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Inertial and kinetic-Alfvén wave turbulences have a priori little in common: indeed, the
first one concerns rotating hydrodynamics in the limit of a small Rossby number (with
�0 the rotating rate) while the second describes high frequency plasmas in the limit of a
strong uniform magnetic field B0. In this paper we show analytically that, in the limit of
local interactions in the perpendicular direction to �0, the inertial wave turbulence equation
converges towards the same nonlinear diffusion equation as for kinetic-Alfvén waves when
the same limit is taken; the only difference resides in the constants in front of the equations.
Therefore, both systems share the same physical properties for the stationary phase with
an energy spectrum in k−5/2

⊥ ; it is preceded by a self-similar solution of the second kind
during the nonstationary phase with a spectrum proportional to k−8/3

⊥ which propagates
explosively towards small scales. It is suggested that the proximity between these two
problems may be used to better understand inertial or kinetic-Alfvén wave turbulence.

DOI: 10.1103/PhysRevFluids.5.044603

I. INTRODUCTION

Turbulence under rotation is a relevant regime for many geophysical and astrophysical flows,
including gaseous planets. The effect of the Coriolis force is considered to become important when
the dimensionless Rossby number, Ro, the ratio of the convective to Coriolis forces, is sufficiently
small (Ro < 1). For example, for large-scale planetary flows we find Ro � 0.05–0.2. The Reynolds
number Re, the ratio of the convective to the viscous terms, in these systems is, in general, very
large with values Re � 103. Therefore, these flows can be considered in a regime of fully developed
turbulence.

Many laboratory experiments have been devoted to the study of hydrodynamic turbulence under
rotation. From an experimental point of view, it is not so difficult to reach a small Rossby number
(Ro � 1) in a rapidly rotating tank but it is more difficult to achieve a Reynolds number greater
than 105. This number is, however, sufficiently high so that the flow is in a state of fully developed
turbulence. With these experiments (e.g., in a wind tunnel) it has been possible to show that, when
Ro < 1, rotation can bidimensionalize a turbulence initially isotropic [1,2]. This leads to vortices
having their axes approximately parallel to the rotation axis �0 and to a strong correlation of the
velocity in the �0-direction [3]. Asymmetry is also found in the distribution of cyclones versus
anticyclones (the first dominating the second) as well as a slowdown (compared to the case without
rotation) of the freely energy decay [4]. Thanks to the particle image velocimetry (PIV) technique,
it is possible to accurately measure the velocity of the particles introduced and therefore that of
the fluid whose dynamics is supposed not to be influenced by the presence of these intruders. A
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restriction exists, however, because the measure is made only in a plane. It is generally the plane
perpendicular to the axis of rotation that is chosen. The energy spectra measured as a function of
the perpendicular wave number k⊥ show a stiffening of the power law, going from an index around
−5/3 (for Ro = +∞) to a value close to −2.2 for the fastest rotation [5]. The experiment also shows
that the structure functions of order p follow a self-similar law with ξp = p/2 [6] or ξp = 3p/4 [7].
Even if the origin of this self-similar behavior can be attributed to inhomogeneity, measurement, or
forcing effects, it is interesting to mention that the ξp = 3p/4 law is dimensionally compatible with
the exact solution of inertial wave turbulence [8] (see below). The PIV technique has also made it
possible to find evidence of the inertial wave turbulence regime by measuring the frequency–wave-
number spectrum. This spectrum is characterized by a signal essentially concentrated along the
dispersion relation of inertial waves [9,10]. This property is the one expected when nonlinearities
are weak [11]. Finally, the experiments showed the presence in the perpendicular direction only of
an inverse cascade towards large scale [12] whose properties, however, seem to be different from
those of a purely two-dimensional turbulence [13].

