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We present a statistical analysis of the behavior of the kinetic-energy spectrum in the
dissipative range of fully developed three-dimensional turbulence, with the aim of testing
a recent prediction obtained from the nonperturbative renormalization group. Analyzing
spectra recorded in experiments of grid turbulence, generated in the Modane wind tunnel,
and spectra obtained from high-resolution direct numerical simulations (DNSs) of the
forced Navier-Stokes equation, we observe that the spectra decay as a stretched exponential
in the dissipative range. The theory predicts a stretching exponent α = 2/3, and the data
analyses of the numerical and experimental spectra are in close agreement with this value.
This result also corroborates previous DNS studies which found that the spectrum in the
near-dissipative range is best modeled by a stretched exponential with α < 1.
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I. INTRODUCTION

The very chaotic nature of the motion of a fluid driven to a turbulent state calls for a statistical
description. A striking feature of three-dimensional turbulence is the emergence of very robust
universal statistical properties, such as the well-known k−5/3 decay of the energy spectrum over
a wide range of length scales called the inertial range. This inertial range exists at sufficiently high
Reynolds numbers, when the typical scale at which energy is injected (called the integral scale L)
and the microscopic scale (called the Kolmogorov scale η) at which it is dissipated by molecular
friction are well separated.

The first understanding of these properties was provided by the pioneering statistical theory
of turbulence proposed by Kolmogorov, and referred to as K41 [1–4]. K41 theory relies on the
fundamental assumptions that the small-scale turbulence is statistically independent of the large
scales; that it is locally homogeneous, isotropic, and steady; and that the average energy dissipation
rate per unit mass ε is finite and independent of the kinematic viscosity ν in the limit ν → 0. This
implies that the statistical properties of small-scale turbulence should be determined uniquely by ε

and ν. In particular, the energy spectrum should take the universal form

E (k) = ε2/3k−5/3 f (kη) (1)

where η = ν3/4ε−1/4 is the Kolmogorov length scale. The function f is universal. In the inertial
range, viscous effects are expected to be negligible, so that the spectrum should not depend on η,
which implies that f (x) should tend to a constant CK for x → 0, while f should quickly decay at
large wave numbers x � 1, which corresponds to the dissipative regime [5].

Although f is expected to be universal, its analytical expression is not known. Several early
empirical expressions of the form f (x) ∼ x−β exp(−μxα ), with different values for α (1/2 [6], 3/2
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[7], 4/3 [8], or 2 [9–11]), were proposed, on the basis of approximate fits of experimental data or
(approximate) analytical considerations [12]. Also, different theoretical arguments focusing on the
limit of large k (direct interaction approximation [5], asymptotic expansions [13–15]) advocated
that in this limit, i.e., sufficiently deep in the far-dissipative range, the spectrum should decay as a
pure exponential α = 1. Alternatively, the multifractal formalism predicts a universal form of the
spectrum involving the Reynolds number [16].

Subsequently, the behavior of the spectrum in the dissipative range has been extensively studied
in experiments [17–20] and direct numerical simulation (DNS) [21–27]. Accurate experimental
measurements of the spectrum at small scales are difficult to obtain, and several fits of the spectrum
in the dissipative range have been proposed, for instance, pure exponential functions with α = 1 but
on two successive separate ranges in [17], or a single pure exponential but with different coefficients
μ in [20,28]. Conversely, the analysis of [18] concluded that an exponential with α = 2 was the best
fit for the experimental data, while still another empirical form is proposed in [29].

The DNS can in principle provide more accurate data for the spectrum in the dissipative range,
but their high computational cost limits the studies to either low or moderate Reynolds numbers in
order to reach high spectral resolution [22,23,25,27] or to lower spectral resolutions to reach higher
Reynolds numbers [21,24,26]. In practice, most of these works assumed that α = 1, and aimed at
determining the exponent β for the power laws (or combination of power laws) in front and the value
of μ. Although a pure exponential fit was shown to be a reliable model for the spectrum at very low
Reynolds numbers [27], it turned out not to be suitable to model the whole dissipative range already
at moderate Reynolds numbers [23], and the result of the fit was found to depend significantly on
the choice of the fitting range [24].

An extended analysis of the existing results for the dissipative range is provided in a recent
account [30]. This paper (and previous studies) points to the conclusion that there exist two distinct
regimes: the near-dissipative range (NDR) for 0.2 � kη � 4 and the far-dissipative range (FDR)
for kη � 4. In the NDR, the logarithmic derivative of the spectrum is not linear, such that a pure
exponential is not a consistent description, and its curvature indicates that α < 1. In the FDR, the
decay of the spectrum is well described by an exponential (α = 1). This finding explains the failure
of previous attempts to describe the whole dissipative range as a pure exponential with various
power laws. The authors of [30] proposed a phenomenological modeling as a superposition of two
exponentials, one with α < 1 dominating in the NDR and one with α > 1 dominating in the FDR.
Note that no consensus seems to be reached concerning the power laws multiplying the exponentials
in either regime.

