
PHYSICAL REVIEW FLUIDS 5, 044501 (2020)
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We study the fractal scaling of iso-level sets of a passive scalar mixed by three-
dimensional homogeneous and isotropic turbulence at high Reynolds numbers. The scalar
field is maintained by a linear mean scalar gradient, and the Schmidt number is unity.
A fractal box-counting dimension DF can be obtained for iso-levels below about three
standard deviations of the scalar fluctuation on either side of its mean value. The dimension
varies systematically with the iso-level, with a maximum of about 8/3 for the iso-level at
the mean scalar value; this maximum dimension also follows as an upper bound from the
geometric measure theory. We interpret this result to mean that mixing in turbulence is
incomplete. A unique box-counting dimension for all iso-levels results when we consider
the spatial support of the steep cliffs of the scalar conditioned on local strain rate; that
unique dimension, independent of the iso-level set, is about 4/3.
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I. INTRODUCTION

Consider a homogeneous and isotropic turbulence field in a periodic box at a high Reynolds
number, generated by direct numerical simulations (DNS) of the Navier-Stokes (NS) equations. The
turbulent field is maintained statistically stationary by supplying energy at a few low-wave-number
shells. Into this turbulence field we introduce passive scalar fluctuations statistically homogeneously
and allow them to evolve according to the advection diffusion equation along with the NS equations;
the scalar field is maintained steady by means of a constant scalar gradient in one direction. For
clarity, scalars are quantities that can be specified by their amplitude alone, and passive scalars do
not influence the dynamics of turbulence that advects it. The diffusivity of the scalar D is small
and equal to the viscosity ν of the fluid (i.e., the Reynolds number is large and the Schmidt number,
Sc = ν/D, is unity). Modestly heated air flows form concrete examples close enough to the situation
at hand. The properties of passive scalar fields with a variety of Schmidt numbers have been explored
in a few classical papers in the late 1940s to mid-1950s [1–3]; summaries of the progress made since
then, and references to important papers on the subject, can be found in Refs. [4–8].

Figure 1 shows a typical planar section of the passive scalar field just described. Its first
conspicuous property is the presence of large-scale fronts, often called a ramp-cliff structure (see,
e.g., Refs. [4,9]) or “cliffs” because of the tendency of the scalar to rise to the high concentration
value rather abruptly while decaying to the lower concentration value rather gradually (“ramp”);
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FIG. 1. A two-dimensional slice of the passive scalar fluctuation field θ in the homogeneous isotropic
turbulent flow. In (a) the contours of the cut are shown, as is the direction of the mean scalar gradient G;
(b) shows the magnification of the contours within the black square in panel (a). Two segments of a scalar
front are highlighted by A and B. The color bar below (a) holds for both (a) and (b) in units of GL0, which
is the maximum available difference of the mean scalar in the box. (c) The corresponding zoom of the scalar
dissipation field, εθ = D(∇θ )2 in units of u′G2L0, probes the magnitude of the scalar gradient. The contour
levels are chosen in units of the logarithm to base 10 of εθ and correspond to the color bar below (c).

across a cliff the nearly abrupt jump of the concentration of the scalar is on the order of magnitude
of the entirety of the scalar difference available in the box. This latter is equal to the product of the
mean scalar gradient, G, and the linear dimension of the box, L0. These fronts occur even when the
velocity field is turbulent, and the scalar has the full band of standard spectral shape that we have
come to expect [8]. The existence of such sharp and large fronts endows the scalar field with certain
types of anomaly studied most recently in Ref. [10] (see also Refs. [11,12] for the two-dimensional
case). Briefly, we find that the scaling exponents of the scalar structure functions approach constant
values even when the order of the structure function increases without bound. This behavior is
unexpected from the classical point of view and is a property shared with model problems such as
the Burgers equation for pressureless velocity fields (for a review, see, Ref. [13]) and the Kraichnan
model [14] wherein the mixing velocity is a rapidly oscillating Gaussian field.