The effects of rotation on hydrodynamic turbulence were also studied through numerical
simulations. A reduction of the nonlinear transfer in the direction of the rotation rate �0 was
observed as well as a slowing down of the energy decay [14,15]. A stiffening of the power law
followed by the energy spectrum was measured as well as signatures of an inverse cascade [16,17].
In particular, Smith and Waleffe [18] showed with direct numerical simulations that when the
flow is forced only three-dimensionally at an intermediate wave number ki, we observe a direct
cascade of energy for k > ki, with a one-dimensional (1D) isotropic spectrum close to k−2, and
an inverse cascade for k < ki, with an isotropic 1D spectrum close to k−3. Their analysis shows
that the energy at large scale is mainly contained into the two-dimensional (2D) state, which is
defined as the fluctuations in the mode k‖ = 0 (with k · �0 = k‖ �0), while at small scale energy
is mainly contained into three-dimensional (3D) modes (k‖ �= 0). The observed 2D spectrum could
be the result of nonlocal interactions between 2D and 3D modes, rather than the consequence of
a 2D inverse cascade [19]. Furthermore, these simulations show that the behavior at small and
large scales is strongly influenced by the aspect ratio between the vertical resolution, along �0,
and the horizontal one: a small aspect ratio, with a low resolution in the vertical direction, leads
to a reduction in the number of triads and a significant alteration of the energy spectrum. Their
simulations show an energy spectrum globally in k−5/3 for a sufficiently small aspect ratio. This
result suggests that the resonant triads have a fundamental role to play in rotating turbulence.

From a theoretical point of view, rotating turbulence can be understood via the phenomenology.
The first works on the subject [20,21] show that a steep spectrum in k−2 is expected at large scales,
where the Coriolis force is important, that is, for wave numbers smaller than a critical wave number
k�. It can be noted, however, that this phenomenological prediction does not include anisotropy, a
fundamental property of this turbulence. In the field of spectral theory, the most important advances
have been realized by means of closure methods like eddy-damped quasi-normal Markovian
(EDQNM) [22]. Cambon and Jacquin [23] developed a formalism based on a decomposition in
eigenmodes. The ad hoc closure used leads to the spectral equations of the system. The simulation
of these equations made it possible to understand more precisely some of the properties observed
as the anisotropic transfer mechanism (see also [15]). More recently, inhomogeneous effects
were introduced to take into account the existence of infinitely large boundaries in the direction
perpendicular to the axis of rotation [24]. The confined fluid under rapid rotation then behaves
differently from the free one with essentially a wall dissipation effect which dynamically emerges
before the classical volume dissipation [25].

In this paper, we first recall the main properties of inertial wave turbulence with a brief derivation
of the kinetic equation (Sec. II). In Sec. III, we take the limit of local interactions for wave numbers
perpendicular to the rotating axis and derive the corresponding nonlinear diffusion equation. Their
solutions are discussed in Sec. IV while we present a numerical simulation in Sec. V. Finally,
a discussion is developed around the proximity of this problem with kinetic-Alfvén (or oblique
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whistler) wave turbulence, an interesting regime for understanding multiscale solar wind turbulence
[26], for which the same nonlinear diffusion equation can be found [27,28].

II. INERTIAL WAVE TURBULENCE THEORY

The theory of inertial wave turbulence was developed by Galtier [8]. In this section, we
summarize the main steps and properties found. The basic equation from which the theory is
developed is

∂w
∂t

− 2 (�0 · ∇ ) u = (w · ∇ ) u − (u · ∇ ) w + ν ∇2 w, (1)

with u the velocity, w the vorticity, �0 ≡ �0ê‖, ê‖ a unit vector (|ê‖| = 1), and ν the kinematic
viscosity. We introduce the helicity basis

hs
k ≡ hs(k) = (êk × ê‖) × êk + is(êk × ê‖), (2)

with k = kêk = k⊥ + k‖ê‖ (k = |k|, k⊥ = |k⊥|, |êk| = 1), and s = ± the directional polarity. This
basis satisfies the following properties:

h−s
k = hs

−k, (3)

is
(
êk × hs

k

) = hs
k, (4)

k · hs
k = 0, (5)

hs
k · hs′

k = 2k2
⊥

k2
δ(s + s′). (6)

The projection of the Fourier transform of the velocity uk on this helical basis leads to the following
definition for As

k

uk ≡ u(k) =
∑

s

As(k) hs
k ≡

∑
s

As
k hs

k. (7)

We also find

wk ≡ w(k) = ik × uk = k
∑

s

s As
k hs

k. (8)

The Fourier transform of Eq. (1) gives in the inviscid case (ν = 0)

∂wk

∂t
− 2i�0k‖uk = [(w · ∇ )u − (u · ∇ )w]k, (9)

where the index k in the right-hand side (RHS) means the Fourier transform.
In the linear case, if we introduce Eqs. (7) and (8), we obtain after projection

sk
∂As

k

∂t
= −2i�0k‖As

k ; (10)

hence the dispersion relation

ωk = 2�0k‖
k

. (11)

The inertial waves are transverse, dispersive, helical waves with a left polarization [29].
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In the nonlinear case, the introduction of Eqs. (7) and (8) leads to the following expression (after
some manipulations):

