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Many practical applications (e.g., coating, painting, printing, or agrochemical spraying)
involve depositing complex fluids onto a solid substrate using a predominantly uniaxial
extensional flow. In this work, we conduct experiments by gradually depositing non-
Newtonian surfactant fluids onto a horizontal solid substrate via a vertical needle. We
investigate the extent to which, the spreading dynamics of the fluid contact line on the
solid substrate can affect the thinning dynamics of the fluid filament formed between the
needle and the substrate. Our work considers two model viscoelastic surfactant fluids based
on cetylpyridinium chloride and sodium salicylate (CPyCl/NaSal) and octadecyltrimethy-
lammonium bromide and sodium oleate (C8TAB/NaOA) in deionized water. Experiments
are performed using two flat substrates: a big substrate, where fluid contact line is free
to move, and a finite-size substrate, where fluid contact line is pinned. The fluid wetting
on the substrate is characterized by measuring the contact-line velocity and dynamic
contact angle, while the extensional flow is evaluated by measuring the fluid midfilament
diameter. Two novel regimes are identified: In regime I, fluid wetting and filament pinch-off
dynamics are independent, while in regime II, the fluid wetting significantly affects the
extensional flows by lowering the material extensional relaxation times and Trouton ratios.
Our analysis shows that spreading of these viscoelastic surfactant fluids are surprisingly
well captured by Tanner’s law suggested for spreading of a Newtonian fluid on solid
substrates. Finally, we propose a scaling analysis based on a combination of the wetting
forces and viscous dissipation that can successfully explain the effects of wetting on
filament pinch-off dynamics.

DOI: 10.1103/PhysRevFluids.5.053303

I. INTRODUCTION AND BACKGROUND

The phenomenon of fluid spreading on solid substrates is important in several applications such
as inkject printing, gravure printing, contact drop dispensing, shampoos, agrochemical spraying,
oil-recovery, coating, and others [1–4]. Good spreading is required for most of these applications.
Surfactants are amphiphilic molecules that promote wetting and spreading. Hence, in many of the
above applications where wetting of the fluid is desirable, surfactants are added at moderately high
concentrations to improve spreading. When dissolved in aqueous medium, surfactant molecules
self-assemble into variety of shapes including spherical, rodlike, or lamella depending on the
surfactant packing parameter p = v/a0lc, where v and lc are volume and length of the hydrophobic
tail and a0 is area of the hydrophilic head. For p < 1/2, surfactants form entangled threadlike
micelles in the semidilute regime [5]. In the semidilute concentration regime, self-assembled
surfactant solutions exhibit strong shear thinning viscoelastic properties [6–8].
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In majority of the above applications, particularly gravure printing and contact drop dispensing,
a complex fluid is deposited onto a substrate using a predominantly uniaxial extensional flow. After
fluid has touched the solid surface, the fluid contact line will be freely moving, while a fluid column
forms in the space between the nozzle and the horizontal surface. This gives rise to an interesting
fluid mechanic problem, whereby the fluid filament thinning and wetting dynamics are coupled. On
the one hand, formation of such filaments may affect the fluid spreading dynamics on the substrate;
on the other hand, a moving fluid contact line may affect the pinch-off dynamics of the filament.

Filament pinch-off dynamics and extensional flows of semidilute viscoelastic surfactant solutions
have been extensively studied via capillary breakup extensional rheometry (CaBER) [9–13] or fila-
ment stretching extensional rheometry (FiSER) [14,15]. These techniques have provided important
new insights about the dynamics of viscoelastic surfactant fluids in primarily extensional flows. For
example, the uniaxial extensional flows of viscoelastic surfactant fluids is known to be dominated
by strong nonlinear effects such as flow-induced micellar structures [11,12,16] or flow-induced
micellar breakage [13,17,18]. These insights are crucial for quantitative analysis of the flow of
viscoelastic surfactant solutions through microfluidic cross-slot [19–21], entrance channels [22],
flow past a cylinder [23–25], or flow past a falling sphere [17,18,26–28].

The hydrodynamics of the Newtonian droplet spreading on a flat solid substrate is well-
understood and several reviews have been compiled on this topic [1,2,29,30]. However, wetting
dynamics of the non-Newtonian fluids on solid substrates has been examined to a smaller degree.
The effects of shear thinning, elasticity and shear thickening have been considered in the past.
Bonn and colleagues have experimentally studied the effects of shear thinning on wetting dynamics
of a rigid polymer solution based on Xanthan gum [31]. These researchers illustrated that when
gravity is negligible, the shear thinning slows down the spreading of the fluid compared to that of a
Newtonian fluid. Subsequent experiments by Wang and co-workers showed a similar trend for the
effect of shear thinning [32].

The effects of normal stresses (or elasticity) on the contact-line motion has been studied by
considering constant viscosity elastic (Boger) fluids based on polymer solutions on horizontal flat
substrates [31,33,34]. Bonn and coworkers showed that the contact-line motion in Boger fluids is
similar to Newtonian liquids. Therefore, elasticity does not seem to change the spreading dynamics
of the viscoelastic fluids in those studies. Moreover, other researchers have shown that the shear
thickening behavior slightly accelerates the droplet spreading dynamics compared to that of a
Newtonian fluid [32,35].

