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This work studies the aggregation of colloids under depletion attraction focusing on
the effect of hydrodynamic interactions on cluster kinetics and average structures. Our
numerical study is based on a variant of the immersed boundary method (inertial coupling
method) which solves the solvent fluctuating hydrodynamics and instantaneously couples
the particle and the fluid momentum transfer. Comparison is made with Langevin dynamics
and Monte Carlo methods, which do not include hydrodynamics. We consider a small
system (20 and 40 particles) which reproduces the system considered by Whitmer and
Luijten [J. Phys. Chem. B 115, 7294 (2011)] (analyzed by multiparticle rotation dynamics).
In that work, the authors report substantial hydrodynamic effects altering the cluster sizes
and shapes. By contrast, within statistical error, we have not found any hydrodynamic effect
on the average clusters structure. We also analyze the time-evolution of the aggregation
kinetics, revealing a slowing down of the process due to the reduction of the mobility close
to the clusters. The time correlation of the cluster number, shape, and size reveals two
characteristic times: a decay at short times faster than the single-particle diffusion time tD,
followed by a slower exponential decay at long times with a typical time of several tD.

DOI: 10.1103/PhysRevFluids.5.053301

I. INTRODUCTION

Understanding of aggregation of colloidal particles is of great interest in industrial applications
and biological systems. Such a process can be controlled through changes in the effective inter-
particle potential. Given that the resulting structures are diffusing in a fluid, the influence of the
hydrodynamic interactions look like a natural and relevant matter to figure out how the aggregation,
percolation, and gel formation processes are affected by them. Because of the complexity of such
systems, simulations show up as a relevant tool to approach the problem.

The first simulations on colloid aggregation modeled the colloid dynamics as a collection of
independent Brownian walkers [1–5]. We will use “Brownian dynamics” (BD) to distinguish this
approach from other methods including hydrodynamics. It is certainly computationally expensive
to solve or model the correlations induced by hydrodynamic interactions. Probably for this reason,
hydrodynamics has been neglected in the vast majority of computational studies. It was argued that
the sole effect of hydrodynamics is to slow down the aggregation process, but not the topology of
the aggregated structures at long times. Hydrodynamic interactions certainly alter the aggregation
kinetics because they directly modify the colloidal mobility (which becomes a nonlocal collective
property). However, in the case of reversible aggregation (moderate attractive energies U < 5kBT )
one expects the cluster statistics to be controlled by the free energy of the colloid phase (which
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does not depend on hydrodynamics, as the Einstein relation proves). Following this argument, BD
should be enough to capture the average cluster shape found in reversible aggregation. Aggregation,
however, takes place in the unstable portion of the phase diagram (interaction energy versus colloidal
volume fraction φ) and in some cases, like in a deep quench, the attraction energy is large (U >

5kBT ) and aggregation becomes irreversible. The role of hydrodynamics, both in reversible and
irreversible aggregation is, however, still under debate. Partly because “irreversibility” is just an
ideal, which in practice can only be defined in terms of some (long) observation time. As stated,
hydrodynamic simulations are expensive and this fact shortens up the observation time, which is a
source of misleading conclusions. Novel computational schemes and faster computer technologies
will allow us to unfold the role of hydrodynamics on the evolution of colloidal aggregation.

In one of the earliest studies comparing 3D aggregation using BD and a hydrodynamic solver
[6], particles were modeled using a smooth-profile representing the interface between particles
and fluid phase [7]. Using short-ranged potentials and more than 2000 particles, these authors did
not observed relevant differences between both methods, up to a volume fraction of φ ∼ 0.3. A
subsequent work by Furukawa et al. [8] disagree with these findings: the fluid particle dynamics
method (FPD) revealed different cluster statistics when compared with BD. Using a similar
number of particles, volume fraction, and potential interaction they found that gelation (colloid
network-forming) is favored if the hydrodynamic interactions are considered. They explain such a
difference as an effect of the incompressible nature of the solvent, which generates a transversal
flow when two colloids are approaching, even changing the dynamics of small clusters located
initially in an icosahedron, N = 13, where N is the number of particles of such an aggregate.
Another work by Whitmer and Luijten [9] confirmed such appealing conclusion, by comparing
multiparticle collision dynamics (MPC) with Langevin Dynamics (LD) in small systems with a total
number of particles NT = 20, with depletion (short-ranged) potentials. Surprisingly, even at low
volume fractions (φ ∼ 0.025), the hydrodynamic interactions introduced by MPC lead to different
cluster shapes and size distribution, compared with those with LD (no hydrodynamics). However,
the study on the influence of hydrodynamics on the clusters average asphericity in Ref. [9] were
somewhat contradictory: Hydrodynamics tend to form more spherical clusters for U ∼ 3kBT , while
more elongated structures for U ∼ 4.7kBT and it was found to have little effect for U ∼ 6kBT .
The second virial coefficient was introduced as a key factor determining the type of aggregation of
colloids, in agreement with other works [10].