Independently, a theoretical prediction for the behavior of the spectrum in the dissipative range
has been recently obtained from a nonperturbative renormalization-group (NPRG) approach. This
theoretical approach is a “first-principles” one, in the sense that it is based on the Navier-Stokes (NS)
equation, without involving any phenomenological inputs or uncontrolled approximations. It has
recently led to progress in the understanding of homogeneous isotropic and stationary turbulence,
by providing the time dependence of multipoint correlation functions in the turbulent state [31,32].
Concerning the energy spectrum, the NPRG yields a stretched exponential behavior with α = 2/3
in the NDR, and a regular one (pure exponential) in the FDR. This prediction provides a theoretical
justification for the two-exponential phenomenological model proposed in [30]. This value for α in
the NDR was then confirmed in DNS [33], and also in experiments of von Kármán turbulent swirling
flow [34]. However, obtaining a quantitative estimate of the exponent of the stretched exponential
is a difficult task, as it requires a sufficiently extended dissipative range and a high resolution.

In this paper, we perform DNS with a different compromise compared to previous studies
favoring higher Reynolds numbers while keeping a sufficient spectral resolution in the NDR in
order to reliably probe this regime. Moreover, we present a statistical analysis of the experimental
data recorded in the Modane wind tunnel, featuring grid turbulence. Grid turbulence appears as a
particularly suitable setup to investigate the dissipative range, since high Reynolds numbers can be
attained, and the Kolmogorov scale is typically larger in the air than in liquids, such that a higher
resolution can be expected. Also, the unique dimensions of the S1MA wind tunnel of ONERA in
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Modane, where the experiments discussed here were performed, allow one to investigate relatively
high Reynolds number regimes with yet experimentally well-resolved dissipative scales [35]. In the
following, we focus on the NDR, and more specifically on the exponential part, irrespective of the
power laws. We find from our analysis that the energy spectrum follows the predicted stretched
exponential behavior, with an estimated exponent α = 0.68 ± 0.19, in close agreement with the
NPRG result.

The remainder of the paper is organized as follows. In Sec. II, we give some details on the NPRG
prediction. We present in Sec. III the results from the DNS, and in Sec. IV the statistical analysis of
the experimental data. Additional details are reported in the Appendix.

II. THEORETICAL PREDICTIONS FROM THE NONPERTURBATIVE
RENORMALIZATION GROUP

We present in this section the principle of the NPRG and the main ideas underlying the derivation
of Eq. (6) for the spectrum in the dissipative range, which we aim at testing. The purpose of this
section is not to give technical details on its derivation, which can be found in [31,33], but rather to
emphasize the underlying assumptions: it is based on the stochastic Navier-Stokes equation, and on
an expansion at large wave numbers, the leading term of which can be calculated exactly without
any further approximations. One may resume directly at Eq. (4) for the result relevant for this paper.

The idea of applying the renormalization group (RG) to turbulence [36–40] originates in the
observation that the statistical properties of a turbulent flow are universal and described by power
laws in the inertial range. These power laws are the hallmarks of scale invariance. The source
of scale invariance at a critical point is the emergence of fluctuations at all scales. The RG, as
originally conceived by Wilson [41], is a method to efficiently average over these (non-Gaussian)
fluctuations to obtain the critical properties of the system. It should thus provide a valuable tool
to study fully developed turbulence, which intrinsically involves length scales over many orders of
magnitude.

The NPRG is a modern formulation, both functional and nonperturbative, of the Wilsonian RG,
which turned out to be powerful to compute the properties of strongly correlated systems in high-
energy physics, condensed matter, and statistical physics [42–44]. It is only recently that turbulence
has been revisited using functional and nonperturbative approaches [31,32,45–47]. Exact results
were obtained in this framework for the time dependence of multipoint correlation functions of the
stationary turbulent flow in the limit of large wave numbers [31,32]. These results hence pave the
way towards a deeper understanding of the fundamental properties of turbulence.

The starting point is the forced NS equation for incompressible flows

∂t �v + �v · �∇�v = − 1

ρ
�∇p + ν∇2�v + �f , �∇ · �v = 0 (2)

where ν is the kinematic viscosity and ρ is the density of the fluid. We are interested in universal
properties of turbulence. These properties are expected not to depend in particular on the precise
form of the forcing mechanism. We hence consider, as is common in field-theoretical approaches
[39], a stochastic forcing, which has a Gaussian distribution with zero mean and variance:

〈 fi(t, �x) f j (t
′, �x ′)〉 = δ(t − t ′)NL−1,i j (|�x − �x ′|), (3)

where 〈·〉 denotes the ensemble average over the realizations of f . This correlator is local in time,
to preserve Galilean invariance, and is concentrated, in Fourier space, on the inverse of the integral
scale L [48]. The stochastically forced NS equation (2) can then be represented as a field theory
following the standard Martin–Siggia–Rose–Janssen–de Dominicis response functional formalism
[49–51], which by essence includes all the fluctuations. In the RG treatment, the integration of these
fluctuations is achieved progressively in the wave-number space, and yields a renormalization flow.
Any n-point correlation function G(n) between velocity or pressure fields can be simply expressed
in the field theory from the cumulant generating functional and obeys an exact RG flow equation.
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However, the flow equation for G(n) involves G(n+1) and G(n+2) which results in an infinite hierarchy
of flow equations that needs to be solved.