In several industrial applications, including the ones noted above, these two aspects (dynamic
wetting and extensional flows) are coupled and therefore, investigating the simultaneous effects
of these two factors is necessary for proper optimization of these processes. To the best of our
knowledge, an investigation into the interplay between dynamic wetting and extensional flows
in viscoelastic surfactant solutions does not exist. On the one hand, in all prior extensional flow
measurements with CaBER or FiSER, wetting plays a negligible role because the fluid contact line
in such devices is intentionally pinned to the lower substrate. On the other hand, prior relevant
studies on wetting and spreading have only considered spreading dynamics of sessile droplets on
a horizontal substrate in the absence of any extensional flows that could develop in a vertical fluid
column.

The main objective of this paper is to fill this gap by investigating, for the first time, the
interplay between kinetics of contact-line motion and the filament pinch-off dynamics in viscoelastic
surfactant solutions. In particular, our primary goal is to probe the extent to which, if any, wetting
of the non-Newtonian surfactant fluids can affect the extensional deformation of the viscoelastic
surfactant fluids. To achieve this, we will utilize a modified CaBER device namely as dripping-
onto-substrate (DoS), which has been used to quantify the filament thinning dynamics of a range
of dilute polymer solutions [36–41]. In DoS experiments, a fluid sample is slowly forced out of
a vertical needle to settle on a solid substrate. Once the fluid droplet reaches the substrate, the
droplet will spread on the substrate and as a result, a column of fluid forms in the space between
the nozzle and the lower plate, which will thin and eventually pinch off. The filament pinch-off
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in this case is controlled by a balance between surface tension, elastic and/or viscous forces. In
our opinion, the dripping onto substrate technique provides a suitable platform to investigate the
interplay between contact-line wetting and the filament pinch-off dynamics. To evaluate whether
contact-line dynamics influence the extensional flow properties of complex fluids, we will use
a big hydrophilic substrate that allows for a freely moving contact line during extensional flow
measurements. The results of these experiments will be directly compared to data obtained with a
pinned contact line on a smaller solid substrate made of a similar material.

II. WETTING THEORY

A. Newtonian fluids

The spreading dynamics of a Newtonian droplet is controlled by a combination of forces
including gravity, inertia, capillarity and viscous dissipation. The most celebrated theory for wetting
of Newtonian fluids (when gravity and inertia are negligible) is proposed by Tanner [42] as follows:

R(t ) =
[
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, (1)

where V , R, σ , B, η, and t denote the droplet volume [m3], radius of the droplet that is in contact
with the solid substrate [m], surface tension [N/m], a constant parameter, the fluid viscosity [Pa s],
and the wetting time [s], respectively. In addition, the dynamic contact angle of the Newtonian fluid
on solid substrates is given by Hoffman-Voinov-Tanner’s law as [43–45]

θ3 ∝ U, (2)

where U is the contact-line velocity with the unit of [m/s].

B. Shear thinning

Since surfactant solutions used in this work show strong shear thinning behavior, we briefly
describe the theoretical background on the spreading dynamics of non-Newtonian shear thinning
fluids on solid substrates. For example, the theoretical work of Starov and coworkers [46] showed
that for a power-law fluid with a viscosity of η = K γ̇ n−1, where K , γ̇ , and n are consistency factor,
shear rate, and the power-law index, respectively, and the spreading radius of a shear thinning
axisymmetric droplet in contact with the solid substrate is expressed as
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where R0 is the initial radius of the contact line, � is a dimensionless constant, and β = n
3n+7 is

the spreading exponent. Rafai et al. [31] have arrived at a similar relation for spreading of shear
thinning power-law fluids. For a Newtonian fluid β = 0.1, which leads to recovery of Tanner’s law.

In addition, Starov et al. [46] showed that the contact-line velocity U for a power-law fluid can
be expressed as

U = �n
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For Newtonian fluids Eq. (4) yields the Hoffman-Voinov-Tanner’s relation [Eq. (2)].

C. Normal stresses

Normal stresses that are developed in the droplet of wormlike micelles, during spreading process,
can facilitate the spreading dynamics. Normal stress differences in a viscoelastic fluid can be
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expressed as N1 = 	γ̇ 2, where 	 is the first normal stress difference coefficient. Rafai et al. [31]
showed that if r is the distance from droplet peripheral, the normal stress gradients in a drop can be
estimated as ∇N1 ≈ N1/r and the viscous stress gradient is ηṘ/h. Here Ṙ and h denote the rate of
change in contact-line radius and the height of the spreading droplet, respectively. The ratio of these
stresses N = 	Ṙ

ηr can be used to determine if the normal stresses are significant. At a critical radius
of rc (near the contact-line edge), where the normal stresses start dominating the viscous stresses,
Rafai et al. [31] showed that the contact-line radius contains a logarithmic correction to Tanner’s
law and is given by

R(t ) ∼ V 3/10

(
σ t

η

)1/10[
log

ηt

10	1

]−1/10

. (5)

To evaluate the important forces acting on viscoelastic surfactant solutions during droplet spread-
ing in DoS experiments, the above relations [Eqs. (1)–(5)] will be compared to the experimental
data.