The influence of hydrodynamics in the kinetics of the gelation process was studied in detail in
Ref. [11]. As the aggregation process advances in time, two different regimes were distinguished.
In the initial regime, when the particles were aggregating in small clusters, hydrodynamics slows
down the generation of such structures, while in the second regime where clusters are merging,
hydrodynamics accelerates the process. This is due to the artificial slowing down of the diffusion
coefficient DN ∼ 1/N of a cluster of size N formed by independent Brownian walkers. In reality,
the hydrodynamic drag on a cluster of radius R(N ) leads to DN ∼ 1/R(N ) ∼ N−ν , where ν is the
fractal dimension of the cluster (ν ∼ 0.35 for globularlike clusters). This effect was observed to
increase with the volume fraction. In Ref. [12] BD is compared with stochastic rotation dynamics
(SRD is similar to MPC) coupled to molecular dynamics (SRD-MD) to find that the gelation
(cluster percolation) threshold decreases when hydrodynamics is considered. It was also found that
hydrodynamic effects diminish when the attractive potential is made stronger, but it creates more
elongated clustering structures. Similar conclusions have been observed when comparing FPD and
BD [13]. The effect of long-range potentials with repulsive barrier has been also studied [14–16],
and similar observations about differences in the percolation threshold have been claimed.

In view of such disparity of conclusions and simulation methodologies, in this work we start
a first step toward a revision of the subject. To that end, we deploy the inertial coupling method
(ICM) [17], which consists on a version of the immersed boundary method where the fluctuating
hydrodynamics of the solvent are explicitly solved using a finite-volume scheme, while particles and
fluid are instantaneously coupled via conservation of momentum. In a thermal environment, such
coupling guarantees that fluctuation-dissipation balance is respected without the need of an extra
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dissipative channel for the particle (the noise acts on the fluid phase as a random stress). Particle
fluctuations in velocity and position follow the Gibbs-Boltzmann statistics, as they should [17].
We compare ICM with Langevin (LD) and Monte Carlo (MC) simulations, where hydrodynamic
interactions are lacking. These two models (LD and MC) differ in their dynamics, in the sense
that LD simulations can be mapped to a real “time,” by assigning the (single-particle) LD friction
coefficient ξ to the Stokes friction coefficient 6πηR (where R is the particle radius and η the fluid
viscosity). We note that in the ICM method, the Stokes friction coefficient is not an input, but
naturally arises from the dynamics (the input parameters in ICM being simply R and η).

In this work, we consider the same system used in Ref. [9], where a small number of particles
interact with a short-range potential in a periodic box with a low volume fraction φ ∼ 0.025. Our
results, are however quite different as we did not find any significant change in the cluster average
structures owing to the presence of hydrodynamics. We also considered the temporal evolution of
the aggregates only to confirm the slowing down caused by the hydrodynamic interactions. We also
detect two different time scales in the time correlation of the aggregate size and shape, characterizing
short and long time processes. The paper is structured as follows: in Sec. II the system is described.
In Sec. III the different methods of simulation which have been used are explained. In Sec. IV the
numerical results are presented: time-independent results in Sec. IV A and time-dependent results
in Sec. IV B. Finally, the conclusions are exposed in Sec. V.

II. THE SYSTEM

Our system is a colloidal suspension of particles of radius R immersed in a solvent with
depletants (usually globular polymers in experiments). We do not resolve the depletant dynamics
and approximate the colloid free energy by a pair-wise interaction taken from the Asakura-Oosawa
theory [18]. In particular, following Ref. [9], we use the Asakura-Oosawa-Vrij potential UAOV

combined with a (steric) repulsive 1/r36 potential Uss, where r is the distance between particles,

U (r) = Uss(r) + Uatt(r), (1)

being

Uss(r) = α1

β

(
1

r36
− 2

α18
2 r18

+ 1

α36
2

)
(2)

and

Uatt(r) =
{ 1

β
[B(r − σcc)2 + C], if 0 < r < (1 + α3ζ )σcc,

UAOV(r), if (1 + α3ζ )σcc � r < α2.
(3)

The range of attraction of the depletion potential is determined by the parameter ζ ≡ 2Rg/σcc,
where Rg is the radius of gyration of the depletant, and σcc the colloidal diameter. The strength of the
depletion is controlled by ζ and the polymer concentration φp. The cutoff radius of the depletion is
given by α2 = (1 + ζ )σcc. Temperature is introduced through the usual parameter β = 1

kBT , where
kB is the Boltzmann’s constant and T the temperature. To ensure that the potential is smooth at its
cutoff radius, the repulsive term has been supplemented by a 1/r18 term, and the amplitude α1 of
the repulsive force is considered equal to σ 36

cc . The AOV depletion potential has been modified with
a quadratic term to avoid singularities in the range of interaction. The crossover with the added term
is determined by α3. The constants B and C are calculated to get a continuous and differentiable
potential

B = 1

β

3φp

4α3ζ 4σ 2
cc

[(1 + ζ )2 − (1 + α3ζ )2],

C = UAOV[r = σcc(1 + α3ζ )] − B(α3ζσcc)2. (4)
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FIG. 1. Depletion potentials used in this work: see Table I for details.

The explicit expression of the AOV potential reads

UAOV(r) =
{

− 1
β
φp

( 1+ζ

ζ

)3[
1 − 3r/σcc

2(1+ζ ) + 1
2

( r/σcc

1+ζ

)3]
, if 1 < r/σcc < (1 + ζ ),

0, otherwise.
(5)

The colloidal diameter of the potential is set to σcc = 4.3, which is somewhat larger than the
hydrodynamic diameter 2R = 3.64. Two different potentials drawn in Fig. 1 have been considered,
with the following parameters: ζ = 0.347 and φp = 0.560 (potential 1), and ζ = 0.072 and φp =
0.216 (potential 2). Both potentials have the same second virial coefficient. As done in Ref. [9], we
will consider that the fluid density ρ = 5 is greater than the solid density ρs = 3.0. Temperature
will be taken as kBT = 1 and viscosity as η = 2.49 so the Schmidt number of one colloidal particle
is given by Sc ≈ 50, which matches that of Ref. [9].