The second property to which we draw attention is that such fronts consist of convolutions on
many scales (see Fig. 1). For example, an enlarged view of Fig. 1(a), shown in Fig. 1(b), has the
same qualitative features; see the segment indicated by AB. Indeed, the gradient of the passive
scalar shows even more clearly that the front consists of many scales, and an enlargement of its
part is similar to the entire scalar gradient field. This feature is displayed in Fig. 1(c). One can
visually appreciate that the fronts, more specifically the iso-level sets, contain convolutions over
a number of scales. Here iso-level set means the set in three-dimensional space corresponding to
fixed levels (or thresholds) of the scalar. For determining an iso-level set for a chosen level, we take
a small band of scalar values around that level; in the Appendix we describe how the band thickness
was determined. An obvious expectation, then, is that a fractal-like description [15] holds for such
iso-level sets. It was first explored much more concretely in Ref. [16–19] and later by others, cited
fully in a recent work [20]. A box-counting dimension (which will be defined later) of DF = 7/3 was
directly connected in Refs. [17,21,22] to the classical Kolmogorov scaling of velocity increments in
turbulence by rate equation models for iso-level segments; it should be pointed out that the models
discussed in these references predict the box-counting dimension independent of the iso-level set.
Recent DNS [23] for 0.1 � Sc � 7 and at varying Reynolds numbers have revealed an interesting
result that the area of the scalar iso-surface varies as P1/2

λ where Pλ ≡ RλSc is the microscale Péclet
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number and Rλ is the microscale Reynolds number. Our study here focuses on a detailed analysis
of this property of scalar iso-level sets in relation to the ramp-cliff structure of the fronts. The study
will be based on high-resolution DNS data of passive scalar turbulence, described next.

II. TURBULENCE SIMULATIONS

We use data from pseudospectral DNS of homogeneous isotropic turbulence, computed on 40963

grid points in a periodic cubical box of size L0 = 2π [24]. The passive scalar (�) is evolved in the
same box using the advection diffusion equation in the presence of a uniform mean gradient G ≡
(G, 0, 0) along the x direction (for specificity), where G �= 0 is a constant, such that � = θ + Gx
and θ is the scalar fluctuation field. The velocity field u is incompressible and satisfies the NS
equations. The equations of motion are

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f , (2)

∂θ

∂t
+ (u · ∇)θ = D∇2θ − uxG, (3)

with the large-scale forcing f sustaining a statistically stationary flow; p is the (kinematic) pressure.
The microscale Reynolds number Rλ = 650. In total, we have used more than 30 essentially
independent temporal snapshots spanning more than 10 eddy turnover times TE ≡ L/u′, where u′
is the root-mean-square velocity fluctuation and L is the integral scale with L/L0 ≈ 0.2. The ratio
of the root-mean-square scalar fluctuation θ ′ to the the maximum available mean scalar difference
for this box is θ ′/GL0 ≈ 0.2. The spectral resolution is chosen such that 	/η = 1.1, where 	 is
the grid spacing and η is the Kolmogorov length = (ν3/〈ε〉)1/4, and 〈ε〉 is the mean kinetic energy
dissipation rate. An inertial subrange in agreement with Kolmogorov’s 4/5-ths law is established for
scales approximately between 30η and 300η. In total, a linear scale range from η up to about 2000η

is captured. For further details on the numerical resolution, inertial range properties and statistical
convergence, see Refs. [10,25].

III. BOX-COUNTING ANALYSIS OF DIFFERENT ISO-LEVEL SETS OF THE SCALAR

Fractals are spatial objects that follow a self-similar scaling in the form of power laws [15,18].
An experimental realization of a fractal requires a significant range of scales. In a homogenous
turbulent flow, the available scale range varies as L/η ≈ Re3/4 where the flow Reynolds number is
given by Re = u′L/ν. A fractal scaling with a box-counting dimension DF exists if the number N (r)
of boxes with edge-length r cover an object, in this instance a chosen iso-level set, with the scaling
law

N (r) = N (L)

(
r

L

)−DF

(4)

for some significant range of scales. The early experiments [16] were for inhomogeneous flows,
typically at modest Reynolds numbers, with some attendant uncertainties of scaling. Here we have
on hand fully resolved three-dimensional data that span a range of scales that is three orders of
magnitude larger. The scale range of the simulation data is also much larger than those of previous
simulations such as Refs. [26–28].