III. MATERIALS AND METHODS

Experiments are performed on two sets of viscoelastic surfactant fluids: (1) monohydrate cetyl-
pyridinium chloride (CPyCl) and sodium salicylate (NaSal), and (2) octadecyltrimethylammonium
bromide (C8TAB) and sodium oleate (NaOA). Both systems are prepared by mixing the chemicals in
deionized water. CPyCl and NaSal are supplied by Sigma-Aldrich. C8TAB and NaOA are acquired
from TCI America. The aqueous solutions of CPyCl/NaSal contain a fixed amount of [CPyCl]
= 100 mM and various salt concentrations [NaSal] = 53–90 mM. In addition, the total salt and
surfactant concentration in C8TAB/NaOA solution is 3 wt% (C8TAB+NaOA) with the relative
weight fraction of C8TAB varying from 25 to 70 wt%.

The primary objective of this study is to systematically investigate the effects of wetting
dynamics on extensional rheology of surfactant solutions by modifying the rheological properties
(e.g., viscosity and relaxation times) and type of the surfactant and/or salt. One commonly accepted
way to modify the rheological properties of surfactant solutions is to change the salt concentration
at a fixed surfactant concentration. In doing so, we noticed that majority of surfactant solutions
used in literature show a peak in zero-shear-rate viscosity when the salt concentration increases
beyond a critical threshold at a fixed surfactant concentration. Overwhelming majority of such
studies have suggested two possible mechanisms for existence of the peak in the zero-shear-rate
viscosity: (1) transition from linear to branched micelles [47–52] and (2) beyond the critical
concentration, micelles shrink in size but retain their linear morphology [53–55]. CPyCl/NaSal
is a well-studied system that follows scenario (1), while C8TAB/NaOA solution serves as the
model fluid system for the second scenario. Therefore, these two micellar systems with different
salt to surfactant concentration ratio enable us to access a broad range of rheological properties and
micellar microstructure.

The steady-state shear rheology response of these solutions were measured in a commercial
Anton-Paar rheometer (MCR 302) using a standard bob and cup geometry with Ri = 13.5 mm and
Ro = 14.5, where Ri and Ro denote the radius of the bob and cup, respectively. Moreover, a standard
cone-and-plate geometry with a cone diameter of 50 mm and cone angle of 1◦ was used for normal
stress measurements. In these experiments, a range of shear rate is imposed to the solutions and the
resulting steady-state shear viscosity and/or normal stress differences are measured. In addition, the
small amplitude oscillatory shear experiments were performed to obtain the viscoelastic properties
of the wormlike micelles.

Figure 1 shows a schematic of the custom-made dripping onto substrate experiments used in this
paper. In this device, we use a syringe pump to inject the fluid in a vertical blunt needle (with an
inner diameter of 1.7 mm) at a flow rate of 30 μl/min. The distance between the needle and the solid
surface is chosen to be 4 mm, and once the fluid touches the lower substrate, flow is stopped. The
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FIG. 1. A schematic of the custom-made dripping onto substrate device that is used to perform experiments
in this study. In this figure U , R, θ , and D denote the contact-line velocity, radius of the contact line, contact
angle, and the midfilament diameter.

fluid column that forms between the needle and the solid surface will undergo a filament thinning
process and eventually pinch off. The solid substrates are disks made of stainless steel with diameter
of 10 cm and 4 mm. The smaller size substrate is chosen such that the fluid contact line can be
pinned to the edges of the substrate, while, on the larger substrate, the fluid contact line can freely
move outwards. After finishing each experiment, we use deionized water to thoroughly clean the
surface and dry it before the next experiment. We have reproduced our experiments several times,
therefore, this cleaning procedure does not affect the results. A high speed camera (Model Phantom
Miro-310, Vision Research Inc.) is used to acquire temporal evolution of the filament thinning and
the contact-line dynamics [13].

A MATLAB script has been developed in house to further analyze the raw images acquired by
the high speed camera. Through edge detection algorithm we have quantified the temporal evolution
of (1) the midfilament diameter, (2) the radius of the droplet that is in contact with the horizontal
solid substrate, and (3) the fluid contact angle at the contact line. Further detailed information about
our image analysis technique is provided in the Supplemental Material [56].

IV. RESULTS

Figure 2 shows the zero-shear-rate viscosity of the two viscoelastic surfactant solutions as a
function of salt to surfactant concentration ratio. It is evident that the zero-shear-rate viscosity in
these two solutions exhibit a maximum that is reminiscent of the topological transitions of the
micelles reported in previous publications.

Figure 3(a) shows a series of snapshots that illustrate the filament thinning dynamics and contact-
line motion for a viscoelastic surfactant solution of CPyCl/NaSal (100 mM/60 mM). In addition,
Fig. 3(b) shows a similar solution when the fluid contact line is fixed at the peripheries of the lower
surface. For the larger substrate, the contact line is free and moves radially outwards to partially wet
the solid surface. This motion leads to further stretching of the elastic fluid filament that is formed
between the needle and the solid substrate. Conversely, for the smaller substrate, the contact line
is pinned and does not move during filament thinning process and therefore, the length of the fluid
filament remains unchanged.