∂As
k

∂t
+ isωkAs

k = i
∑
spsq

∫
L

sspsq

−k p q A
sp
p A

sq
q δ(k − p − q) dpdq, (12)

with the interacting coefficient

L
sspsq

k p q = sk

4k2
⊥

(sp p − sqq)
[(

q · hsp
p
)(

hsq
q · hs

k

) − (
p · hsq

q
)(

hsp
p · hs

k

)]
. (13)

The wave amplitude being assumed small, the dynamics over a short timescale—of the order of the
wave period 1/ω—will be given by the linear terms. Over a large timescale τ—such that τ � 1/ω—
the nonlinear terms will be nonnegligible and will modify the wave amplitude. Therefore, it is
relevant to separate the amplitude from the phase and to introduce a small parameter 0 < ε � 1
such that by definition

As
k ≡ εas

ke−isωkt . (14)

Hence the wave amplitude equation

∂as
k

∂t
= iε

∑
spsq

∫
L

sspsq

−k p q a
sp
p a

sq
q ei(sωk−spωp−sqωq )t δ(k − p − q)dpdq. (15)

We find a classical form for three-wave interactions with a term in the RHS of weak amplitude, a
quadratic nonlinearity, and an exponential function which will give a nonzero contribution only
when its coefficient cancels (resonance condition). After some manipulation, we can write the
resonance condition in the following way:

sqq − sp p

sωk
= sk − sqq

spωp
= sp p − sk

sqωq
. (16)

It is interesting to discuss about the particular case of strongly local interactions which often give
the main contribution to the nonlinear dynamics. In this case, we have k � p � q and the previous
expression simplifies to give at the main order

sq − sp

sk‖
� s − sq

sp p‖
� sp − s

sqq‖
. (17)

If k‖ is non null, the term in the left will give a nonnegligible contribution only when sp = −sq.
[We do not consider the case sp = sq which is not relevant at the main order in the case of local
interactions as we can see on expression (13) that becomes negligible.] The immediate consequence
is that either the term in the middle or the term in the right cancels its numerator (at main
order), which implies that the corresponding denominator must also cancel (at main order): for
example, if s = sp then q‖ � 0. This condition means that the transfer in the parallel direction
is negligible: indeed, the integration in the parallel direction of Eq. (15) reduces to only a few
modes which limits strongly the transfer between parallel modes. The cascade along the parallel
direction is then possible but relatively weak compared to the one in the perpendicular direction.
This situation is close to magnetohydrodynamic turbulence where the parallel transfer along the
external uniform magnetic field B0 is completely frozen [30]. It is even completely similar to the
case of kinetic-Alfven (or whistler) wave turbulence [31,32] where a weak cascade is allowed along
B0 (see discussion below).

The kinetic equations of inertial wave turbulence can be derived in a classical way. They simplify
the party when the limit k⊥ � k‖ is taken: this limit is justified by the arguments given above about
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the asymmetry in terms of cascade. Then it is possible to show that [8]

∂t

{
Ek

Hk

}
= ε2�2

0

4

∑
sspsq

∫

⊥

sk‖sp p‖
k2
⊥ p2

⊥q2
⊥

(
sqq⊥ − sp p⊥

ωk

)2

× (sk⊥ + sp p⊥ + sqq⊥)2 sin θδ(sωk + spωp + sqωq){
Eq(p⊥Ek − k⊥Ep) + (p⊥sHk/k⊥ − k⊥spHp/p⊥)sqHq/q⊥

sk⊥[Eq(p⊥sHk/k⊥ − k⊥spHp/p⊥) + (p⊥Ek − k⊥Ep)sqHq/q⊥]

}
δ(k‖ + p‖ + q‖)d p⊥dq⊥d p‖dq‖

(18)

with Ek ≡ E (k⊥, k‖) = 2πk⊥E (k⊥, k‖) and Hk ≡ H (k⊥, k‖) = 2πk⊥H (k⊥, k‖) the asymmetric
spectra of energy and kinetic helicity, respectively. In these expressions, θ is the angle between
k⊥ and p⊥ in the triangle k⊥ + p⊥ + q⊥ = 0 where 
⊥ is the domain of integration (corresponding
to this triangle).