It was realized in [31,47] that these flow equations can be closed exactly in the limit of large
wave numbers using the symmetries of the NS field theory (or more precisely extended symmetries).
Indeed, symmetries play a key role in field theory in general, since they yield exact relations between
correlation functions known as Ward identities. It turns out that the NS field theory possesses two
extended symmetries, the time-dependent Galilean symmetry and a time-dependent shift symmetry
recently unveiled [52], which can be exploited to achieve the exact closure of the hierarchy of flow
equations at large wave numbers. Moreover, these flow equations can be solved analytically at the
fixed point, which corresponds to the stationary turbulent state. Let us now give the result for the
(transverse part of the) velocity-velocity correlation function C defined as

C(t, �k) ≡ TF〈�v(t0 + t, �x0 + �x) · �v(t0, �x0)〉, (4)

TF denoting the Fourier transform with respect to �x. At small time lag t , C(t, �k) takes the form

C(t, �k) = Aε2/3k−11/3 exp[−γ (εL)2/3(tk)2 + O(k)], (5)

where γ and A are nonuniversal constants [31], ε is the mean energy dissipation rate, and L is the
integral scale. The leading term in k2 in the exponential is exact, whereas the factor in front of the
exponential is not. Indeed, the exponent of the power law could be modified by terms of order ln(k)
in the exponential, entering in the indicated O(k) corrections. The leading behavior of the correlation
function at large wave numbers is hence a Gaussian in the variable tk, which is not the expected
scaling variable. Indeed, dimensional analysis (Kolmogorov theory) predicts a dynamical critical
exponent z = 2/3 and thus a scaling variable tkz = tk2/3. The dependence in tk is thus a breaking
of standard scale invariance, generated by intermittency, and induces an explicit dependence in the
integral scale L. An effective value z = 1 for the dynamical exponent is a large correction. This
effect is often described phenomenologically as the random sweeping effect [5,53].

The energy spectrum can be described in the dissipative range by taking the appropriate
t → 0 limit [33]. One can assume that the scaling variable tk2/3 saturates when t approaches the
Kolmogorov timescale τK = √

ν/ε and k reaches L−1, since these are the two relevant scales, such
that tk2/3 → τK L−2/3. One thus obtains for the energy spectrum E (k) ≡ limt→0 4πk2C(t, k) the
expression

E (k) = A′ ε2/3(kη)−β exp[−μ(kη)α], (6)

where β = 5/3, α = 2/3, and μ and A′ are positive nonuniversal constants related to γ and A,
respectively. This behavior is valid at large wave numbers that are still controlled by the fixed
point, which should correspond to the NDR. Indeed, in the FDR, for very small spatial scales,
the spectrum should be regularized by the viscosity and should be analytical in real space, which
means that it should decay as a pure exponential in k space. The unusual emergence of a stretched
exponential behavior is the manifestation of the violation of standard scale invariance. In standard
scale invariance, there would be no transitional regime between the inertial regime and the FDR.
The value α = 2/3 arises from the discrepancy between the Kolmogorov dynamical exponent and
the effective one. Note that the emergence of this stretched exponential was also related in [30]
to intermittency, and more precisely to intermittent energy transfers. It is indeed shown that the
stretched exponential is removed by filtering out in time series of the energy spectrum the large
intermittent bursts in energy at high wave numbers.

The main purpose of this paper is to attest the value of the exponent α in the exponential, and
thereby to test the assumption of saturation of the scaling variable. Since the NPRG theory does not
determine the prefactor of the exponential [as explained in our comment of (5)], we use a method
which allows us to estimate α irrespective of the precise form of this prefactor, as follows. Extracting
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the value of α from the expression of the first logarithmic derivative of (6),

D1(kη) = d ln(E )

d ln(kη)
= −β − μα(kη)α, (7)

would require a three-parameter nonlinear fit, which is not realistic given the typical extent of the
NDR and quality of the data in this range. Previous works evidenced the high sensibility of such fits
to the range of fitting or the initial condition of the fit algorithm [30]. Our analysis concentrates on
the second and third logarithmic derivatives defined as

D2(kη) = d (−D1)

d ln(kη)
= μα2(kη)α, (8)

D3(kη) = d ln(D2)

d ln(kη)
= α. (9)

In a log-log scale, the curve of D2 in the dissipative range is expected to be a line with slope α,
while the curve of D3 is expected to exhibit a plateau in this range of height α. Beyond reducing
the number of fit parameters, the main advantage of D2 and D3 is to provide a method to eliminate
the contributions from subleading terms in the exponential of Eq. (5). Let us note that previous
works predicted the existence of an energy pileup, called the bottleneck effect, leading to a bump
of the compensated spectrum in the transitional regime between the IR and the NDR [15,55]. At
the theoretical level, this effect modifies the prefactor of the exponential, which we do not try to
resolve here. The numerical and experimental spectra we have analyzed do not show any noticeable
bottleneck effect. However, it plays no role in the following analysis since it is eliminated in the
higher derivatives D2 and D3 studied here. In the following, we first analyze the spectra obtained
from DNS in the dissipative range, and then present the analysis of the experimental data.

