ and d̄l constant. Therefore,
although the orbits are geometrically symmetric, the orbital motion of the heterodimers is disturbed
locally by the vortex current. It thus can be seen that the level splitting of the orbits and the formation
of vortex pair in the current system alter both the interorbit and in-orbit energy landscapes of WG.

V. VERTICAL DROPLET MOTION

A. The shifted vertical bouncing

While orbiting horizontally on the bath, the droplets are at the same time bouncing vertically
in resonance with the bath vibration [Figs. 6(a) and 6(b)], both generating localized harmonic
waves. Since a single droplet will never start orbiting until it meets another dissimilar partner,
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FIG. 6. (a), (b) Oblique side views of the orbiting heterodimers in the short-range binding regime l = 0
(a) and the long-range binding regime l = 1 (b). (c), (d) Vertical bouncing trajectories of the small droplet
DS (upper panel) and the large droplet DL (lower panel) as a function of time for five consecutive bouncing
periods T of a (0, 3) heterodimer (c) and a (1, 3) heterodimer (d). (e) The spatialtemporal trajectories of the same
heterodimer in (e) obtained by visual tracking. (f) The spatialtemporal trajectories of the same heterodimer in
(d) obtained by visual tracking. The impact time difference 
t of the two droplets of the heterodimers are
indicated.

the interactions between individual droplets (DL and DS) and their self-generated local wave
fields (WD

L and WD
S ), hereafter denoted as DL ↔ WD

L and DS ↔ WD
S , respectively, should not

be responsible for their horizontal motions, nor should their interactions with the meniscus-induced
global wave field (DL ↔ WG and DS ↔ WG). The two-droplet configuration as a prerequisite for
their orbital-chasing motion implies that the association between the droplets and the wave fields
generated by their partners (DL ↔ WD

S and DS ↔ WD
L ) should provide the horizontal propulsion.

Their collective motions further require the horizontal propulsion acting on the two droplets to be
in the same direction.

To elucidate the origin of the directional horizontal propulsion, we compare the vertical motion
of individual droplets of the heterodimers in different regimes. For vertical droplet motion tracking,
the motions are recorded at 1600 Hz to generate 40 data points for each bouncing cycle. The typical
spatiotemporal droplet bouncing trajectories for the short-range binding regime [l = 0, Fig. 6(c)]
and the long-range binding regime [l = 1, Fig. 6(d)] are reconstructed from the high-speed images
[1]. The droplet trajectory curves are also generated by the aforementioned visual tracking method
[Figs. 6(e) and 6(f); see also Video 7 of the Supplemental Material [35]], which show an excellent
match with Figs. 6(c) and 6(d), again indicating good tracking accuracy. Comparing the vertical
motion of the two droplets in the heterodimers reveals that, while their vertical bouncing is always
synchronized with the bath vibration (i.e., in the simple bouncing regime) [1], their bouncing phase
is, however, different. Independent of their binding level and orbit level, the impact of the large
droplet DL is always found to be delayed by a time amount of 
t to that of the small DS , resulting
in a normalized bouncing phase shift θ/2π = 
t/T between the two [26,42].

B. The interdroplet particle-wave association

Being aware of the size-dependent bouncing phase shift, we can rationalize the horizontal
propulsion as well as the directionality of the orbital-chasing motions by considering the interdroplet
particle-wave association of each heterodimer (DL ↔ WD

S and DS ↔ WD
L ). Under the assumptions

that the in-orbit chasing motion is pseudo-one-dimensional, the droplets and their self-generated
waves share the same phase [25], and the Doppler effect is negligible (v � λD f ), the problem
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FIG. 7. (a) Schematics of the temporal phase shift between WD induced by the impact of DS (black) and
DL (red). (b), (c) Directional propulsion resulted from the interaction between individual droplets and the wave
field generated by their partners in the l = 0 regime (b) and the l = 1 regime (c). The characteristic time of
impact for cases i–iv is indicated in (a). The arrows indicate the direction of the propulsion that the local wave
field exerts on its partner droplet during impact. Here (b) and (c) are in the one-dimensional spatial reference
frame along the orbit.