Figure 4 shows the temporal evolution of the dimensionless filament diameter D/D0 for the
two series of viscoelastic surfactant fluids. Here, D and D0 correspond to the midfilament diameter
and the initial fluid filament diameter in DoS experiments, respectively. In Fig. 4, empty symbols
correspond to the results of DoS experiments when the fluid contact line is free, while filled symbols
denote the experiments for which the fluid contact line is pinned. Clearly, the filament thinning
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FIG. 2. Zero-shear-rate viscosity of the viscoelastic micellar solutions.

process follows two distinct regimes: For some solutions (e.g., 30% C8TAB/NaOA or CPyCl/NaSal
with [NaSal] = 60 mM), the filament thinning is similar for both free and pinned contact lines
(regime I). Whereas, for other solutions (e.g., 50% C8TAB/NaOA or CPyCl/NaSal with [NaSal] =
53 mM), the filament thinning dynamics are qualitatively different for the free and pinned contact
lines (regime II).

Figure 5 illustrates the lifetime of the fluid filaments in these viscoelastic surfactant solutions.
Empty symbols denote experiments with the pinned contact line, while filled symbols correspond
to a freely moving contact line. In regime I, the filament lifetime for experiments with the free
contact line is similar to that of the experiments with the pinned contact line. While in regime II, the
filament lifetime for a free contact line is shorter than the experiments with pinned contact line. For
experiments with pinned contact line, the filament lifetime is defined as the interval between pinning
moment to the filament pinch-off instant. Additionally, for experiments with the big substrate, the
filament lifetime is defined from the moment that the diameter of the fluid on the surface is 4 mm
until the filament pinch-off time.

We have investigated the effects of the contact-line motion on extensional rheological properties
of these systems by calculating the extensional relaxation time and the maximum Trouton ratios.

FIG. 3. Filament thinning and contact-line dynamics in a viscoelastic micellar fluid based on CPyCl/NaSal
(100 mM/60 mM) when the contact line is (a) free and (b) pinned to the lower plate. The filament pinch-off
time is denoted as t f . The length of the scale bar in panels (a) and (b) is 1.5 mm.
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FIG. 4. Time-resolved variation of the dimensionless filament diameter for the two viscolastic surfactant
fluids based on (a) C8TAB/NaOA and (b) CPyCl/NaSal system. The filled symbols denote the results with
pinned contact line, while empty symbols correspond to the freely moving contact line. The solid curves
correspond to the best fit of Eq. (6) to the elastic regime. The midfilament diameter at the beginning of the
experiments is denoted as D0.

To determine the extensional relaxation times of the viscoelastic surfactant fluids, the exponential
relation proposed by Entov and Hinch [57] [Eq. (6)] was fitted to the experimental data in the inter-
mediate elastic regime, where the filament diameter decays exponentially with time (see continuous
curves in Fig. 4). To determine the intermediate elastic thinning regime in DoS experiments, the
initial and final points of fitting need to be identified. We have shown in our previous published
work that the onset of elastic regime is characterized by formation of a cylindrical filament that
can be observed in raw images. The end of elastic thinning regime is the time that the transient
extensional viscosity reaches an asymptotic value. For further details on the exponential fitting to
the experimental data, readers are referred to our earlier study [13]. Figure 6 shows the resulting
extensional relaxation times for the two model viscoelastic surfactant fluids. Similar to the two
regimes reported for the filament lifetime, we report two regimes for extensional relaxation times.
In regime I, the extensional relaxation times obtained for pinned and free contact lines are the same,
while in regime II, the extensional relaxation times obtained in experiments with a freely moving
contact line are shorter than that of measured for the pinned contact line:

D

D0
∝ exp(−t/3λE ). (6)

FIG. 5. Filament lifetime as a function of (a) C8TAB weight percentage for C8TAB/NaOA viscoelastic
solutions and (b) NaSal concentration in the CPyCl/NaSal systems.
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FIG. 6. Extensional relaxation time of the viscoelastic surfactant fluids as determined by the best fit to
Eq. (6) for (a) C8TAB/NaOA and (b) CPyCl/NaSal fluids. Empty symbols correspond to the experiments
where contact line is pinned, while, filled symbols correspond to the freely moving contact lines.

Moreover, Fig. 7 shows the maximum Trouton ratio of these viscoelastic systems for pinned and
freely moving contact lines. The maximum Trouton ratio is defined as Trmax = ηE ,max/η0, where
ηE ,max and η0 denote the maximum transient extensional viscosity before filament pinch-off moment
and the zero-shear-rate viscosity of the fluids. The transient extensional viscosity is defined as ηE =
−σ/(dD/dt ), where σ denotes the surface tension of the viscoelastic surfactant solutions. In this
study, we used surface tension σ = 32 mN/m for CPyCl/NaSal and 35 mN/m for C8TAB/NaOA
solutions [13]. The transient extensional viscosity of the viscoelastic surfactant solutions increases
as filament undergoes the thinning process and levels off before the filament pinch-off moment
(results not shown). This is consistent with prior published studies on viscoelastic surfactant fluids
[9,10,13]. Again, the two regimes are observed for the maximum Trouton ratios of these viscoelastic
surfactant fluids.