III. NUMERICAL DATA

A. Numerical simulations

We obtain the numerical energy spectra from DNS of the NS equation under fully random
large-scale forcing and in isotropic and homogeneous conditions. The turbulent flow is simulated in
a cubic periodic domain of size 2π with the same resolution in each of the coordinate directions.
The Navier-Stokes equation is solved with the use of a pseudospectral parallelized code; time
advancement is implemented with the second-order Runge-Kutta scheme [54]. The simulation
parameters are determined by the Taylor microscale Reynolds number (Reλ) and the value of kmaxη,
where kmax is the maximal wave number resolved in the spectrum. We perform a sequence of
simulations with fixed Reλ and increasing grid resolution. In the first run the computational grid
size is chosen to ensure at least kmaxη = 1.5 which is commonly accepted as an adequate spatial
resolution for DNS. In the following runs the solution obtained in previous steps is transferred
to a finer computational grid with resolution N → 2N , while the Reλ and the forcing scales are
unchanged. By doing so, we increase twofold the value of kmaxη and we therefore get access to
smaller scales in the dissipative range of the turbulence spectrum. The values of the Taylor Reynolds
number, size of the computational grid, and associated value of kmaxη used in the simulations are
summarized in Table I.

The spectra obtained for each Reλ and resolution, averaged over space and time once the
stationary state is reached, are displayed in Fig. 1. They exhibit an inertial range extending from
about half a decade at Reλ = 60 to about a decade and a half at Reλ = 240. In this range,
the spectra decay as power laws with an exponent K depending on the Reλ. These values are
represented in Fig. 4, together with the experimental results. Both results are in agreement. Clearly,
the determination of the exponent K from the DNS spectra is not very precise, as the Reλ is limited,
compared to standard DNS with kmaxη � 1.5. Let us recall that in this paper we have chosen to
favor the resolution over the extent of the inertial range, in order to increase the accuracy on the
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TABLE I. Parameters of the simulations: Maximal wave number kmaxη as a function of the Taylor
microscale Reynolds number Reλ and the grid resolution N .

N\Reλ 60 90 160 240

256 3.0 1.5
512 6.0 3.0 1.5
1024 12.0 6.0 3.0 1.5
2048 12.0 6.0 3.0

determination of α. However, compared to previous works focused on the dissipation range, we
choose a somewhat lower resolution (but still sufficient to resolve the NDR) while reaching a higher
Reλ [30].

The first logarithmic derivatives D1, defined by (7), of the DNS spectra are shown in Fig. 2. Their
behaviors are very similar to the ones obtained in previous works [23,24,30]. In particular, one
distinguishes two qualitatively different regimes: the NDR up to kη ≈ 4, and the FDR extending
beyond this value. In the NDR, the D1 curves exhibit a slight convex curvature, more visible as
the Reλ increases, which indicates that α < 1 in this region. In the FDR, the curves of D1 appear
reasonably linear in log-log scale, indicating a pure exponential decay α � 1. Moreover, the curves
do not collapse in this range, suggesting that this regime is not universal. These observations are in
good agreement with previous studies, and lead in particular to the two-exponential model of [30],
one with α < 1 dominant in the NDR, and the other one with α = 1 in the FDR.

B. Analysis of the numerical spectra in the near-dissipative range

In order to push further the previous observations, and to obtain a precise determination of the
exponent α in the NDR, we compute the second and third logarithmic derivatives defined by (8) and
(9) for the DNS spectra of Fig. 1. Our numerical data are smooth enough to allow for the numerical
evaluation of the successive derivatives by finite differences.

The result for the third derivative is displayed in Fig. 3, for the different Reλ’s. The results for the
second derivative show very similar features. The D3 curves clearly exhibit a plateau for values of
kη in the NDR, in agreement with the theoretical expression (9). The value of this plateau is smaller
than 1, and appears to be very close to the NPRG prediction α = 2/3. The inset is a magnification
of the plateau, which shows that α is close to 1 at small Reλ and approaches the value α = 2/3 as

FIG. 1. Spectra obtained from DNS, for the set of Reλ and resolutions N given in Table I. In all the figures,
INR, NDR, and FDR stand for inertial range, near-dissipative range, and far-dissipative range, respectively.
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FIG. 2. First logarithmic derivative D1 of the spectra of Fig. 1, with the inset showing a zoom in the near-
dissipative range. These results are very similar to those obtained in previous works [23,24,30]. In particular,
D1 is not linear in the NDR, hence it is not compatible in this range with a pure exponential behavior (α = 1).

the Reλ grows. This is in excellent agreement with [30], where they find a value of α in the NDR
decreasing as Reλ increases, down to α � 0.78 for their highest Reλ = 89 (we find α � 0.77 for
Reλ = 90; see Fig. 5).

The average value of α on the plateau is represented in Fig. 5 as a function of the Reλ, together
with the experimental results. Both results are in agreement. The extent of the NDR seems to remain
0.2 � kη � 4 independently of the Reλ. Interestingly, one observes that, for the spectra at lower
Reλ, D3 departs from the plateau at higher wave numbers—in the FDR, towards a value which
we anticipated as 1, which would signal the setting of the regular (simple exponential) behavior.
However, the expected value α = 1 cannot be quite reached in the DNS because of the truncation
of wave numbers at a finite kmax.