We consider the system in Ref. [9] which contains NT = 20 particles (system 1) and yet another
similar one with NT = 40 (system 2) at the same volume fraction. The periodic cubic box used
for system 1 has size L = 32 and L = 40 for system 2. We have performed Nsim = 9 different
simulations during a time t ∼ 1000 tD, where tD is the diffusion time of one single particle. The
parameters of the system can be consulted in Table I.

III. METHODS OF SIMULATION

A simulation box of size L is considered, where NT colloidal particles of radius R are diffusing
in a solvent with density ρ and viscosity η. The particles are interacting through the depletion
potential Uatt described in Sec. II. Periodic boundary conditions are taken in each direction. The
volume fraction of particles is calculated as φ = NVpart/Vtotal, Vpart being the volume of one single
particle and Vtotal = L3 the total volume of the simulation box. As we have written before, three
different models are considered to simulate the system: Langevin dynamics, Monte Carlo, and
inertial coupling method.

A. Langevin dynamics

Langevin dynamics solves the dynamics of small particles in a solvent which creates a drag force
to each particle and adds a random velocity leading to Brownian motion. The fluid drag is −ξvi

so that particles do not interact hydrodynamically and mutual friction is neglected. The velocity
relaxation rate γ = ξ/m (where the particle mass is m) is directly related to the amplitude of the
random force to ensure consistency with the equilibrium thermal average 〈v2

i 〉 = (3/2)kBT/m. This
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TABLE I. Parameters of the model. The diffusion time tD = R2/D, where D = kBT/(6πηR) is the Stokes-
Einstein diffusion coefficient and we work in kBT = 1 units. Two different set of runs were performed using
Nsim = 9 long runs (over 1000 tD) and another set with Nsim = 96 shorter runs of 176 tD.

R 1.82
L 32 (system 1) 40 (system 2)
NT 20 (system 1) 40 (system 2)
β 1
η 2.49
ρ 5
ρs 3
tsim ≈1000 tD or ≈176 tD

Nsim 9 or 96
σcc 4.3
φp 0.560 (pot 1) 0.216 (pot 2)
ζ 0.347 (pot 1) 0.072 (pot 2)
α3 0.1
dt 0.01
D 0.0117

so-called fluctuation dissipation balance is ensured by adding time-uncorrelated Brownian jumps in
velocity, d ṽi(t ) = √

2kBT γ dW i, where dW i(t ) is a Wiener process (independent for each particle)
whose variance is just the time step dt . Colloidal aggregation forces are represented by pair-wise
attractive colloidal interactions −∇Uatt(|r j − ri|) where i and j indicate two whatever colloids,

mdvi = −ξvidt + md ṽi(t ) −
∑
j �=i

∇Uatt(|r j − ri|)dt . (6)

LD does not consider the solvent dynamics, which just appears in the friction coefficient ξ . To
compare LD with ICM we use its Stokes form ξ = 6πηR.

B. Monte Carlo

Monte Carlo simulations are based on the Metropolis algorithm, which consists on a process
which generates a sequence of states or system’s configurations. In its steady state, this process
samples the canonical Gibbs-Boltzmann distribution (proportional to exp[−βU (N )({r})], where
U (N ) is the potential energy of the ensemble of NT colloidal particles in a volume V at temperature
T ). Strictly speaking Monte Carlo simulations do not offer dynamic information, however, if the
exploration of the phase space is carried out by simple translational random jumps of individual
particles, MC becomes quite similar to a purely diffusive process of independent Brownian walkers.
Here we use such procedure: Starting from a random configuration of particles, we move the system
by changing randomly the position of one single particle at a time, as specified in Ref. [19].

C. ICM

ICM is a computational method to simulate suspensions with or without thermal fluctuations. In
this method, the solvent dynamics is simulated by using a finite-volume method in a rectangular
grid. Through a staggered scheme, the Navier-Stokes equations modeled by ICM read

∇ · v = 0, (7)

∂tv = −∇π − ∇ · vv + η

ρ
∇2v + 1

ρ
∇ · (

√
2ηkBTW̃v ), (8)
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FIG. 2. Time evolution of the total clusterized mass (particles in clusters of size N � 2 in simulations with
and without hydrodynamics (ICM and LD, respectively). Error bars represent the standard error.

where ρ and v are the density and velocity of the fluid and η its shear viscosity. π is the pressure,
which is used as a Lagrange multiplier to ensure the free divergence condition Eq. (7). The noise
term W̃v is given by

W̃v = Wv + WT
v√

2
, (9)

where Wv is an uncorrelated tensor of random Gaussian terms with the next covariance,〈
W i j

v (r, t )Wkl
v (r′, t ′)

〉 = δi jδklδ(t − t ′)δ(r − r′). (10)

The particles are included through the immersed boundary method (IBM) [20] as Lagrangian
points (blobs) that can freely move. The interaction between the Lagrangian particles and the
Eulerian solvent is calculated via an interpolating kernel δa(r), which is bell-shaped and compact
supported of size a [17]. Such a kernel is considered as a discrete approximation of the Dirac delta
function. With this kernel we can perform two important operations to model a two-way coupling
between the fluid and the blobs. On one hand, the local averaging linear operator J(q), q being the
position of the blob, allows for the calculations of the local velocity vq in the position of the blob,

vq(t ) = Jv(r, t ) =
∫

δa(q − r)v(r, t )dr. (11)

However, the local spreading linear operator S(q) transfers the force F(t ) applied on the blob to the
fluid as a smooth force density field f (r, t ),

f (r, t ) = SF(t ) = F(t )δa(q − r). (12)

A no-slip constraint on the blob is imposed through an instantaneous coupling between the velocity
of the fluid v and the velocity of the particle u,

u = Jv(r, t ). (13)

For further details about the incompressible ICM model, the reader is referred to Ref. [17].
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(closed symbols) are presented for ICM (red), Langevin dynamics (blue), and Monte Carlo (pink) simulations.
Dashed line corresponds to P(N ) ≈ 1

〈N〉 exp (− N
〈N〉 ). The error bars represent the standard error.