The inertial wave turbulence equations were derived for the first time by Galtier [8]. They were
studied numerically by Bellet et al. [33], and rederived with the Hamiltonian formalism by Gelash
et al. [34]. After applying the generalized Zakharov transformation [35], the constant flux solutions
found are

E (k⊥, k‖) ∼ k−5/2
⊥ k−1/2

‖ , (19)

H (k⊥, k‖) ∼ k−3/2
⊥ k−1/2

‖ . (20)

These solutions correspond to a direct energy cascade [8]. In particular, that means the dynamics of
the kinetic helicity is driven by the energy. The numerical simulation of these equations have shown
a relatively good agreement with the predictions [33]. Several other physical properties of inertial
wave turbulence can be derived from expression (18). First, we see that an initial state with zero
helicity will not produce helicity, whatever the scale considered. The energy is thus the main driven
of this turbulence. Second, we observe that there is no nonlinear coupling when the wave vectors p⊥
and q⊥ are collinear (because then sin θ = 0). Third, there is no nonlinear coupling when p⊥ and
q⊥ are equal if in the mean time their polarities sp and sq are also equal. It is a property that seems
quite general since it is common to other types of helical waves [31,36–38]. Finally, we recall that
these equations cannot describe the 2D modes (k‖ = 0) and also the 3D modes if there are too large
(in particular in k⊥) for which turbulence becomes strong. The kinetic equations of inertial wave
turbulence are therefore limited to a finite domain in the Fourier space.

III. LOCAL TRIADIC INTERACTIONS LIMIT

In this section we shall study the local (in the perpendicular direction) triadic interactions limit
for which the inertial wave turbulence equation simplifies. For the sake of simplicity, we will
only consider the energy. Kinetic helicity turns out to be more difficult to manipulate analytically.
Furthermore, the meaning and the behavior of the kinetic helicity is quite different from the
magnetic helicity that we find in plasmas with a direct cascade for the kinetic helicity and an inverse
cascade for the magnetic helicity. In the strongly anisotropic limit k⊥ � k‖, Eq. (18) writes

∂t Ek =
∑
sspsq

∫
T

sspsq

kpq d p⊥dq⊥d p‖dq‖.

By definition

T
sspsq

kpq ≡ �2
0

4

sk‖sp p‖
k2
⊥ p2

⊥q2
⊥

(
sqq⊥ − sp p⊥

ωk

)2

(sk⊥ + sp p⊥ + sqq⊥)2Eq(p⊥Ek − k⊥Ep) sin θδ(gkpq)δk‖ p‖q‖ ,

(21)
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with ωk = 2�0k‖/k⊥. Note that the small parameter ε is now absorbed in the time variable. The
resonance condition leads to the remarkable identity

sp p⊥ − sk⊥
sqωq

= sqq⊥ − sp p⊥
sωk

= sk⊥ − sqq⊥
spωp

, (22)

which can be used to demonstrate the symmetrical relation

T
spssq

pkq = −T
sspsq

kpq . (23)

In the limit of strongly local interactions we can write

p⊥ = k⊥(1 + εp) and q⊥ = k⊥(1 + εq), (24)

with εp � 1 and εq � 1. We can introduce an arbitrary function f (k⊥, k‖) and integrate the kinetic
equation to find

∂t

∫
f (k⊥, k‖)Ekdk⊥dk‖ =

∑
sspsq

∫
f (k⊥, k‖)T sspsq

kpq dk⊥dk‖d p⊥dq⊥d p‖dq‖

= 1

2

∑
sspsq

∫
( f (k⊥, k‖) − f (p⊥, p‖))T sspsq

kpq dk⊥dk‖d p⊥dq⊥d p‖dq‖. (25)

For local interactions we have

f (p⊥, p‖) � f (k⊥, k‖) + (p⊥ − k⊥)
∂ f (k⊥, k‖)

∂k⊥
= f (k⊥, k‖) + εpk⊥

∂ f (k⊥, k‖)

∂k⊥
, (26)

if we neglect the contribution of the parallel wave number; this assumption is fully compatible with
the weak cascade along the parallel direction. We obtain

∂t

∫
f (k⊥, k‖)Ekdk⊥dk‖ = −1

2

∑
sspsq

∫
εpk⊥

∂ f (k⊥, k‖)

∂k⊥
T

sspsq

kpq dk⊥dk‖d p⊥dq⊥d p‖dq‖. (27)

Using an integration by part, we find the relation

∂t Ek = 1

2

∂

∂k⊥

⎛
⎝∑

sspsq

∫
εpk⊥T

sspsq

kpq d p⊥dq⊥d p‖dq‖

⎞
⎠. (28)