FIG. 3. Third logarithmic derivative, defined by (9), computed for the DNS spectra of Fig. 1, with the
inset showing a zoom in the near-dissipative range. Only the curves for the highest resolution for each Reλ are
shown for clarity. They all show a plateau in the NDR, the value of which is α, which approaches 2/3 as the
Reλ increases.
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The analysis of the numerical spectra is thus in quantitative agreement with the theoretical
prediction α = 2/3, and provides useful indications to guide the analysis of the experimental data.

IV. EXPERIMENTAL DATA

A. Data preprocessing

Let us describe the experimental data of grid turbulence acquired in the S1MA wind tunnel at
Modane (ESWIRP project). The data are made of velocity time series recorded by four hot wires at
a frequency of 250 kHz, with durations ranging from 3 to 10 min each. The turbulent flow source
blows air at speed ranging from 20 to 45 m s−1, resulting in a variety of values for Reλ. The distance
of the hot wires from the grid ranges from 7.9 to 23.16 m [35]. We analyze all the recordings using
a systematic procedure described below, focusing on the energy spectra.

We divide the recordings into samples of equal time duration �t = 20 s (respectively �t = 60 s).
This provides us with a total number of 3840 (respectively, 1176) samples, which we analyze
separately. We use the Taylor hypothesis to express the velocity as a function of the longitudinal
space coordinate. For each sample, we compute the third-order structure function S3(�) = 〈(δu�)3〉
where δu� is the longitudinal velocity increment δu� = [�u(�r + ��) − �u(�r)] · ��/| ��|. We determine the
corresponding average injection/dissipation rate per unit mass ε from the plateau value of S3

using the four-fifths law: ε = − 5
4 S3(�)/� in the inertial range. We then compute the associated

Kolmogorov scale as η = ν3/4ε−1/4, with ν = 1.5 × 10−5 m2 s−1 the air kinematic viscosity. The
Taylor microscale Reynolds number for each sample is deduced using the isotropic relation Reλ =
urms

√
15/νε. Let us note that the determination of ε through the four-fifths law is not very precise,

and thus it entails some error on the Reλ. However, we also used another determination of ε, through
the position of the peak of the dissipative spectrum k2E (k), and we checked that this does not change
the different distributions shown here, nor the final value of α.

We compute the kinetic-energy spectrum of each sample by performing a discrete Fourier
transform (the fast Fourier-transform algorithm) and rescale it as a function of the dimensionless
wave number kη. (A typical spectrum is displayed at the top of Fig. 10.) We smoothen the spectra
out using a regular binning of 20,000 bins in ln(kη) scale. In the experimental spectra, kη typically
ranges from 10−3 to 3.5. The quality and the extent in wave number of the spectra vary quite
substantially between the samples. The variability of the measurement quality comes from the fact
that the wind tunnel is an open facility in which dust and pollen can enter and affect the hot wires.
Because of this issue, some values of ε are questionable, which explains why some values of Reλ are
out of the range 200–600. However, all of them appear to increase as functions of k beyond a wave
number kM , which we interpret as a contamination by the small-scale response of the hot wires.
The value of kM depends on the spectra, but is found to be typically kMη � 3. In the following,
we restrict the analysis to wave numbers below kM . Note that we do not observe any noticeable
bottleneck effect on the experimental spectra analyzed. As this effect is expected to attenuate when
the Reλ increases [56], it would be difficult to detect here; moreover, as already explained, it alters
the prefactor of the exponential and disappears in the higher derivatives considered in the present
paper.

B. Selection of spectra

In order to assess the quality of each sample and to remove low-quality spectra, we operate a
data-driven selection, based on the value of the inertial range exponent K and on the extent of the
dissipative range, the determinations of which are detailed in Secs. IV C and IV D, respectively. We
first eliminate for both sample durations �t = 20 and 60 s the spectra with an exponent K differing
from the K41 value by more than 20%. This procedure typically removes very noisy spectra
presenting several unphysical large peaks. After this first filtering, there remain 3486 (respectively,
1080) exploitable spectra for �t = 20 s (respectively, �t = 60 s). We then proceed to a second
selection by retaining only the spectra with a large enough dissipative range of width �(kη) > 0.2.
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This second selection removes spectra which are not well resolved in the dissipative range, probably
affected by the noise from the sensor. This finally leaves us with 1641 (respectively, 590) spectra,
for �t = 20 and 60 s. We further analyze and discuss these selected spectra in the following.

C. Inertial range

In this section, we briefly describe the analysis of the spectra in the inertial range. We determine
the exponent K of the power-law decay of the energy spectrum E (kη) ∼ (kη)−K in this range, to be
compared with the expected K41 value K � 5/3. We do not denote it β as in (6) since we do not
assume the two exponents to be equal in the inertial and dissipative ranges. We use two methods to
estimate K : a direct fit of the log-log spectrum, which is expected to be a line in the inertial range,
and a fit of the first logarithmic derivative D1, which is expected to present a plateau of value −K
in the corresponding range. Throughout this paper, we only use fitting functions which are affine
(either lines or constants). The result of a fitting procedure is in general sensitive to the precise
fitting interval chosen, and to the chosen precision criterion. In order to reduce as much as possible
these effects, we devise an optimized algorithm, described in the Appendix, the goal of which is to
search for the largest interval with the minimal error where an affine behavior is present. For each
spectrum, we apply this fitting algorithm to both the log-log spectrum and the corresponding D1,
and compare these two results, If the relative difference in the obtained K is less than 2%, we take
the average value. Otherwise we keep the estimate for K which corresponds to the largest interval.