IV. NUMERICAL RESULTS

A. Long time averages

This section focuses on statistical averages performed at long times, once the (reversible)
aggregation process is settled to a stationary state. As shown in Fig. 2, a steady state is reached
typically after a transient of about 10 tD, once the average fraction of particles linked in some
cluster reaches about half the total number of particles. To properly sample the steady state, we
have performed Nsim = 9 simulations during a total simulation time of ∼1000tD, where tD = R2/D
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FIG. 4. Probability of the number of bonds per particle for a system with 20 particles interacting with
the potential 1. Results are presented for ICM (red), Langevin dynamics (blue), and Monte Carlo (pink)
simulations. The error bars represent the standard error. The average number of bonds in a cluster of size
N � 2 is 1.55.

053301-7



VÁZQUEZ-QUESADA AND DELGADO-BUSCALIONI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
ro

ba
bi

li
ty

 d
en

si
ty

Asphericity

N = 5

ICM
LD
MC

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
ro

ba
bi

li
ty

 d
en

si
ty

Asphericity

N = 10

ICM
LD
MC

FIG. 5. Probability density of the asphericity for clusters of size N = 5, 10. Results are presented for ICM
(red), Langevin dynamics (blue), and Monte Carlo (pink) simulations. The error bars represent the standard
error. Results correspond to potential 1 in Fig. 1.

[with D = kBT/(6πηR)] is the diffusion time of one particle. The total sampling time is similar to
that used in Ref. [9] (96 simulations during 88tD).

We now consider the average distribution of cluster sizes in the stationary regime. A particle
belongs to a cluster if it is located at a distance less than α2 (potential range) of some other particle
of the cluster. The probability of encountering a particle in a cluster of size N is given by

P(N ) = nN N∑Nmax
i=1 i ni

, (14)

where ni is the total number of clusters of size i, and Nmax = NT is the maximum possible size of a
cluster.

In Fig. 3 the probability P(N ) is shown for the potential 1 (see Fig. 1) and two cases with 20
and 40 particles. Within statistical error, the results with and without hydrodynamics are similar.
Note that the P(N ) obtained for increasing total number of particles (20 and 40) results to be similar
for clusters of size N < 10 and reveals an exponential decay characteristic of a Poissonian process
(reversible aggregation) P(N ) ≈ 1/〈N〉 exp[−N/〈N〉] with an average cluster size of 〈N〉 = 2.30

053301-8



HYDRODYNAMIC INFLUENCE ON THE AGGREGATION OF …

 0.001

 0.01

 0.1

 1

 1  2  3  4  5  6  7  8  9  10

P
ro

ba
bi

li
ty

Number of particles

ICM, Pot1
LD, Pot1
MC, Pot 1
ICM, Pot2
LD, Pot2
MC, Pot 2

Exp. decay <N> ≈ 2.30
Exp. decay <N> ≈ 1.78

FIG. 6. Probability of cluster sizes with two different potentials (potential 1, open symbols, and potential 2,
closed symbols) with the same second virial. Results are presented for ICM (red), Langevin dynamics (blue),
and Monte Carlo (pink) simulations. The error bars represent the standard error.

(for potential 1). By contrast, the results presented in Ref. [9] indicate a significant larger probability
of formation of large clusters when hydrodynamics is included.

We have not found either any relevant difference in the probability of the number of bonds per
particle with and without hydrodynamics (Fig. 4). In contrast, in Ref. [9] the probability of having
a large number of bonds is higher with hydrodynamics than without it.

The average shape of the clusters has also been studied by considering their asphericity A,
calculated from their gyration tensor T = ∑

i riri, where the index i goes over the particles
belonging to the cluster, as [9]

Rg =
√

Tr(T ),
(15)

A = 1

2

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

R4
g

,

where Rg is the gyration radius, and λ1, λ2, and λ3 the eigenvalues of the gyration tensor. In Fig. 5
the asphericity distributions for clusters of size 5 and 10 simulated with the three methods in the
case of potential 1 have been drawn for the simulations with NT = 20. Within the error of the values
we do not find either a significant difference. By contrast, Ref. [9] reports contradictory results in
this respect: Hydrodynamics would alter the average asphericity tending to form more spherical
clusters for U ∼ 2kBT (potential 1) while elongated structures for U ∼ 4.7kBT (potential 2) (and
little effect in the case of U ∼ 6kBT ).

We note that potential 2 (see Table I) has the same value of the second virial coefficient as
potential 1. Simulations with the potential 2 allow us to check to what extent the second virial is the
leading parameter characterizing clustering [10]. As in Ref. [9] we find that the cluster probability
of both potentials is not exactly the same (see Fig. 6). Small, but significant differences can be
also observed in the profiles of asphericity versus the cluster size (Fig. 7, top). Such differences
might result from the the fact that the interaction range of the potentials is not small enough for
such statement to be valid. In any case, in contrast with Ref. [9], our simulations with and without
hydrodynamics using the potential 2 yield similar results within statistical uncertainties [Figs. 5
(top) and 7 (bottom)].