In summary, we report two distinct behavior for extensional flows of these viscoelastic fluids. In
regime I, the fluid response does not depend on the dynamics of the contact line (whether free or
pinned), while in regime II, a free contact line leads to shorter filament lifetimes, shorter relaxation
times and smaller maximum Trouton ratios than that of measured for the pinned contact line. In the
following, we will provide a detailed quantitative analysis to rationalize these findings.

FIG. 7. Maximum Trouton ratio (Trmax) as a function of salt to surfactant ratios for (a) C8TAB/NaOA
and (b) CPyCl/NaSal viscoelastic fluids. Filled symbols indicate a freely moving contact line, while empty
symbols correspond to pinned contact lines.
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TABLE I. List of viscoelastic surfactant fluids with their properties.

Fluid Chemical Concentration Bo α m2 m1 γ̇min (1/s) γ̇max (1/s) θ f

25 wt% 3.54 0.08 3.4 6.6 0.001 0.16 21.6
27.5 wt% 3.96 0.09 4.1 5.5 0.001 0.11 35
30 wt% 5.9 0.08 3.2 10.7 0.0007 0.03 50
35 wt% 5.4 0.08 3.9 6.8 0.0007 0.02 41.2

C8TAB/NaOA C8TAB 40 wt% 3.75 0.12 3.6 7.4 0.005 0.166 33.5
42 wt% 3.14 0.13 3.8 6.5 0.032 0.39 36.5
50 wt% 2.75 0.12 3.8 7.1 0.104 3.41 42.3
60 wt% 2.41 0.13 3.3 6.1 0.22 5.12 36.2
70 wt% 2.58 0.13 2.9 4.0 0.31 70 29.5

53 mM 3.97 0.13 3.4 7.8 0.054 1.23 51
55 mM 3.62 0.10 3.5 4.9 0.015 0.25 48.5
60 mM 5.4 0.14 3.8 5.9 0.0023 0.11 43.3

CPyCl/NaSal NaSal 70 mM 7.66 0.13 2.6 5.7 0.0023 0.12 31.7
80 mM 4.42 0.15 3.2 6.9 0.015 0.15 39.8
85.5 mM 3.58 0.18 3.2 5.8 0.02 0.32 55.6
90 mM 3.14 0.14 2.5 5.3 0.18 2.36 53

V. DISCUSSION

To further elucidate the role of the contact-line motion (i.e., wetting) in DoS experiments, we
begin our discussion by evaluating the important forces that control the contact-line dynamics in
viscoselastic fluids. When contact line is free, its motion is controlled by a balance between wetting
forces on the surface, gravity, inertia, elastic and/or viscous forces. The normal stresses may develop
in the bulk of the moving droplet and in the vertical fluid column that forms between the needle and
the substrate. While wetting forces, inertia, gravity and normal stresses in the droplet facilitate the
droplet spreading, viscous forces inside the droplet and elastic stresses that are developed in the
vertical fluid column resist against droplet spreading.

First, to assess the importance of the gravitational forces, we will use dimensionless Bond
number defined as Bo = 4ρgR(t )2/σ , where ρ is the fluid density. Table (I) shows the maximum
Bond number for samples tested in these experiments. We note that the contact-line radius increases
as a function of time in DoS experiments. Therefore, the maximum Bond number is defined for the
conditions that correspond to the filament pinch-off moment. It is clear that the Bond number for
all experiments is beyond unity, which indicates that gravity is important in these experiments. An
alternative way to evaluate the importance of the gravitational forces is to compare the radius of
droplets with that of the capillary length l = (

√
σ/ρg) ≈ 1.87 mm. Our experiments indicate that

the radius of the contact line for all experiments is larger than the capillary length. Therefore, we
conclude that the gravitational forces are important in these experiments.

The effects of inertia is negligible in these experiments because the Reynolds number Re =
ρUR/η � 1. As pointed out in the introduction, the wetting process in both Newtonian and non-
Newtonian fluids is described by a universal power-law relation as R(t ) ∝ tα , where α can vary
depending upon the type of fluid or forces involved in the wetting process. To assess the significance
of the viscous, elastic and surface tension forces in our experiments, we have plotted the temporal
evolution of the dimensionless radius of the droplet on the surface as a function of time for different
viscoelastic surfactant solutions in Fig. 8(a). We have fitted the data of Fig. 8(a) to such a power
law relation. Figure 8(b) shows the power law index α for all fluids considered in this work when
the contact-line is free. Interestingly enough, the average value of this power index α = 0.11±0.03,
which is very close to the celebrated Tanner’s law for Newtonian sessile droplets spreading on a
surface in the absence of gravity [42,58–60].
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FIG. 8. (a) Dimensionless radius of the contact-line as a function of time for sample viscoelastic surfactant
fluids. The dashed curve corresponds to R(t ) ∝ tα when α = 0.1. (b) The power exponent (α) as a function of
salt concentrations (NaSal) and surfactant concentration (C8TAB) in viscoelatic fluids under consideration in
this study.