We present in Fig. 4 the results for the exponent K as a function of the Reλ, for the two sample
durations �t = 20 and 60 s. The experimental data correspond to Reλ distributed between 25 and
1150, among which more than 90% lie between 150 and 650. Their distribution is represented in the
inset of Fig. 4, using bins of width �Reλ = 25, and computing within each bin the average and the
standard deviation of the decay exponent K . The error bars in Fig. 4 represent the standard deviation
within each bin, irrespective of the total number of spectra they contain. Note that the weight of the
different points is thus very different: for instance, the first points at low Reλ represent very few
spectra. We observe that the value of the inertial exponent K grows with the Reλ, to reach a value
close to K = 5/3 for Reλ � 600. The results for both durations are in close agreement. However,
let us emphasize that this determination is not accurate enough to detect the corrections due to
intermittency, which are expected to increase by about 5% the K41 value K = 5/3. The error bars
of the points around Reλ = 600 obtained for the duration 20 s are typically representative since they
correspond to a large number of spectra, and they clearly exceed the 5% level of tolerance needed
to estimate intermittency corrections on the inertial range exponent.

D. Near-dissipative range and stretch exponent

In this section, we turn to the analysis of the near-dissipative range. As for the DNS data, we
rely for the experimental data on two independent estimations of the stretch exponent α: one from
the second logarithmic derivative D2 given by (8) and one from the third one D3 given by (9).
The experimental data are much less smooth than the numerical ones, such that performing simple
finite differences to compute numerical derivatives generates a lot of noise, which would spoil
the accuracy of this procedure. For this reason, we resort to a more reliable computation of the
derivatives, described in the Appendix. We obtain two determinations of α denoted α2 and α3, from
the optimized linear fitting of D2 in log-log scale and from applying to D3 the same optimized
algorithm to search for a plateau, respectively. We only retain estimations of α for which the error
of the associated fit is less than Q = 10−1 (see the Appendix for the definition of Q).

We present in Fig. 5 the results obtained for α2 and α3 as functions of the Reλ, for both sample
durations �t = 20 and 60 s. The distribution of Reλ corresponding to the four sets of spectra are
displayed in Fig. 6. The large majority of spectra presents a Reλ again lying in the range 200 �
Reλ � 500. The number of spectra with a Reλ outside this range is negligible. Contrary to the
inertial exponent K , we do not observe for α a clear dependence on the Reλ (at least not within
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FIG. 4. Exponent K of the power law in the inertial range, from DNS and from experiments for both sample
durations �t = 20 and 60 s, as a function of the Taylor microscale Reynolds number. For the experimental
points, the symbols represent the mean values of K on each Reλ bin, and the error bars represent the standard
deviation within each bin. The numbers of spectra in each bin are not equal; they are given by the distribution
shown in the inset.

the present level of accuracy), but rather a constant value (up to fluctuations) smaller than 1. The
error bars in Fig. 5 represent the standard deviation within each Reλ bin, and do not reflect the
fact that some bins (at lower or larger Reλ) contain very few spectra. Moreover, one notices that
the estimation of α2 appears systematically larger than the one from α3. The determination of α2

FIG. 5. Stretch exponent α as a function of the Taylor microscale Reynolds number from DNS and from
experiments: α2 (black lines with diamonds) computed from D2 and α3 (red lines with triangles) computed
from D3, for experimental spectra corresponding to both durations �t = 20 (plain lines) and 60 s (dashed
lines), and α3 (blue squares) from DNS. For the experimental points, the symbols indicate the mean values of
α for each Reλ bin, and the error bars represent the standard deviation within each bin. The numbers of spectra
in each bin are not equal; the distribution of Reλ for each set of spectra is represented in Fig. 6.
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FIG. 6. Distribution of the Reλ corresponding to each set of data displayed in Fig. 5, for the two sample
durations �t = 20 and 60 s, and for the two methods D2 and D3.

involves a two-parameter fit, such that the resulting value for α2 is expected to be less precise than
the one of α3, but we have no interpretation for the seemingly systematic overestimation.

Since we did not find any sizable dependence of the stretch exponent α on the Reλ, we rather
concentrate in the following on the distributions of the values of α. We present in Fig. 7 these
distributions for the same data as those used in Fig. 5, that is, both α2 and α3 and for both sample
durations. One notices again that the distributions for α2 are slightly shifted upward with respect
to the ones for α3. The averages and standard deviations of all the distributions are gathered in
Table II. The distributions presented in Fig. 7 correspond to an error tolerance of Q = 10−2. We
studied the influence of this precision criterion by varying it from 10−1 to 10−4. The corresponding
distributions for α3 are displayed in Fig. 8. It is remarkable that the more stringent the precision
criterion the narrower the distributions around the theoretical prediction α = 2/3. In fact, very few
spectra pass the highest-precision criterion Q = 10−4 for the sample duration �t = 60 s, and none
pass for �t = 20 s.