To test the source of differences between our study and that in Ref. [9] we considered possible
effects from finite sampling times. In Ref. [9] the sampling window (single-run time) was 88tD while
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FIG. 7. Top: Probability density of the asphericity, obtained from ICM simulations, for clusters of size
N = 5 with two different potentials with the same second virial: potential 1 (red) and potential 2 (blue). Bottom:
The same quantity for the potential 2 from ICM (red), LD (blue), and MC (pink). The error bars represent the
standard error.

we used 1000tD. While the total sampling time is similar in both studies (they used 96 simulations
while we used 9), potential transient effects could affect results obtained with the smaller sampling
window. To test this hypothesis, we have reproduced the same set of simulations performed using
smaller windows of 176tD (and 96 runs) and analyzed last 88tD portion of each run (as in Ref. [9]).
The resulting cluster probability P(N ), drawn in Fig. 8, do not show any significant difference with
respect to the long-run case, neither using NT = 20 or 40 particles.

B. Time correlations

This section studies the time correlation of several quantities in the stationary regime. We
consider NT = 20 particles and the potential 1.

The survival time of clusters of size N is an indicator of the dynamics of reversible aggregation.
It is defined as the time lapse from the formation of the cluster until its disappearance, either
because it has lost particles or, because it has grown. Given that we can not map the entire space

053301-10



HYDRODYNAMIC INFLUENCE ON THE AGGREGATION OF …

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25

P
ro

ba
bi

li
ty

Number of particles

ICM N20
ICM N20 short sims

Langevin N20 short sims
ICM N40

ICM N40 short sims

FIG. 8. Comparison between 9 long (≈1000tD) and 96 short simulations (≈88tD) (like Ref. [9]) for NT =
20 and NT = 40 simulations. The error bars represent the standard error.

of probabilities, we will define the probability density of survival time of clusters only until some
cutoff time tcut, which we consider to be large enough. In our case, tcut ≈ 2.6tD, tD being the diffusion
time of a single particle. In Fig. 9 we have drawn this quantity for clusters of size N = 3, 5, and 7 in
ICM and LD simulations. We can see that the choice of tcut is appropriate, given that the probability
of a cluster to survive above t = 0.1tD is extremely small (<0.02). The extremely fast decay in
survival times at short time is due to Brownian fluctuations of satellite particles around clusters,
leading to fast entry/departure events in and out the potential cut-off range. At somewhat longer
times (t > 0.2tD) we detect a slower decay rate, which reveals that hydrodynamics slows down the
aggregation dynamics (see Fig. 9), making the cluster survive for longer times.

Due to its sensitivity to fast entry/departure fluctuations, the survival time of a cluster is not the
best way to investigate the aggregation dynamics at long times. A more informative quantity in this
respect is the time-correlation of the number of clusters of size N :

cN (t ) = 〈(nN (t + t0) − 〈nN 〉) (nN (t0) − 〈nN 〉)〉. (16)

Note that cN (t ) is sampling a collective dynamics which does not distinguish between individual
cluster survivals. cN (t ) is not sensible to fast entry/departure fluctuations, which are simply
averaged in large lag-times t . Figure 10 draws cN (t )/cN (0) obtained from ICM simulations. It
gives us an idea on the rate at which the system updates the number of clusters of size N . From
Fig. 10 one infers two different regimes. At short times (in fractions of tD) the size of the clusters
rapidly reorganizes at a rate which increases with the cluster size. This regime reflects escape and
re-entry events of satellite particles at the surface of the clusters, connected to the cluster by a single
bond. We note that the Kramer escape time [21]1 for a colloid connected with a single bond with
the potential 1 is τE ≈ 0.98 tD and, obviously, the number of escape events (so thus the net escape
rate) increases with the number of particles in the cluster. This fast regime is followed by a slower
exponential decorrelation of the cluster sizes, with a characteristic time of about 4 tD. The long time
regime reflects in-coming contributions from distant particles approaching the cluster by diffusion
and also escape events of more “stable” cluster particles attached by several bonds. Concerning the
rate of in-coming particles by diffusion, for a volume fraction φ = 0.025 and taking as reference a

1The Kramer escape time is τE = (1/D)[
∫ x2

x1
exp(−βU )dx][

∫ x2
xmin

exp(βU )dx] where x1 < xmin < x2 and
U (x1) = 0, dU (xmin )/dx = 0 and U (x2) = 0
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FIG. 9. Probability of survival times for three different sizes of clusters. Results are presented for ICM
(red) and LD (blue). The error bars represent the standard error. Results obtained for potential 1.

colloidal radius of R = 1.82, the typical free path is about half R [(4π/3)/φ]1/3 (i.e., about 5 length
units), while a relaxation time of about 5 tD corresponds to a diffusive excursion of a single colloid
over 4 length units. However, the Kramer escape time for a particle attached with two bonds is
about τE ≈ 3.2 tD (estimated by using 2U (x) in the Kramer’s expression for the potential 1). Thus,
we conclude that the long-time decorrelation of the cluster sizes observed in these systems (having
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FIG. 10. Results from ICM simulations. Top: time correlation function of the number of clusters of sizes
1,2,3,4, and 5. Bottom: the same function has been drawn with the axis y in logarithmic scale. For clarity, just
two different size of clusters have been depicted. Results obtained for potential 1.

a reduced number of particles) correspond to in-coming and out-going events of mainly individual
colloids, which take place at similar rates (as it should in chemical equilibrium).