The asymptotic form of T
sspsq

kpq can be found by using the locality in the perpendicular direction. In
particular, we find the relations

k2
⊥ p2

⊥q2
⊥ = k6

⊥, (29)(
sqq⊥ − sp p⊥

ωk

)2

=
(

sq − sp + sqεq − spεp

2�0k‖

)2

k4
⊥, (30)

(sk⊥ + sp p⊥ + sqq⊥)2 = (s + sp + sq)2k2
⊥, (31)

Eq(p⊥Ek − k⊥Ep) = −εpk3
⊥Ek

∂ (Ek/k⊥)

∂k⊥
, (32)

sin θ = sin(π/3) =
√

3

2
, (33)

δ(gkpq ) = k⊥
2�0

δ(sk‖ + sp p‖ + sqq‖). (34)
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After simplification, we arrive at

T
sspsq

kpq = −
√

3

64�0

sspp‖
k‖

(sq − sp + sqεq − spεp)2(s + sp + sq)2εpk4
⊥Ek

∂ (Ek/k⊥)

∂k⊥
δ(sk‖ + sp p‖

+ sqq‖)δ(k‖ + p‖ + q‖).

(35)

With this form we see that the transfer will be significantly higher when spsq = −1, therefore we
will only consider this type of interaction. Then the expression of the transfer reduces to

T
ssp−sp

kpq = −
√

3

16�0

sspp‖
k‖

εpk4
⊥Ek

∂ (Ek/k⊥)

∂k⊥
δ(sk‖ + sp p‖ − spq‖)δ(k‖ + p‖ + q‖). (36)

The resonance condition leads to two possible combinations for the parallel wave numbers, namely,

k‖ + p‖ − q‖ = 0 and k‖ + p‖ + q‖ = 0, (37)

k‖ − p‖ + q‖ = 0 and k‖ + p‖ + q‖ = 0. (38)

The solution corresponds either to q‖ = 0 or p‖ = 0, which means in particular that the strong
locality assumption is not allowed for the parallel direction. The second solution cancels the transfer,
therefore we will only consider the first solution for which we obtain (with p‖ = −k‖)

∂t Ek =
√

3

16�0

∂

∂k⊥

(
k7
⊥Ek

∂ (Ek/k⊥)

∂k⊥

) ∫ +ε

−ε

ε2
pdεp

∫ +ε

−ε

dεq = C
∂

∂k⊥

(
k7
⊥Ek

∂ (Ek/k⊥)

∂k⊥

)
, (39)

with C = ε4/(4
√

3�0). The nonlinear diffusion equation (39) is the main result of the paper. It
describes weak inertial wave turbulence for strongly local interactions in the perpendicular direction.
This equation is derived rigorously from the kinetic equations of rotating turbulence under the
assumptions of locality (in the perpendicular direction) and of strong anisotropy for which k⊥ � k‖.
Expression (39) has the same form as for whistler wave turbulence [27,28,39]. The only one
difference resides in the constant in front of the equation: for whistler waves this constant, called C̃,
is related to C via the relation C̃ = C�0di/B0, where di is the ion inertial length.

Equation (39) can also be derived using phenomenological arguments, but in this case the
coefficient C is unknown. Below, we shall derive a general nonlinear diffusion equation to find
the minimum requirement leading to Eq. (39). Let us consider the diffusion equation

∂t E (k) = −∇ · F = − 1

k⊥

∂ (F⊥k⊥)

∂k⊥
, (40)

where F is a flux. Turbulence is assumed to be axisymmetric and we neglect the parallel cascade
(F‖ = 0). We model the perpendicular flux as follows

F⊥ = −D
∂E (k)

∂k⊥
, (41)

where D is a diffusion coefficient. Dimensionally, we find

D = k2
⊥
τ

, (42)

with τ the typical time of energy transfer. To find its phenomenological expression we introduce the
dispersion relation

ωk ∼ kξ

⊥, (43)

from which we define the wave-time τW ∼ k−ξ

⊥ . Only the perpendicular component of the wave
vector is retained in the dispersion relation since the dynamics is assumed to be in that direction. In
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wave turbulence, for three-wave interactions we have [40]

τ ∼ τ 2
NL

τW
, (44)

where τNL is given by the fluid equation. For rotating turbulence it is Navier-Stokes and τNL ∼
1/(k⊥u). After some manipulation we arrive at

∂t Ek ∼ ∂

∂k⊥

(
τ−2

NL k3−ξ

⊥
∂ (Ek/k⊥)