Figure 2(a) shows the box-counting result for three iso-levels, corresponding, respectively, to the
mean value of the passive scalar, θ = 0, 1.5θ ′ away from the mean, and, finally, to 3θ ′ away from
the mean. For small r, the number of boxes N (r) varies as r−2, as should be expected for a spatially
smooth field. For r close to L, N (r) ∼ r−3, which shows the space-filling character of the scalar
front at the largest scales. In an intermediate range of scales of the order of a decade, N (r) ∼ r−DF ,
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FIG. 2. Box-counting results for scalar iso-levels for θ̃ = θ/θ ′ of 0 (red circles), 1.5 (blue squares), and 3
(purple diamonds). These symbols have the same meaning in panels (a), (c), and (d). The results are averaged
for equal iso-levels of positive and negative θ . (a) The number of boxes N (r) required to cover different iso-
levels θ/θ ′ versus box size r. The box count is evaluated as N (r) = 〈N (r)〉(L0/r)3, where 〈N (r)〉 is the average
box number from a gliding-box algorithm [29]. The box count obtained by considering nonoverlapping boxes is
in good agreement with that from the gliding-box algorithm. Dashed horizontal line at 8 corresponds to N (r) at
r = L0/2, which yields the box-counting dimension DF = 3 for r ∼ L0, shown by the dotted line. Also shown
is the fractal dimension DF = 2 for diffusive scales by the dash-dot line. The power laws in the intermediate
scale range are marked by solid lines. (b) The box-counting dimension DF as a function of the iso-level in the
region |θ̃ | � 3. (c) Double-logarithmic plot of N (r) compensated by (r/η)DF versus r/η, where DF is obtained
from (a) using the method of least-squares. (d) Logarithmic local slope DF (r) = −d[log N (r)]/d[log r] of
three different iso-levels θ̃ . Solid horizontal lines drawn for ordinate values 2 and 3 denote the small- and
large-scale dimension limits, respectively.

where 2 � DF � 3. Only three iso-level sets are shown in Fig 2(a) for reasons of clarity. We will
examine the quality of these fits in the next paragraph, but if we plot the dimension DF obtained
from linear fits in the double-logarithmic plots, against the iso-level values θ̃ ≡ θ/θ ′, we find a
continuous variation from 2 for iso-levels that are far away from the mean to about 2.67 for the
iso-level corresponding to the mean of θ [see Fig. 2(b)]. That the dimension is DF ≈ 2 for iso-level
sets with large thresholds is obvious because essentially no mixing has taken place that far away
from the mean, and hardly any mixing front is available for larger thresholds than about 3θ ′. We
will comment separately on the peak value of the dimension.

The quality of the power laws has been a matter of contention (see, e.g., discussions in
Refs. [6,18]), so we explore this issue further, first by showing, in Fig. 2(c), the compensated plots
using the DF values obtained in Fig. 2(a). There is a very clear plateau for θ̃ = 1.5, for DF = 2.35, as
was also found in the past analyses of experimental [16] and DNS [27] data; this is also reasonably
true for θ̃ = 3 for which DF = 2 because the scalar with such large deviations from the mean has
essentially not mixed, with no chance of developing a contorted front. For θ = 0, however, there is
at best a hint of a plateau—a point to which we shall return later. In addition, we show in Fig. 2(d)
the corresponding local slopes. Again, it is clear that local slopes have a region of satisfactory
constancy for θ̃ = 1.5, perhaps roughly so (on the average) also for θ̃ = 3, but possess just a hint of
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inflection for the iso-level of 0. Incidentally, most past skeptics of power laws have focused on the
case θ = 0. The rest of the paper is mostly an effort to understand the results of Fig. 2, and connect
them, qualitatively, with the ramp-cliff structure.

IV. UPPER LIMIT TO SCALING DIMENSION BY GEOMETRIC MEASURE THEORY

We now consider the case of zero iso-level for which, as discussed already, there is only a hint
of an inflection in local slope. In Ref. [30] it was shown by geometric measure theory—which
is the generalization to rough surfaces of the method for calculating the area content of a curved
surface—and the standard hypothesis that velocity increments in classical turbulence are Hölder
continuous with an exponent of 1/3, that a scalar interface is indeed a fractal with the dimension
DF of 8/3. By drawing lines in log-log plots as in Fig. 2, Constantin et al. [30] deemed that the
dimension was supported experimentally [18] to be 8/3. A dimension of 8/3 also follows if the
procedure used in [18,20], based on flux estimates, is extended by stipulating that scalar increments
δrθ in the inertial convective range follow the standard scaling of r1/3. Since, as we have seen, the
evidence for it is not as clean as for other iso-levels, we now examine this issue in greater detail.

We first describe the geometric measure theory [31] result briefly. The central object of interest is
the scaling behavior of the Hausdorff volume H of a passive scalar graph over a three-dimensional
ball Br with radius rv and volume V = 4πr3/3; it is given [30,32] by

H (g(Br )) ∼ rDg, (5)

with the graph g over the sphere, defined at a particular time instant as g(Br ) = {(x, θ )|x ∈
Br and θ = θ (x)}. Here Dg is the scaling dimension of the graph, which is by definition connected
to the fractal dimension DF by

DF = Dg − 1. (6)

For the derivation of Dg we follow Ref. [32] (see also Ref. [33] for a two-dimensional case).
According to the theory, the relative Hausdorff volume is given by

H (g(Br ))
V

= 1

V

∫
Br

√
1 + r2|∇θ̃ |2 dV �

√
1 + 3

4πr

∫
Br

|∇θ̃ |2 dV . (7)