Similar relaxation rates are observed in the time correlation of the total mass of clusters having
N > Nref (large clusters) or N � Nref (small clusters), where Nref is some arbitrary reference number
(we studied Nref = 5, 10). Results for Nref = 5 are plotted in Fig. 11 showing a long time relaxation
rate of 5.7 tD. Results for Nref = 10 show a similar decay.

As Fig. 12 illustrates, a clear effect of hydrodynamics is to slow down the aggregation dynamics
in this “long time” regime: while we find τ ≈ 5.5 tD in simulations with hydrodynamics (ICM) the
result of LD (no hydrodynamics) is τ ≈ 3.5 tD. Such slow down arises from the reduced mobility
of the mutual mobility of close-by colloids. The mutual mobility of our hydrodynamic model is
consistent with the Rotne-Prager-Yamakawa tensor, whose normal mobility at contact (distance
d = 2R) is reduced by a factor somewhat larger than 2 with respect to the Stokes bulk value [22].
The reduction in mutual mobility becomes rather small for d > 3R, so this effect is mainly local and
it probably does not significantly alter the rate of incoming particles. However, it certainly increases
the average escape time, which is inversely proportional to the local mobility.

We have also analyzed the time-correlation function of the asphericity parameter, shown in
Fig. 13 for cluster of size N = 3 and N = 5. Fast reorganizations or fluctuations of the cluster
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FIG. 11. Results from ICM simulations: time correlation function of the number of big (N � 5) and small
(N < 5) clusters. In the inset, the same graph have been drawn with the y axis in logarithmic scale. In the latter
case, for clarity, just two of the curves have been depicted. Results obtained for potential 1.

shape take place at times (≈0.9tD) in the same range of the short-time dynamics in cluster size. At
longer times we could not extract statistics, simply because the short survival times of individual
clusters. Interestingly, hydrodynamics also affects the rate of local reorganization of the cluster
shape, although it does not alter the average asphericity.

V. CONCLUSION

We have analyzed a small system of colloidal particles (NT = 20, 40) under short-ranged
depletion interaction which reproduces the system considered by Whitmer and Luijten [9]. By
contrast, we do not find any significant effect of hydrodynamics in the cluster size distribution or
shape. The depletion potentials considered are mild, corresponding to fully reversible aggregation
and formation of small clusters. In this scenario, the cluster size distribution and shape should
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FIG. 12. Time correlation function of the total number of clusters of size N . The case N = 1 indicates
detachment/attachment events of single particles. Results with ICM and LD simulations are shown. In the
inset, the same graph with the y axis in logarithmic scale. Results obtained for potential 1.
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FIG. 13. Results from ICM simulations. Time correlation function of the asphericity for clusters of size
N = 3, 5. Results obtained for potential 1. The error bars represent the standard error.

be determined by the chemical equilibrium or, equivalently, by the Gibbs-Boltzmann distribution
associated to the colloidal free energy. The well-known Einstein relation between thermal energy,
friction and diffusion D = kBT/ξ , proves that changes in mobility (or friction) will not modify
the equilibrium distribution. In this respect, our results are consistent. A possible way to create
a deviation from equilibrium sustained over long times is a severe reduction of mobility. The
mutual mobility (between pair of colloids) introduced by our hydrodynamic model [23] is similar
to the Rotne-Prager approximation [22]. Thus, we do not resolve the lubrication regime (large
increase in friction when particles are very close). Our results including lubrication interactions
[24] indicate an increase in the Kramer escape time in some factor (about two) with respect to the
present model. In any case, such times are still almost two orders of magnitude smaller than the
sampling time we used here (100 tD) and cannot explain large differences between equilibrium
and “hydrodynamically frustrated” structures. We thus conclude that in the system considered
by Whitmer and Luijten, hydrodynamics cannot alter cluster size and shape over long times.
We hypothesize that hydrodynamic effects could be sustained over longer times (frustration) in
irreversible aggregation, but this issue is still under debate. A second conclusion of this work is
the need to establish comparisons between hydrodynamic models and to further investigate their
inherent limitations. A good example of such work can be found in Ref. [25]. In this respect, at
short distances between particles, MPC brings out several artifacts such as a low Schmidt number
[25] and also spurious depletion forces induced by the hydrodynamic solvent [26]. To precisely
follow the parameters used in Ref. [9], in this work we have used Sc = 50, which is not the Stokes
limit regime Sc → ∞ of colloidal dynamics, but it is still large enough to expect small variations
from the Einstein-Stokes diffusion, as shown in Ref. [27]. However, it is now known that the discrete
nature of the MPC solvent introduces artificial depletion between colloidal particles [25]. A recent
work by Wagner and Ripoll [26] studies these spurious depletion forces in MPC and propose ways
to correct this artifact. Notably, this issue might explain putative spurious hydrodynamic effects
in the work by Whitmer and Luijten [9]. It is relevant to say that many other works on colloidal
aggregation (Refs. [9,11,12,14] is just a subset) have been performed using versions of the MPC or
SRD-MD methods, which are similar and share this spurious drift induced by the discrete nature of
the solvent. An indication of this possibility is the work by Tomilov et al. [11], which compares
the diffusion coefficient of clusters of size N using BDHI (based on Rotne-Prager-Yamakawa
mobility), BD (no-hydrodynamics), and MPC. They find DN ∼ 1/N for BD, and DN ∼ N−0.37