∂k⊥

)
, (45)

where we introduced the axisymmetric energy spectrum Ek ∼ k⊥E (k). In principal, this diffusion
equation is valid for any problem of anisotropic wave turbulence if three-wave interactions
dominate. Let us introduce

τNL ∼ kρ

⊥Eσ
k , (46)

then we obtain the nonlinear diffusion equation

∂t Ek ∼ ∂

∂k⊥

(
k3−ξ−2ρ

⊥ E−2σ
k

∂ (Ek/k⊥)

∂k⊥

)
. (47)

The conditions to obtain expression (39) are

ξ + 2ρ = −4, (48)

σ = −1/2. (49)

For rotating turbulence we have ξ = −1, ρ = −3/2, and σ = −1/2 and for kinetic-Alfvén wave
turbulence we have ξ = 1, ρ = −5/2, and σ = −1/2.

IV. SOLUTIONS OF THE NONLINEAR DIFFUSION EQUATION

We shall check that Eq. (39) has the same exact power-law solutions as the original wave
turbulence equation (18). Let us introduce in Eq. (18) the energy flux �E (k⊥) which is by definition

∂E (k⊥)

∂t
= −∂�E (k⊥)

∂k⊥
, (50)

and the energy spectrum E (k⊥) = Akx
⊥ where A is by definition a positive constant. We obtain

�E (k⊥) = A2C(1 − x)k5+2x
⊥ . (51)

Thus the constant flux solutions are x = 1 and x = −5/2. The first value cancels the flux and
corresponds therefore to the thermodynamic solution found in [8]. The second value is the solution
discussed above: it is the well-known Kolmogorov-Zakharov spectrum. In this case, we also have

�E (k⊥) ≡ �0 = 7

2
A2C, (52)

which is positive as expected for a direct cascade. It is also a finite capacity solution which
means that we expect the formation of this solution in a finite time. Note that we find here a first
reason to think that the local interactions is a good limit to describe inertial wave turbulence since
the nonlinear diffusion equation is able to reproduce the exact solution derived from the kinetic
equation.

The stationary spectrum is sometimes preceded by a transitory solution with different properties.
In our case, since the system has a finite capacity, the nonstationary spectrum should correspond to
a self-similar solution of the second kind with the form

E (k⊥) = 1

τα
E0

(
k⊥
τβ

)
, (53)
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with τ = t∗ − t . t∗ is the time that takes the spectrum to reach the maximum wave number available.
To be more precise, in principle, the spectral front will take a finite time to reach k⊥ = +∞.
Introducing the previous expression into Eq. (18) we find

α = 4β + 1. (54)

A second relation can be found by supposing that E0(ξ ) ∼ ξ y far behind the front. Then, the
stationary condition leads to

α + yβ = 0. (55)

The combination of the two expressions gives eventually

y = −α

β
= −4 − 1

β
. (56)

This last expression means that we have a direct relation between the power-law exponent y and the
law of the front propagation. k f ∼ τβ . For example, if we assume that the Kolmogorov-Zakharov
solution appears immediately during the nonstationary phase, then y = −5/2 and thus β = −2/3
(with α = −5/3). In this case, the prediction for the front propagation is

k f ∼ (t∗ − t )−2/3. (57)

In practice, as illustrated in the next section, the nonstationary solution is quite different: the
expressions (55) and (56) are verified but the values of α, β, and y can only be found by using
a numerical simulation.

V. NUMERICAL STUDY

In this section we present a numerical study of the nonlinear diffusion equation (39) with C = 1.
A hyperviscous dissipative term is added; this term stabilizes the code around the critical time t∗.
Therefore, we numerically implement the following equation:

∂E (k⊥)

∂t
= ∂

∂k⊥

(
k7
⊥Ek

∂ (E (k⊥)/k⊥)

∂k⊥

)
− νk4

⊥E (k⊥), (58)

with ν the hyperviscosity. In our simulation we took ν = 2×10−7. A logarithmic subdivision of the
k⊥-axis is used with k⊥i = 2i/10 and i an integer varying between 0 and 240. The Adams-Bashforth
and Crank-Nicholson numerical schemes are implemented for the nonlinear and dissipative terms,
respectively. The initial condition (t = 0) corresponds to a spectrum localized at large scale with
E (k⊥) ∼ k3

⊥ exp(−(k⊥/k0)2) and k0 = 5. No forcing is added at t > 0. The timestep is 
t =
2×10−7. Note that a similar numerical simulation was already performed by David and Galtier [28]
for kinetic-Alfvén wave turbulence. For the consistency of the paper we perform a new simulation
where an hyperviscosity of order 4 is used (instead of order 6) as well as a higher grid resolution
(we use k⊥i = 2i/10 instead of k⊥i = 2i/8). As shown below, we arrive to the same conclusion, which
proves that it does not depend on the type of hyperdissipation and also that the resolution is high
enough for the convergence of the results. Note that we also performed a simulation with a normal
viscosity (not shown) and we recover qualitatively the same results (however, the inertial range is
narrower).