is simplified to the interactions between individual droplets and the waves emitted by their partners
with a phase shift θ from a distance dl . If we allow for the shifted evolution of WD

L and WD
S as

presented in Fig. 7(a), the particle-wave association DL ↔ WD
S and DS ↔ WD

L of the heterodimers
in the l = 0 and l = 1 binding regimes are depicted in Fig. 7(b) and Fig. 7(c), respectively. Here
z = 0 represents the zero position of the droplet-generated local wave field WD.

For both regimes, by the time DL lands on the bath, WD
S has already evolved for a period 
t

due to the bouncing phase shift. Therefore, the impact site of DL has been distorted by WD
S upon

landing. As shown in Fig. 7(b), when l = 0, since d̄0 = (dL + dS )/2 < λD/3 in the current system
(λD = 6.5 ± 0.2 mm is the measured wavelength of WD, which is independent of droplet size), DL

always lands on the back side of WD
S (relative to the direction of wave propagation) and experiences

a propulsion p towards upper right (i). The interaction between DS and WD
L takes place at t = T ,

by then WD
L has evolved for a time interval T − 
t . Therefore, the impact of DS is made on the

front side of WD
L , while WD

L is returning to its zero position. Consequently, DS is propelled towards
upper right, the same direction as DL (ii).

For l = 1, due to the change of the interdroplet binding to the d̄l = (l − εl )λD ∼ 0.8λD regime,
the delay of the bouncing phase of DL results in the impact of DL being made at the front side
of WD

S (iii) and that of DS at the back side of WD
L (iv), respectively. Under the long-range binding

regimes, both droplets feel a propulsion towards the upper left [Fig. 7(c)]. It thus can be seen that the
propulsions resulted from the interdroplet particle-wave association always propel the two droplets
of the heterodimers to move towards the same horizontal direction. Moreover, the direction of the
propulsion will be switched between the short-range binding regime and the long-range binding
regimes due to the spatial change between the droplets.

VI. LINKING HORIZONTAL ORBITING AND VERTICAL BOUNCING

The quantization of the orbital motions now can be written as

d̄l =
{

(dL + dS )/2, l = 0
(l − εl )λD, l = 1, 2, 3, . . .

, (6)

rn = (n − εn)λG, n = 1, 2, 3, . . . . (7)
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FIG. 8. (a) A survey of droplet size distribution. (b) Relative droplet size and its acceleration dependence
(inset).

As discussed earlier, in Eq. (7) a simplified linear correlation is used to approximate J0(2πrn/λG) =
0. Equation (6) and Eq. (7) give clear indication that the quantization of the binding level and the
orbit level results from the interaction of the bouncing droplets with two wave fields of different
origins, which is a signature of the integrated pilot-wave droplet-bath system. The offsets εl = 0.2
and εn = 0.4 are thought to result from the self-tuning by the heterodimers in order to stabilize the
two types of particle-wave associations [1,22,24]. For instance, the association between the droplets
and the wave emitted by their partners should self-adjust to maintain their collective motion when
counteracting the locally changing current of the vortex pair along the orbits, which manifests as the
observed instantaneous velocity and binding distance changes in Fig. 2(b) and Fig. 3(a). Moreover,
the association between the heterodimers with the global wave field should also self-adapt to orbit
radii that ensure dynamically stable correlation between their orbiting velocity and centripetal force
in a given orbit level. It is of course reasonable to expect mutual influences between these self-tuning
behaviors. Consequently, although the integrated pilot-wave field has a complex energy landscape,
the heterodimers are able to maintain their well-defined yet dynamically stable collective motions.