An alternative way to analyze the spreading dynamics of viscoelastic surfactant solutions is to
quantify the temporal evolution of the fluid contact angle and contact-line speed. The dynamic
contact angle of the spreading droplet is an important parameter that provides a more in-depth
understanding of the forces involved in wetting and spreading of the fluids. Figure 9 shows the
normalized contact-line velocity U/Uf as a function of the dimensionless dynamic contact angle
θ/θ f for sample surfactant fluids. Here θ f and Uf denote the dynamic contact angle and the
contact-line velocity at the moment of filament pinch-off. The kinetics of the fluid contact angle
in Fig. 9 could be divided to two stages denoted by filled and open symbols. Right after the fluid
has touched the solid substrate θ/θ f is at its maximum and the contact angle begins to decay very
rapidly [see also, e.g., fluid snapshots for −0.1t f < t < 0 in Fig. 3(a)]. We call this early stage
of the wetting and use empty symbols to denote this rapid contact-line wetting process. Based
on our visual observations, the end of the early stage of the wetting always coincides with the
onset of filament formation [i.e., t = 0 in Fig. 3(a)]. Beyond t = 0, the contact angle decays with
a slower rate toward equilibrium contact angle. We call this the late stage of the wetting [see

FIG. 9. Dimensionless contact-line velocity as a function of contact angle for viscoelastic surfactant fluids.
Empty symbols correspond to the rapid decay of the contact angle after deposition of the fluid onto the solid
substrate and filled symbols indicate the contact-line dynamics during extensional flow measurements.
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t = 0 − 0.95t f in Fig. 3(a)] and use filled symbols to mark this regime. The late stage of the
wetting always coincides with the time window for which the extensional flow measurements are
performed.

To further analyze these results and to identify the important forces that control the contact-line
dynamics in these two regimes, the data of Fig. 9 are fitted to the power-law function of U ∼ θm, and
the power-law indices are determined for the early and late stages of the wetting. Table I shows the
power-index m for each surfactant solutions. Power-law indices m1 and m2 correspond to the early
and the late stages of the wetting, respectively. For the early stages of the wetting, m1 > 3, while
the late wetting stage is best described with m2 ≈ 3.3 ± 0.4. Based on this analysis, the early stages
of the fluid wetting significantly deviate from Tanner-Voinov-Cox relation proposed for Newtonian
fluids. This is perhaps not surprising, because as noted by Wang and coworkers, the Tanner-Voinov-
Cox relation [Eq. (2)] is valid only for the late time spreading behavior when the contact angle
approaches the equilibrium contact angle [61]. Therefore, at the early stages of the wetting, where
the contact angle is far from equilibrium, a new model should be developed to better capture the
dynamics of spreading and contact-line motion [61]. However, the data of Fig. 9 indicates that in the
late stages of the contact-line motion during which extensional flow measurements of Figs. 5–7 are
performed, the wetting dynamics closely follow Tanner-Voinov-Cox relation. This clearly confirms
that the wetting dynamics of surfactant solutions during extensional flow measurements is controlled
by a combination of wetting and viscous forces. This result is consistent with the above discussion
on Fig. 8, that during the filament thinning process, the wetting is controlled by capillarity and the
viscous forces.

The surfactant solutions considered for this study exhibit a strong shear thinning viscoelastic
behavior (see Figs. S2 and S3 in the Supplemental Material [56]). Therefore, it is rather unexpected
to observe that shear thinning and normal stresses do not affect the fluid spreading dynamics
during extensional flow measurements. To assess the effects of these non-Newtonian features on
the spreading dynamics of these surfactant solutions, we have calculated the characteristic shear
rate at the fluid contact line for all experiments. The shear rate at the contact line is defined as:
γ̇ = 1

R(t )
dR(t )

dt . This characteristic shear rate is calculated by differentiating a smooth spline function
that is fitted to the data of Fig. 8(a). This minimizes the scattering caused by differentiating the raw
data (see Fig. S4 in the Supplemental Material [56]). The characteristic shear rate is maximum at the
early stages of the wetting process and gradually decays as wetting is underway. Table I shows the
minimum and maximum characteristic shear rates that the contact line experiences over the course
of filament thinning process. Even the maximum characteristic shear rate for each solution lies
below the onset of shear thinning regime in the steady shear viscosity data [compare characteristic
shear rates of Table I with the onset of shear thinning in Fig. S2 of the Supplemental Material [56]).
This means that these fluids behave Newtonian-like at the contact line and therefore, shear thinning
should not affect the dynamics of the contact line.