In Fig. 1(left) we show the time evolution of the energy spectrum for t ∈ [0, t∗]. During this
nonstationary phase a clear power-law spectrum in k−8/3

⊥ is formed behind the front. As shown in
Fig. 1(right), the nonstationary phase is characterized by a nonconstant energy flux �E (k⊥): we start
with a flux localized at small perpendicular wave numbers which then develops towards smaller
scales without reaching a plateau. The solution does not correspond to the constant flux solution
derived analytically, but it is fully compatible with the power-law solution ∼k−1/3

⊥ when we take
x = −8/3 in Eq. (51). Note that this result could be the explanation of the recent spectrum obtained
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FIG. 1. Left: Time evolution (every 33 802
t ; 100 spectra are shown) of the energy spectrum E (k⊥) from
t = 0 (blue) to t∗ (green); a comparison is made to k−8/3

⊥ . Right: Time evolution of the energy flux �E (k⊥) for
the same times; a comparison is made to k−1/3

⊥ .

numerically with a wave turbulence code where such anomalous scaling was found [25]. We may
find here a second reason to think that the local interactions is a good limit to describe inertial wave
turbulence.

To check if the energy spectrum corresponds to the self-similar solution introduced above we
show in Fig. 2 the front propagation k f (t ). This front is defined by taking E (k⊥) = 10−15 from
Fig. 1(left): we then follow the point of intersection between this threshold and the spectral tail.
From Fig. 2 we can define the singular time t∗ at which the front can reach, in principle, k⊥ = +∞.
The value t∗ = 6.757×10−7 is chosen. In Fig. 2 (inset) we display k f as a function of t∗ − t : a
power law is observed over three decades with an index of −0.750. The negative value illustrates
the explosive character of the direct cascade of energy in inertial wave turbulence. The different
values measured are fully compatible with

α = −2, β = −3/4, and y = −8/3, (59)

which therefore demonstrates the self-similar nature of the nonstationary solution.

FIG. 2. Time evolution of the spectral front k f for t � t∗ in linear-logarithmic coordinates (green). A sharp
increase of k f is observed from which we can define precisely the singular time t∗ = 6.757×10−7. Inset: The
temporal evolution of k f as a function of t∗ − t (green) in double logarithmic coordinates. The black dashed
line corresponds to (t∗ − t )−0.750. For comparison two other values of t∗ are taken (red and blue).
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FIG. 3. Left: Time evolution (every 33 802
t) from t = t∗ to t = 4×106 (from blue to green) of the energy
spectrum compensated by k5/2

⊥ ; inset: time evolution of the flux for the same times. Right: Time evolution
(every 106
t) for t = 4×106 to t = 5×107 of the compensated energy spectrum.

Finally, in Fig. 3(left) we show the temporal evolution for t > t∗ of the spectra of energy and
flux (inset), respectively. The classical stationary wave turbulence predictions are finally obtained
with an energy spectrum in k−5/2

⊥ —Kolmogorov-Zakharov solution—and a constant positive energy
flux, as expected for a direct cascade. In Fig. 3(right) the final phase of the simulation is shown for
t � t∗: it corresponds to a self-similar decay of the energy spectrum with the same power-law index.

VI. DISCUSSION

Kinetic-Alfvén (or oblique whistler) wave turbulence is a regime of plasma physics often
considered [41] to describe solar wind turbulence for frequencies higher than the ion-gyro frequency
(or for lengthscales smaller than the ion skin depth di) where standard magnetohydrodynamics
(MHD) is not applicable [40]. In the presence of a strong uniform magnetic field B0 a weak
turbulence regime is possible for which the kinetic equations can be derived [27,32,39]. These
equations are greatly simplified by taking the strongly local interactions limit for wave numbers
perpendicular to B0. The nonlinear diffusion equations found have been numerically solved to study
the dynamics of the magnetic energy coupled with the magnetic helicity [27]. More recently, this
regime has also been studied numerically (in the absence of helicity) to show the existence of a
nonstationary solution with a spectrum proportional to k−8/3

⊥ , which is significantly different from
the stationary solution in k−5/2

⊥ [28]. The consequences of such a discovery have been discussed in
the context of the turbulent collisionless solar wind plasma. It could also provide an explanation for
the −8/3 spectrum obtained with a direct numerical simulation of electron MHD turbulence [42].