We proceed to investigate the relation between θ/2π and v̄ as a function of the driving
acceleration γ 0. Four most stable orbiting regimes (l, n), namely, the (0, 2), (0, 3), (1, 2), and (1,
3) regimes, are selected and compared. The driving acceleration is increased progressively from the
bouncing threshold γ B ∼ 1.0 g to the Faraday threshold γ F ∼ 3.2 g, with a step size of 0.2 g. To
obtain θ and v̄, the trajectories of the vertical bouncing motion and the horizontal orbiting motion
of the heterodimers under each condition are captured by high-speed imaging, and the images are
analyzed using visual tracking. Nearly 500 heterodimers (1000 droplets) in total are analyzed, and
the size distribution of the droplets is presented in Fig. 8(a) and Fig. 8(b). Due to the size filtering
effect of the vibrating bath based on its effective acceleration [43], which in the current case is
determined by both γ 0 and n (level splitting), the droplet diameter d in our experiment is restricted
to a narrow range from ∼1.0 mm to ∼1.6 mm. In addition, the mutual influence between the two
droplets in the heterodimers further imposes restrictions on the droplet size selection. As a result,
the size difference between DL and DS is found to be small, with the average of their diameter ratio
dS/dL close to 0.9 [inset of Fig. 8(b)].

The delay of the impact of the large droplet to that of the small is found to hold for all the surveyed
heterodimers, and all the droplets are in the simple bouncing regime, even at high accelerations. As
shown in Fig. 9(a) and Fig. 9(b), correlations are found between the maxima of θ/2π and γ 0/g,
and the two types of binding regimes (l = 0 and l = 1) lead to different acceleration dependence.
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FIG. 9. (a), (b) Acceleration dependence of θ/2π for the (0, 2), (0, 3) regimes (a) and the (1, 2), (1, 3)
regimes (b). The error in the measurement of θ/2π is 0.02. The pentagrams show the acceleration-dependent
phase shift of the same heterodimer. (c), (d) Acceleration dependence of v̄ for the (0, 2), (0, 3) regimes
(c), and the (1, 2), (1, 3) regimes (d). Error in v̄ measurement < 0.04 mm s−1. The scatters represent the
measured values, based on which the filled regions are drawn as guides for the eyes. The inset of (d) depicts
the geometrical constraints, which shows how the tangent projection of the droplet momentum is influenced
by the binding distance dl and orbit radius rn.

In the short-range binding regime (l = 0), the phase shift maxima increase almost linearly with
γ 0/g [Fig. 9(a)], while for the long-range binding regimes (l = 1), the maxima show a parabola-
like acceleration dependence [Fig. 9(b)]. Note that multiple phase differences are possible for a
given acceleration in each regime as can be seen from Fig. 9(a) and Fig. 9(b). This is a result
of different droplet size of the heterodimers. The pentagrams in Fig. 9(b) further demonstrate the
gradual decrease of θ/2π from about 0.1 at γ 0/g = 2.4 to near zero at γ 0/g = 3.0 for a (1, 3) regime
heterodimer that we are able to maintain for longer than 1 h. When θ/2π becomes near zero, the
heterodimer stops its orbital motion.

The influence of the global wave field WG on θ/2π and v̄ can be seen from the heterodimers in
the same binding level l but different orbit level n, since the effective acceleration of WG decreases
as n increases due to level splitting [Fig. 4(c)]. Comparing the phase shift of the (0, 2) regime with
the (0, 3) regime [Fig. 9(a)] or the (1, 2) regime with the (1, 3) regime [Fig. 9(b)], one finds that for
the same binding regime, moving from one orbit level to another will not change the acceleration
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dependence of the phase shift. The main influence is a downshift of its maxima at higher orbit level
n. This is in good agreement with the energy landscape of the orbits of WG given level splitting.
As shown in Fig. 9(c) and Fig. 9(d), the surveyed average orbiting velocity v̄ in different binding
regimes shares very similar acceleration dependence with θ/2π : The maxima of v̄ also show a near-
linear and a parabola-like acceleration dependence for the l = 0 and l = 1 regimes, respectively.
Such similar acceleration dependence between θ/2π and v̄ implies that the vertical bouncing of
the heterodimers and their horizontal orbiting motion is directly related, which reflects the fact that
the horizontal motion originates from the vertical bouncing of the droplets. The different particle-
wave association regimes between the two types of interdroplet binding regimes should be
responsible for their different acceleration dependence.