FIG. 7. Distribution of the stretch exponent α: α2 (black lines with diamonds) computed from D2 and α3

(red lines with triangles) computed from D3, for spectra corresponding to both durations �t = 20 (plain lines)
and 60 s (dashed lines). The mean value and standard deviation of these distributions are reported in Table II.
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TABLE II. Summary of the number of spectra (no.), average value (〈α〉), and standard deviation (σ ) of
the distributions of the stretch exponent α obtained from either the second (α2) or the third (α3) logarithmic
derivatives, for spectra of both sample durations �t = 20 and 60 s, and for different precision tolerances Q on
the fit.

αi �t Q No. 〈α〉 σ

α2 20 s 10−1 792 0.754 0.181
10−2 785 0.757 0.176
10−3 685 0.782 0.151
10−4 282 0.756 0.126

60 s 10−1 178 0.805 0.188
10−2 175 0.812 0.178
10−3 162 0.833 0.159
10−4 99 0.829 0.126

α3 20 s 10−1 2892 0.621 0.226
10−2 1798 0.661 0.194
10−3 89 0.678 0.167
10−4 0

60 s 10−1 878 0.690 0.224
10−2 703 0.719 0.190
10−3 153 0.730 0.151
10−4 4 0.710 0.052

To give a final number for α, we can favor the most precise determination, which is α3. We retain
the two precision criteria Q = 10−2 and 10−3, which embody a reasonable compromise between
the level of accuracy and the level of statistics. Finally, since the spectra for both sample durations
constitute independent sets of comparable qualities, we can consider a weighted average of these
results, which yields

〈α3〉10−2 � 0.677 ± 0.193, 〈α3〉10−3 � 0.712 ± 0.157.

FIG. 8. Distribution of the stretch exponent α3 for � = 60 s and for different precision criteria Q from 10−1

to 10−4.
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TABLE III. Average value and standard deviation of the distributions of the parameters μ and β obtained
for spectra of both sample durations �t = 20 and 60 s, and for different precision tolerances Q on the fit.

�t Q No. 〈μ〉 σμ 〈β〉 σβ

20 s 10−1 750 4.51 1.26 0.92 0.26
10−2 747 4.51 1.26 0.92 0.26
10−3 672 4.46 1.23 0.93 0.27
10−4 275 4.53 1.07 0.87 0.25

60 s 10−1 173 4.16 1.54 0.99 0.27
10−2 172 4.19 1.51 0.98 0.26
10−3 162 4.06 1.28 1.00 0.23
10−4 99 3.90 0.89 1.00 0.19

Both estimates are very close, since their one-σ intervals are, respectively, α ∈ [0.48 : 0.87] and
[0.55 : 0.87]. We hence choose as a representative final result

〈α〉 � 0.68 ± 0.19.

The present analysis indicates that values α < 0.4 or α > 0.9 can be reasonably excluded.

E. Near-dissipative range: Other parameters

For completeness, we also give in this section the results for the other parameters of (6): the
multiplicative constant μ in the exponential, and the exponent β of the power law. The parameter μ

can be obtained from the constant μα2 in the linear fit of D2 in log-log scale according to (8). The
values found for the experimental data are given in Table III. If we consider, as we do for α, the
weighted average of both sample durations for Q = 10−2, we obtain

〈μ〉 � 4.45 ± 1.31,

which turns out to be of the same order as values found in previous studies [34], although μ is not
expected to be universal. In the numerical data, we obtain somewhat higher values, of order 10, as
shown in Fig. 9.

FIG. 9. Parameters β (main graph) and μ (inset) obtained for the DNS spectra of Fig. 1.
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The value of β can be computed as

β = D2(kη)

D3(kη)
− D1(kη). (10)

However, the precision on β is very poor, and it is highly sensitive to the value found for α. As
an indication, we find in the experimental data values close to 1, as summarized in Table III. For
instance, for Q = 10−2, we obtain from the weighted average of both sample durations

〈β〉 � 0.93 ± 0.26.

In the DNS, the value obtained for β is shown in Fig. 9. It turns out to be close to β = 5/3, i.e.,
to the inertial range value, at small Reλ, and to tend to a smaller value very close to β = 1 as Reλ

increases, in agreement with the results from the experimental data. But once again, these estimates
should be taken with caution. Given the typically small extent of the NDR, the determination of
the leading behavior, through α, is already challenging, such that a precise determination of the
subleading one, through β, is beyond the reach of the present paper.

V. CONCLUSION

In this paper, we analyze the near-dissipative range of kinetic-energy spectra obtained from high-
resolution DNS and from experimental grid turbulence in the Modane wind tunnel in order to test
the NPRG prediction of a stretched exponential behavior E ∝ exp[−μ(kη)α] with exponent α =
2/3 in this range. We use two independent determinations, from the second and from the third
logarithmic derivatives of the spectra, to estimate the value of α. All the results, from DNS and
from experiments, and from the different determinations, are consistent, and yield an estimate for
the stretch exponent α � 0.68 ± 0.19, in full agreement with the theoretical prediction.