In the present paper, we show that the nonlinear diffusion equation (39) found for inertial
wave turbulence is the same as the one derived for kinetic-Alfvén wave turbulence. The only
difference resides in the constant in front of the equation where some physical quantities of the
system appear. For rotating hydrodynamics it is the rotating rate �0 while for magnetized plasmas
it is the uniform magnetic field B0. The proximity between these two problems may be used
to better understand inertial or kinetic-Alfvén wave turbulence. For example, it is interesting to
note that a study based on structure functions of the magnetic field, obtained with in situ data at
one astronomical unit, reveals a non-Gaussian monoscaling in the domain where kinetic-Alfvén
wave turbulence dominates [43] (see also the discussion in [44]). The statistics is compatible with
ξp = 0.8p or 0.9p, depending on the magnetic field component, while at MHD scales classical
properties of intermittency were found with a nonlinear variation of ξp with p. Such statistics—with
a monoscaling—is rather rare in turbulence, however, for rotating hydrodynamic turbulence, such a
linear scaling was also found experimentally [7]: it was for the longitudinal velocity (perpendicular
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components) structure function exponents. In this case the data are compatible with ξp = 3p/4,
with still a non-Gaussian statistics. Scale invariance for the velocity structure function was also
detected in a direct numerical simulations for a Rossby number Ro ∼ 0.06 and in presence of
helicity [45]; the measures are compatible with ξp = 0.71p. It is well-known that the law followed
by ξp can depend on the type of structures (sheets or filaments) present [46]. In the case of rotating
turbulence we find vorticity filaments mainly oriented along the rotating axis [47]. Interestingly,
filaments of electric currents were also found in the regime of electron MHD under a strong mean
magnetic field (whose equations can also describe kinetic-Alfvén wave turbulence) [32,42]. These
structures are also oriented along the external agent (B0). According to these different anomalous
results, it is tantalizing to think that this behavior finds its origin in the weak turbulence character
where waves are omnipresent, probably in coexistence with fluctuations at k‖ = 0 (2D modes). The
slight differences between the measurements could be attributed to inhomogeneities, always present
experimentally, or to the fact that the regime of weak wave turbulence is not perfectly reached.

The impact of 2D modes is certainly nonnegligible in both problems but it has been discussed
mainly in the context of rotating turbulence [8,18,24,33]. For example, it was shown numerically
that a significant fraction of the energy is concentrated in modes with zero frequency and it is only
for modes with the period faster than the turnover time that a significant fraction of the remaining
energy is concentrated along the dispersion relation, as expected for weak turbulence [48]. In the
context of the solar wind, it is difficult to remove the contribution of the 2D mode to the statistics
since we have only access to one or four points (the number of satellites). However, it is known that
the 2D modes have an influence on the global behavior of a plasma like it was shown numerically
in incompressible MHD turbulence [49,50] (and also in Hall MHD [51]). With this scenario, the
regime at kinetic scales in the solar wind would be driven by weak wave turbulence in presence of
2D modes, limiting therefore the critical balance regime [52] to MHD scales. Note, however, that
this fluid description would not be complete if we did not include the kinetic effects that can modify
non-trivially the overall picture [53].

In conclusion, we showed that under a particular limit of weak wave turbulence, rotating
hydrodynamics, and magnetized plasmas at sub-ion scales can share the same dynamical equation
which allows us to make a bridge between these two different problems. It was often stated in the
past that the first problem was close to MHD and therefore to Alfvén wave turbulence, but the
case of kinetic-Alfvén waves (or oblique whistler waves) is even closer since the diffusion equation
is exactly the same whereas a difference exists with MHD [54]. Other differences exist with pure
MHD: Alfvén waves are linearly polarized while inertial and kinetic-Alfvén waves are helical waves
(with left and right polarizations, respectively). In pure MHD, the cascade along the external agent
is not possible [30,55] whereas a weak transfer is always possible for the two problems discussed
in this paper. Finally, it is believed that the proximity between these two problems can help to
better understand them, and in particular, solar wind turbulence. However, we must keep in mind
that the solar wind is a collisionless plasma where kinetic effects are present, which may limit our
comparison with a fluid model [56,57].
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