Noticeably, similar influence of n on the v̄ maxima is also found to hold for the l = 0 regimes
but breaks down for the l = 1 regimes; that is, instead of showing an overall downshift of v̄ maxima
in response to their acceleration dependence in Fig. 9(b), the heterodimers in the (1, 3) regime
demonstrate higher velocity than the (1, 2) regime under certain driving conditions [Fig. 9(d)]. Such
scenarios observed in the long-range binding regimes are not violations of our discussions, and
the observation can indeed be understood by further considering the enhanced spatial influences
on droplet motion in the long-range binding regimes. In the orbiting plane, the direction of p′
(the horizontal component of p resulting from interdroplet particle-wave association) is in the
two-droplet alignment, which is not the same as v (along the tangent of the orbit) [see inset of
Fig. 9(d)]. This requires the momentum of the droplet to be projected partially to the tangent
direction and partially to the normal direction of the orbiting plane (the x-y plane). The normal
projection is compensated for during the droplet-bath impact, which results in the centripetal force
p⊥ needed for maintaining the orbital motion. Given the superposition of waves, we consider the
influence of the global wave field WG and the local wave field WD separately. We also assume
that both WG and WD induce similar v̄-γ 0 correlations for both the short-range binding regime and
the long-range binding regimes, through modulating the effective acceleration only (i.e., when the
geometrical configurations are not considered). The geometrical configurations determine how the
heterodimers distribute the tangent and normal projections, thereby affecting their orbiting velocity.
The tangent projection of the velocity resulted from interdroplet particle-wave association scales
as v = v0cosϕ(l,n), where ϕ(l,n) is the angle between p′ and v. The geometrical constrains of the
horizontal motion lead to

ϕ(l,n) = arcsin (dl/2rn). (8)

Following Eq. (8), besides the effective acceleration which determines tangent velocity v0, the
tangent projection is also affected by both quantized regime parameters dl and rn. Moreover, the
two have opposite influences. The tangent projection is suppressed (increase in ϕ(l,n)) by increasing
the binding distance dl but favored by increasing the orbit radius rn. As can be deduced based on
Eqs. (6)–(8), the change between ϕ(0,2) ∼ 7.5◦ and ϕ(0,3) ∼ 4.5◦ is small when the orbit level moves
from n = 2 to n = 3 in the short-range binding regimes. This is because in this case d0 is small and v

is mainly determined by the n-dependent effective acceleration. Therefore, the achievable velocity
decreases as the orbit level moves from n = 2 to n = 3, due to a drop in the effective acceleration
[Fig. 9(c)].

As dl significantly increases in the long-range binding regimes [Fig. 9(d)], the same orbit level
change causes significant drop in ϕ(l, n), from ϕ(1, 2) ∼ 30.5◦ to ϕ(1,3) ∼ 18.2◦. In this case, the
geometrical influence is magnified due to increased dl , which becomes comparable to that of the
effective acceleration. Since high orbit level n favors the tangent projection, particularly for large
dl , the (1, 3) regime is able to achieve higher velocity than the (1, 2) regime under certain driving
conditions, which explains the different orbit-level dependence between Fig. 9(b) and Fig. 9(d). It
can also be inferred from Eq. (8) that a more significant tangent velocity projection should be one of
the reasons for the short-range binding regime to have a higher velocity than the long-range binding
regimes. Another reason should be their more energetic particle-wave association (less damping).
Both of them are caused by the change in the interdroplet binding distance dl . Similarly, the analyses
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can also be extended to higher-level long-range binding regimes (l = 2, 3, 4, . . . ) by considering the
more significant influence of their regime parameters on both ϕ(l,n) and damping.