for BDHI, while DN ∼ N−0.59 for SRD-MD. The globular shape of these clusters (note that
R(N ) ∼ N1/3 for a perfect globule) should lead to a Zimm (hydrodynamic) diffusion proportional
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to the cluster radius (consistent with the BDHI result DN ∝ 1/R(N ) ∼ N−0.37). By contrast MPC
creates more open structures DN ∼ N−0.59, which qualitatively agree with the “elongated structures”
found by Whitmer and Luijten. It could well be that both arise from the spurious lubrication of
uncorrected versions of the MPC method (see Ref. [26] for technical discussion and strategies
to avoid MPC-induced depletion). A second important issue, which is often overlooked in the
literature of aggregation simulation, is the need for large enough sampling times, both to gather
statistics and also to reach the stationary regime (if it exists), where transient hydrodynamic effects
are finally forgotten. In summary, more studies are still needed to unveil the hydrodynamic effects
on colloidal aggregation, and these should probably include a refined model for lubrication. Beyond
hydrodynamics, depletion and DLVO forces are usually modeled using pair-wise potentials, which
completely neglect the many-body nature of such effective interactions. Many-body effects might
well be relevant within large or moderately large clusters.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from MINECO (Spain) under Grant No. FIS2017-
86007-C3-1-P and from the American Chemical Society Petroleum Research Funding, under Grant
No. 54312-ND9.

[1] M. T. A. Bos and J. H. J. van Opheusden, Brownian dynamics simulation of gelation and aging in
interacting colloidal systems, Phys. Rev. E 53, 5044 (1996).

[2] M. Mellema, J. H. J. Van Opheusden, and T. Van Vliet, Relating colloidal particle interactions to gel
structure using Brownian dynamics simulations and the Fuchs stability ratio, J. Chem. Phys. 111, 6129
(1999).

[3] M. Whittle and E. Dickinson, Brownian dynamics simulation of gelation in soft sphere systems with
irreversible bond formation, Mol. Phys. 90, 739 (1997).

[4] E. Dickinson, Structure and rheology of simulated gels formed from aggregated colloidal particles,
J. Colloid Interface Sci. 225, 2 (2000).

[5] J. F. M. Lodge and D. M. Heyes, Rheology of transient colloidal gels by Brownian dynamics computer
simulation, J. Rheol. 43, 219 (1999).

[6] R. Yamamoto, K. Kim, Y. Nakayama, K. Miyazaki, and D. R. Reichman, On the role of hydrodynamic
interactions in colloidal gelation, J. Phys. Soc. Jpn. 77, 084804 (2008).

[7] Y. Nakayama and R. Yamamoto, Simulation method to resolve hydrodynamic interactions in colloidal
dispersions, Phys. Rev. E 71, 036707 (2005).

[8] A. Furukawa and H. Tanaka, Key Role of Hydrodynamic Interactions in Colloidal Gelation, Phys. Rev.
Lett. 104, 245702 (2010).

[9] J. K. Whitmer and E. Luijten, Influence of hydrodynamics on cluster formation in colloid-polymer
mixtures, J. Phys. Chem. B 115, 7294 (2011).

[10] P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, Gelation of particles with
short-range attraction, Nature 453, 499 (2008).

[11] A. Tomilov, A. Videcoq, M. Cerbelaud, M. A. Piechowiak, T. Chartier, T. Ala-Nissila, D. Bochicchio, and
R. Ferrando, Aggregation in colloidal suspensions: Evaluation of the role of hydrodynamic interactions
by means of numerical simulations, J. Phys. Chem. B 117, 14509 (2013).

[12] A. M. Laganapan, M. Mouas, A. Videcoq, M. Cerbelaud, M. Bienia, P. Bowen, and R. Ferrando, How
colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation
study in alumina suspensions, J. Colloid Interface Sci. 458, 241 (2015).

[13] C. P. Royall, J. Eggers, A. Furukawa, and H. Tanaka, Probing Colloidal Gels at Multiple Length Scales:
The Role of Hydrodynamics, Phys. Rev. Lett. 114, 258302 (2015).

[14] X. J. Cao, H. Z. Cummins, and J. F. Morris, Hydrodynamic and interparticle potential effects on
aggregation of colloidal particles, J. Colloid Interface Sci. 368, 86 (2012).