To assess the effects of bulk normal stresses, we have measured the first normal stress coefficients
	1 as a function of shear rate for the viscoelastic surfactant solutions (see Fig. S5 in the
Supplemental Material [56]). The normal stress differences for the range of shear rates shown in
Table I are not detectable in the rheometer. In addition, if normal stresses were important, Eq. (5)
would have predicted α values smaller than 0.1. Since this is not the case in our experiments, we can
conclude that the normal stresses that develop in the bulk of the liquid droplet are unimportant and
should not affect the wetting dynamics. In addition to the bulk normal stresses, normal stresses can
develop in the vertical fluid filament. These normal stresses act as a resistance against the droplet
spreading on the solid substrate and hence, should slow down the wetting dynamics of surfactant
solutions. However, as shown in experimental results of Figs. 8 and 9, the spreading dynamics of
the wormlike micelles does not appreciably differ from that of a sessile Newtonian droplets (with
no vertical fluid filament attached to it). Our hypothesis is that the normal stresses inside the vertical
thinning filament, between the needle and the substrate, may have compensated for the effects of
gravity. To test this hypothesis, we provide an estimate for the normal stresses in the vertical fluid
filament and compare that to the gravitational stresses. The normal stresses in the vertical fluid
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column can be estimated as: ηE ε̇, where extension rate ε̇ = −2
D(t ) dD(t )/dt . The ratio of the normal

stresses in the vertical fluid column to that of the gravity E is

E ∼ ηE ε̇

2ρgR(t )
∼ σ

ρgR(t )D(t )
. (7)

During extensional rheological measurements, the midfilament diameter, D and the radius of the
contact line, R vary typically from 1 to 0.1 mm and 1.5 to 5 mm, respectively. Using this information,
E is estimated to be in the order of unity, and therefore verifies our hypothesis that the normal
stresses that develop in the vertical fluid column balance out the effects of gravitational stresses.

The above analysis together with the experimental results of Figs. 8 and 9 suggest that although
these surfactant solutions are strongly shear thinning viscoelastic fluids, their wetting dynamics
are controlled only by viscous stresses that develop in the droplet and the capillary forces. In the
following we invoke a simple scaling analysis based on the balance between the surface tension
forces and the viscous dissipation to assess whether we can distinguish the two regimes reported in
Figs. 5–7. During drop spreading, the wetting force, Fw, which is the driving force for spreading is
counteracted by the viscous dissipation force, Fv . The balance between these two forces controls the
kinetics of wetting. Fw results from surface tension forces and can be expressed as

Fw ≈ 2πR(t )σcos θ. (8)

However, the viscous dissipation for a Newtonian droplet is

Fv ≈ ηγ̇ πR2(t ). (9)

By constructing the ratio of these two forces, a capillary number emerges as

Ca = Fv/Fw = ηUave/2σcos θave. (10)

For the sake of simplicity, we have used an averaged contact-line velocity Uave, contact angle θave,
and the zero-shear-rate viscosity of the viscoelastic micellar fluids to calculate the capillary numbers
for each of the surfactant solutions. The average velocity and the contact angle are determined
by taking the arithmetic average of the velocity and/or the contact line at the beginning of the
filament formation and right before the filament pinch-off moment. Figure 10 shows the capillary
number as a function of concentration for the two viscoelastic surfactant fluids. In this figure, empty
symbols denote experiments where the contact-line wetting significantly changes the extensional
properties of the fluid (regime II), while filled symbols correspond to the cases that wetting does
not affect the extensional rheological properties (regime I). Beyond a critical capillary number Ca
≈0.1, the wetting dynamics affect the extensional flow properties of the viscoelastic surfactant
fluids. Interestingly enough, this dimensionless capillary number can separate the two regimes from
each other and therefore, serves as a suitable criterion to explain the spreading dynamics of these
surfactant solutions in DoS experiments.

A simple check for the above criterion is to test its validity for Newtonian fluids. To do so,
we have performed DoS experiments on two Newtonian fluids using pinned and freely moving
contact lines. Our results indicate that fluid spreading on the solid surface does not affect the
filament pinch-off dynamics in these Newtonian fluids (see Fig. S6, Fig. S7, and Table I along
with the pertaining discussion in the Supplemental Material [56]). Furthermore, by using a similar
procedure described above for viscoelastic surfactant solutions, we have calculated very small
capillary numbers for the experiments with these two Newtonian fluids (10−3 and 6 × 10−3). These
capillary numbers are well below the critical capillary number of Ca ≈ 0.1 shown in Fig. 10. This
result is consistent with the above findings that the contact-line wetting does not affect the filament
pinch-off dynamics of these Newtonian fluids. Hence, the criterion based on the capillary number
holds for Newtonian fluids. The classical formulation of the advancing contact-line problem in
Newtonian fluids with no-slip boundary condition on a solid surface gives rise to the nonintegrable
singularity of the shear stress, and fluid pressure at the moving contact line [62]. From a physical
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FIG. 10. Capillary number as a function of salt (NaSal) or surfactant (C8TAB) concentrations for the two
viscoelastic surfactant fluids studied in this work. Filled symbols indicate experiments where the contact-
line wetting does not influence the extensional flow measurements, while empty symbols are those cases that
contact-line dynamics significantly affect the extensional flow properties.

point of view, the singularity problem is not meaningful, therefore, several methods (e.g., replacing
the no-slip boundary condition on the solid surface by a slip one [62,63]) are proposed to remove
the contact-line singularity. For shear-thinning fluids, calculations have shown that the contact-line
singularity is removed due to the viscosity decrease [64,65]. In developing the above criterion based
on the capillary number, the contact-line singularity is not important because the capillary numbers
are calculated using experimentally determined parameters (e.g., contact angle, contact-line speed,
shear rate, etc).