VII. DISCUSSION

We have demonstrated the quantized orbital motion of dissimilar droplet pairs in the liquid
metal droplet-bath system where the droplet motions are directed by a dual pilot-wave field. The
quantization of the orbit radius and the binding distance is shown to be a result of the droplets
interacting with the waves formed by meniscus oscillating and the impact of their partner droplets,
respectively. The origin of the horizontal motion lies in a temporal bouncing phase shift between the
two droplets of the chasing heterodimers due to their size mismatch. As shown by Moláček and Bush
[26] and Couchman et al. [44], this is required by the vertical dynamics for the dissimilar droplets
with different contact time and restitution coefficient to bounce in resonance with the vibrating
bath. Our experiments evidence that the result of the mismatched bouncing is a delay of the impact
of the large droplet to that of the small one, and, more importantly, the breaking of bouncing
symmetry is a mechanism for initiating directional horizontal droplet motion. As discussed by
Eddi et al. [21], Galeano-Rios et al. [25], from the perspective of symmetry breakdown, the liquid
metal heterodimers share similarity with the ratcheting droplet pairs. However, there are also major
differences between the two types of motions in terms of directionality, reversibility, and binding
regime. Note that in the current study we limit the vertical phase comparison to the bouncing phase
shift between the two droplets in the heterodimers. In order to reach a better (more comprehensive)
understanding of phase evolution in the system, it is worthwhile for future studies to further include
the vibrating phase of the shaker (driving phase) as well as the bath wave field.

The interaction of the heterodimers with the two pilot-wave fields should both be considered to
understand the observed quantized, directional, in-orbit chasing motions. The interaction between
the droplets and the local wave field generated by their partners determines the chasing direction,
through different particle-wave association regimes characterized by the interdroplet spatial binding.
Differently from the binding of walkers, the quantization of interdroplet binding distance in our
experiment is found to only take successive integers of λD (no half-wavelength binding regime has
been observed). The relatively small achievable bouncing phase shift of the chasing liquid metal
heterodimers, θ/2π < 1/4 throughout the applied acceleration range [Figs. 9(a) and 9(b)], might be
responsible for such a difference, since half-wavelength binding typically occurs when the droplets
are bouncing in antiphase (θ/2π = 1/2) [1,6,20,22–24]. The vertical trajectories of the droplets
show that their bouncing is synchronized with the bath vibration as well as the meniscus oscillating,
featuring the driving frequency f. This indicates that both the waves generated by the meniscus
oscillating and by the droplet bouncing are harmonic. Furthermore, the droplets in the current system
mainly adopt the simple bouncing mode, which coincides with our previous report [34]. Due to
the dominance of the single bouncing regime, the chasing direction of the heterodimers shows no
dependence to applied acceleration.

There are three reasons that could possibly account for the absence of the walking and other
bouncing regimes in the current system: (1) the peculiar fluid properties of the liquid metal in
comparison to the commonly used silicon oils; (2) instead of a gaseous environment (air), the
liquid metal droplets bounce on a liquid-liquid interface and their free flight takes place in a liquid
phase, and, consequently, the droplets are expected to experience distinct drag and lubricating force
due to significant differences in viscosity and compressibility of the surrounding medium; and (3)
influenced by the meniscus-induced waves, the bath becomes unstable before the transition states
being reached.

The interaction between the droplets and the annular global wave field provides the confinement
to lock the horizontal motion of the heterodimers into circular orbits, which would otherwise be
in an arbitrary direction. We note that, although kept unchanged in the current experiments, λG

can be readily adjusted through frequency control. Allowing for the superposition nature of waves
and their tunability, guiding droplets with an integrated pilot-wave field could be a promising
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strategy for future work to reveal the unexploited potentials of the droplet-bath system. In this
regard, our findings could provide helpful guidelines for advancing the pilot-wave hydrodynamics
and extending its implications to other physical systems. The striking similarities between the
heterodimers in the current hydrodynamic system and the optical system are convincing as to the
driving role of the local wave field and the confining role of the global wave field for particle/droplet
guiding in both systems. The evidence unveils symmetry breakdown as a universal mechanism for
motion initiating in wave-mediated systems.
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