053301-16

https://doi.org/10.1103/PhysRevE.53.5044
https://doi.org/10.1103/PhysRevE.53.5044
https://doi.org/10.1103/PhysRevE.53.5044
https://doi.org/10.1103/PhysRevE.53.5044
https://doi.org/10.1063/1.479956
https://doi.org/10.1063/1.479956
https://doi.org/10.1063/1.479956
https://doi.org/10.1063/1.479956
https://doi.org/10.1080/00268979709482660
https://doi.org/10.1080/00268979709482660
https://doi.org/10.1080/00268979709482660
https://doi.org/10.1080/00268979709482660
https://doi.org/10.1006/jcis.1999.6662
https://doi.org/10.1006/jcis.1999.6662
https://doi.org/10.1006/jcis.1999.6662
https://doi.org/10.1006/jcis.1999.6662
https://doi.org/10.1122/1.550984
https://doi.org/10.1122/1.550984
https://doi.org/10.1122/1.550984
https://doi.org/10.1122/1.550984
https://doi.org/10.1143/JPSJ.77.084804
https://doi.org/10.1143/JPSJ.77.084804
https://doi.org/10.1143/JPSJ.77.084804
https://doi.org/10.1143/JPSJ.77.084804
https://doi.org/10.1103/PhysRevE.71.036707
https://doi.org/10.1103/PhysRevE.71.036707
https://doi.org/10.1103/PhysRevE.71.036707
https://doi.org/10.1103/PhysRevE.71.036707
https://doi.org/10.1103/PhysRevLett.104.245702
https://doi.org/10.1103/PhysRevLett.104.245702
https://doi.org/10.1103/PhysRevLett.104.245702
https://doi.org/10.1103/PhysRevLett.104.245702
https://doi.org/10.1021/jp111388m
https://doi.org/10.1021/jp111388m
https://doi.org/10.1021/jp111388m
https://doi.org/10.1021/jp111388m
https://doi.org/10.1038/nature06931
https://doi.org/10.1038/nature06931
https://doi.org/10.1038/nature06931
https://doi.org/10.1038/nature06931
https://doi.org/10.1021/jp407247y
https://doi.org/10.1021/jp407247y
https://doi.org/10.1021/jp407247y
https://doi.org/10.1021/jp407247y
https://doi.org/10.1016/j.jcis.2015.07.058
https://doi.org/10.1016/j.jcis.2015.07.058
https://doi.org/10.1016/j.jcis.2015.07.058
https://doi.org/10.1016/j.jcis.2015.07.058
https://doi.org/10.1103/PhysRevLett.114.258302
https://doi.org/10.1103/PhysRevLett.114.258302
https://doi.org/10.1103/PhysRevLett.114.258302
https://doi.org/10.1103/PhysRevLett.114.258302
https://doi.org/10.1016/j.jcis.2011.11.050
https://doi.org/10.1016/j.jcis.2011.11.050
https://doi.org/10.1016/j.jcis.2011.11.050
https://doi.org/10.1016/j.jcis.2011.11.050


HYDRODYNAMIC INFLUENCE ON THE AGGREGATION OF …

[15] Z. Varga, G. Wang, and J. Swan, The hydrodynamics of colloidal gelation, Soft Matter 11, 9009 (2015).
[16] Z. Varga and J. Swan, Hydrodynamic interactions enhance gelation in dispersions of colloids with short-

ranged attraction and long-ranged repulsion, Soft Matter 12, 7670 (2016).
[17] F. B. Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev, Inertial coupling method for particles

in an incompressible fluctuating fluid, Comput. Methods Appl. Mech. Eng. 269, 139 (2014).
[18] S. Asakura and F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules,

J. Chem. Phys. 22, 1255 (1954).
[19] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).
[20] C. S. Peskin, The immersed boundary method, Acta Numerica 11, 479 (2002).
[21] H. Risken, Fokker-Planck Equation (Springer, Berlin, 1996), p. 63.
[22] A. Vázquez-Quesada, F. B. Usabiaga, and R. Delgado-Buscalioni, A multiblob approach to colloidal

hydrodynamics with inherent lubrication, J. Chem. Phys. 141, 204102 (2014).
[23] F. Balboa Usabiaga, Fluam, https://github.com/fbusabiaga/fluam.
[24] Yu Mingzhou and R. Delgado-Buscalioni, The effect of hydrodynamic interactions on the dynamics and

equilibrium configuration of colloidal aggregates in a quiescent flow regime (unpublished).
[25] D. S. Bolintineanu, G. S. Grest, J. B. Lechman, F. Pierce, S. J. Plimpton, and P. R. Schunk, Particle

dynamics modeling methods for colloid suspensions, Comp. Part. Mech. 1, 321 (2014).
[26] M. Wagner and M. Ripoll, Solvent-induced depletion interactions in multiparticle collision dynamic

simulations, Int. J. Mod. Phys. C 30 1941008 (2019).
[27] F. Balboa Usabiaga, X. Xie, R. Delgado-Buscalioni, and A. Donev, The Stokes-Einstein relation at

moderate schmidt number, J. Chem. Phys. 139, 214113 (2013).

053301-17

https://doi.org/10.1039/C5SM01414J
https://doi.org/10.1039/C5SM01414J
https://doi.org/10.1039/C5SM01414J
https://doi.org/10.1039/C5SM01414J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1016/j.cma.2013.10.029
https://doi.org/10.1016/j.cma.2013.10.029
https://doi.org/10.1016/j.cma.2013.10.029
https://doi.org/10.1016/j.cma.2013.10.029
https://doi.org/10.1063/1.1740347
https://doi.org/10.1063/1.1740347
https://doi.org/10.1063/1.1740347
https://doi.org/10.1063/1.1740347
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1063/1.4901889
https://doi.org/10.1063/1.4901889
https://doi.org/10.1063/1.4901889
https://doi.org/10.1063/1.4901889
https://github.com/fbusabiaga/fluam
https://doi.org/10.1007/s40571-014-0007-6
https://doi.org/10.1007/s40571-014-0007-6
https://doi.org/10.1007/s40571-014-0007-6
https://doi.org/10.1007/s40571-014-0007-6
https://doi.org/10.1142/S0129183119410080
https://doi.org/10.1142/S0129183119410080
https://doi.org/10.1142/S0129183119410080
https://doi.org/10.1142/S0129183119410080
https://doi.org/10.1063/1.4834696
https://doi.org/10.1063/1.4834696
https://doi.org/10.1063/1.4834696
https://doi.org/10.1063/1.4834696