For a nonionic surfactant solution based on dioctyl sulfosuccinate sodium salt on a hydrophobic
flat surface, Bonn and coworkers showed that spreading dynamics is similar to that of the Newtonian
fluid for concentrations beyond critical micelle concentration (CMC) [66]. However, for a dilute
surfactant solution based on trisiloxane, the spreading occurs much more rapidly than a Newtonian
fluid with the droplet radius varying as R(t ) ∝ tα with α taking all values between 0.1 and 1 [67].
The latter surfactant system is a peculiar solution known to exhibit superspreading behavior [66,68].
The super spreading behavior has been linked to several mechanisms including (1) caterpillar
motion of the contact line that reduces the viscous dissipation [69], (2) transfer of surfactant
molecules from air-liquid to the liquid-solid interface [70], (3) formation of surfactant aggregates at
the fluid contact line [71] and (4) Marangoni flows due to depletion of the surfactant at the leading
edge of the contact line [72]. Since super spreading is not observed in our experiments, the above
mechanisms do not affect the measurements reported in this study.

Additionally, surfactant adsorption to the liquid-air or liquid-solid interfaces could deplete the
droplet interior of the surfactant and as a result affect droplet spreading dynamics. For example, von
Bahr et al. [73] showed that for Thiohexadecanol surfactant solutions in the vicinity of CMC, the
adsorption of surfactant to the interfaces is important and leads to R(t ) ∝ t1/2. In the experiments
reported in this paper the fluid spreading rate is much slower than the one noted by von Bahr et al.
[73]. In addition, the surfactant concentrations are much higher than their CMC (>103). Therefore,
we expect that the adsorption of surfactant molecules to the liquid-vapor and liquid-solid interfaces
should not affect the concentration of surfactants in the bulk and consequently, surfactant solutions
spreading dynamics will not be influenced by adsorption of surfactants to such interfaces.

Finally, the droplet spreading on heterogeneous or rough substrates maybe affected by the
pinning-depinning phenomenon, where the leading edge of the contact line exhibits a stick-slip
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pattern [74,75]. Our measurements of the radius of the contact line presented in Fig. 8 do not show
any signs of stick-slip behavior. In fact, the high spatial and temporal resolutions (10 μm and 1 ms)
of our visualization technique would have enabled us to detect the pinning-depinning phenomenon
at the contact line if it had existed. We have also presented new videos that show the filament
thinning and contact-line spreading dynamics (see Supplemental Material videos [56]). As a result,
we believe that the pinning-depinning mechanism does not play any role in our DoS experiments
with the large substrate. A systematic investigation of the effect of surface roughness on wetting
dynamics in DoS experiments is beyond the scope of this work and we hope to present such results
in the near future.

VI. CONCLUSIONS AND OUTLOOK

Harking back to the motivation of this study, we investigated for the first time the link between
fluid wetting and the filament pinch-off dynamics in model viscoelastic surfactant solutions over
a wide range of salt concentrations. The key findings of this study include the following: First,
we identified two new flow regimes which have not been previously reported in prior pertaining
literature on complex fluids [13,37–41]. In regime I, the extensional flow is not affected by motion of
the contact line on the solid substrate, while, in regime II, the motion of the fluid contact line on the
big solid substrate significantly impacts the extensional flow properties by shortening the filament
lifetimes, extensional relaxation times, and the maximum Trouton ratios of the fluids compare to
that of the pinned contact line. Second, we analyzed the wetting and spreading dynamics of these
viscoelastic systems by measuring the contact-line radius and the contact angle, and illustrated
that the spreading dynamics of these viscoelastic fluids is controlled by a combination of wetting
forces and viscous dissipation. This is perhaps unsurprising because the characteristic shear rates
at the moving fluid contact line are close to Newtonian regime when compared to the steady shear
rheology data; a result that renders the effects of shear thinning and elasticity negligible. Third, we
developed, for the first time, a criterion based on the dimensionless capillary number that is capable
of distinguishing these two flow regimes from each other. This criterion also holds for Newtonian
fluids. This study confirms our hypothesis that wetting dynamics and extensional flow properties of
complex fluids are closely linked to each other.

In future, we will systematically investigate the link between wetting dynamics and extensional
flow properties of a wide range of complex fluids including polymer solutions, polyelectrolytes,
yield stress fluids, colloidal suspensions, among others. In particular, it will be interesting to test
if the same criterion based on the capillary number can explain the interplay between wetting
dynamics and extensional flows in other types of complex fluids. Finally, the wetting dynamics
on solid substrates depends on the type (hydrophilic versus hydrophobic) and roughness of the
substrate. A systematic investigating of the effects of surface type and roughness on filament
pinch-off dynamics of viscoelastic surfactant solutions is currently underway.
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