Let us emphasize that the typically small extent of the near-dissipative range and the level
of precision currently accessible in DNS or experimental data do not seem sufficient to reliably
determine the prefactor of the exponential, that is, the precise form of the power laws. Hence, the
present analysis does not allow us to shed a new light on this point. It could possibly be refined
in the future if data with still higher resolution become available. Moreover, it would be also
very interesting to further test the NPRG predictions concerning the time dependence of two- or
multipoint correlation functions, in DNS or in experiments which dispose of suitable measurement
techniques.
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APPENDIX: NUMERICAL PROCEDURES

1. Optimized linear fitting algorithm

Extracting the inertial or dissipative exponents from the experimental data always amounts to an
affine fit (either lines in log-log representation or constants). For this, we use an elementary linear
regression. However, the accuracy of the result of such a fit strongly depends on the choice of the
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fitting domain D, which is delicate since there is no clear delimitation of the inertial or dissipative
ranges. Let us denote by a(D) and b(D) the real numbers such that the standard linear fit in the
domain D is the affine function x �→ f (x) = a(D)x + b(D) and by xi a data point in the domain D,
i.e., xi ∈ D, and yi = f (xi ).

To determine the best fitting domain, we use an optimized method based on the alignment of
data points in a given domain D. The alignment λ(D) is the largest absolute deviation of a data point
from the linear fit performed in this domain: λ(D) = maxxi∈D |a(D)xi + b(D) − yi|. Based on λ(D),
our algorithm seeks the largest domain D(ε) such that λ(D) < ε for any given positive number ε. ε

stands as a quality requirement of the input data. We estimate the quality Q(D) of the result using
the standard error Q = σ/

√
n where σ is the standard deviation and n is the number of data points

in the domain. Assembling these elements, we determine the value εopt that minimizes the function
Q[D(ε)] and use D(εopt ) as the optimal domain. This procedure is used to determine the inertial ex-
ponent K of the spectrum and the stretch exponent α from the second logarithmic derivative D2(kη).

We use the same procedure to find the optimal plateau, i.e., the optimal domain where the curve
has the lowest slope. This is achieved by replacing Q by Q′(D) = Q(D) + |a(D)|, where a(D) is
as before the slope of the linear fit in the domain D. We use this method to determine the inertial
exponent K from the first logarithmic derivative D1(kη) and for the stretch exponent α3 from the
third logarithmic derivative D3(kη). The value of Q is recorded for each estimate, and is used as a
precision indicator for the quality of the fit. In particular, we rely on Q to set up a different precision

FIG. 10. Result of the optimized fitting algorithm for the determination of K from the log-log spectrum
(red line with circles) and from the first logarithmic derivative D1 (orange line with diamonds). The result from
D1 is reported on the spectrum E for comparison.
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criterion, e.g., in Fig. 8 or Table II. The application of these procedures is illustrated in Sec. A 3 on
a typical spectrum.

2. Numerical computation of derivatives for the experimental data

As explained in Sec. IV D, the direct computation by finite differences of successive derivatives
of the experimental spectra is too noisy to be exploitable. Instead, to smooth out the data, we use the
following procedure. The derivative of a function at a certain point is computed by implementing
a linear fit in a window D centered around this point containing a fixed number of data points (we
typically use windows of 50 points). The linear fit coefficient a(D) is thus an estimate of the value
of the derivative at this point. By sliding the window D through all the data points, we obtain the
derivative of the whole function. The logarithmic derivatives of the type d ln f /d ln q are performed
using the same method with a power-law fit [fitting function q �→ b(D)qa(D)] and the derivatives of
the type d/d ln q with an exponential fit [fitting function q �→ b(D)ea(D)q]. With this procedure, the
resulting derivatives of the experimental spectra are smooth enough to serve for further analysis.

3. Illustration of the determination of the exponents K and α

As an illustration of the procedures described above, we present their result on a typical spectrum.
The determination of K is illustrated in Fig. 10, which shows this particular spectrum E (kη) in

FIG. 11. Result of the optimized fitting algorithm for the determination of α from the second (red line with
circles) and from the third (orange line with diamonds) logarithmic derivatives of the spectrum. The result from
D3 is reported on the D2 curve for comparison.
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log-log scale and its first logarithmic derivative D1(kη), obtained as explained in the previous
section. The D1 curve is first used to estimate the dissipative wave number kD, which we define
as the wave number for which (kη)2E (kη) is maximum, and which hence corresponds to the value
D1(kDη) = 2. We find kDη � 0.18, which is in agreement with typical values in the literature and
also with the value found for the numerical spectra. This value can be used as a reliable upper
bound for the inertial range. The search for the largest best domain with linear behavior for E and
lowest slope plateau for D1 is initialized in the range kη ∈ [0.01, kDη]. The result of the optimized
algorithm is represented, with their respective domains, as the red line with circles and orange line
with diamonds, respectively. In this example, the two values for K differ by more than 2% so the
value from the linear fit of E is retained since it corresponds to the largest domain.

The determination of α is illustrated in Fig. 11, which shows the second D2 and third D3

logarithmic derivatives defined in (8) and (9), respectively. The numerical derivatives are evaluated
as described in the previous section. The search domain for the near-dissipative range is initialized
as kη ∈ [kDη, kMη = 3]. The result of the optimized linear fitting algorithm applied to D2 to extract
α2 (and μα2

2 as the second parameter of the fit) is represented by the red line with circles; the result
of the lowest slope plateau algorithm applied to D3 to extract α3 is represented by the orange line
with diamonds. In this example, the two results are in close agreement.
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