The expression in the middle of (7) is the generalization of the formula for calculating the length
of a curve. As before, θ̃ = θ/θ ′. The second step follows from the Cauchy-Schwarz inequality. As
discussed in Ref. [30], further progress can be made by substituting for the square of the scalar
gradient by the appropriate terms of the underlying advection-diffusion equation (3) of the passive
scalar θ . In the statistically stationary regime, one obtains, by the multiplication of this equation
with θ and a subsequent integration by parts, the following expression:

|∇θ̃ |2 = − 1

2D
(u · ∇)θ̃2 + 1

2
∇2θ̃2 − uxGθ̃

Dθ ′ . (8)

In Ref. [32] it was shown that the second and third terms on the right-hand side of (8) are bounded
by the first term. The first term itself can be rewritten as an expression that contains the second-order
structure function of longitudinal velocity increment S‖(r). In deriving the final result given by

H (g(Br ))
V

�

√
1 + 3

√
3

2
r̃
√

S̃‖(r̃), (9)

one uses the homogeneity of the scalar turbulence and the Cauchy-Schwarz inequality once more.
In addition, it uses the result that the scalar flatness takes the value Fθ̃ = 〈θ̃4〉 ≈ 3, which has been
shown, for example, in Refs. [28,34]. Here, r̃ ≡ r/η and S̃‖ ≡ S‖/v2

η , where vη = (ν〈ε〉)1/4 is the
Kolmogorov velocity. Further details on the derivation of the formula can be found in Refs. [32,33].
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FIG. 3. Local scaling dimension of the Hausdorff volume Dg(r̃) versus r/η. The quantity is obtained for
a passive scalar graph over a three-dimensional ball Br of varying radius r for Rλ = 650 (squares) and for an
additional DNS run at Rλ = 240 (inverted triangles). In the inertial range (demarcated by the vertical lines),
Dg = 11/3, indicated by the horizontal dashed line, and is consistent with the fractal dimension of 2.67 for the
zero iso-level shown in Fig. 2.

From Eq. (9) follows the local slope

Dg(r̃) = 3 + d

d log r̃
log

√
1 + 3

√
3

2
r̃
√

S̃‖(r̃), (10)

where we assume that the inequality can be replaced by an equality. If we assume that the inertial
range scaling exponent of the longitudinal structure function to be 2/3 (as is thought to hold for
Kolmogorov turbulence—with slight intermittency correction if needed [35]), we find from (10)
that Dg = 11/3. We plot in Fig. 3 the results that follow when the structure function from the DNS
is inserted. For comparison, we add another data record at Rλ = 240. The power-law scaling is not
very extended, but a range of scales certainly exists for which DF is close to 8/3 (indicated by the
dashed line at Dg = 11/3). Our whole analysis in this section did not make any assumption on the
particular level set. We can thus interpret the resulting box-counting dimension given by (6) as an
upper bound DF . In other words, a passive scalar in a three-dimensional flow can be stirred and
advected in the inertial subrange only to level set with DF � DF . Our analysis in Fig. 2(b) clearly
supports this bound.

V. UNIQUE MONOFRACTAL SCALING IN STRAIN-DOMINATED CLIFF REGIONS

Our box-counting analysis in Sec. III revealed that different scalar iso-level sets show different
scaling dimensions. We might therefore ask if a unique monofractal can be observed under any
circumstances at all. The cliff regions, i.e., the regions in which the magnitude of ∂θ/∂x is large,
already satisfy this expectation roughly. In Ref. [10] we have identified a box-counting dimension of
DF = 1.8 for the spatial support for this particular subset of the whole volume. Figure 4 highlights
these regions as red points in a total scalar fluctuation profile θ + Gx (blue line) taken across the
diagonal of Fig. 1(a). The bottom panel of this figure illustrates the selection criterion by which
we identify the scalar derivative with the strongest spatial variations. We found in Ref. [10] that the
scalar iso-levels corresponding to these spatial regions have a box-counting dimension of DF � 1.8,
which suggests that the cliffs are loosely in the form of a surface with holes.

But one can do better in terms of the quality of scaling by restricting attention on cliff regions
connected to a persistent local straining motion, a known process studied in the chaotic mixing
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FIG. 4. Scalar cliff region identification. (a) The line trace taken diagonally across the data shown in Fig. 1
(a) from the lower left to the upper right corner. Red points indicate the positions at which the derivative
magnitude |∂θ/∂x| exceeds the threshold given in the legend. The criterion is taken from Ref. [10]. The mean
scalar gradient is added to show the ramp-cliff structure more clearly. (b) The corresponding derivative trace
∂θ/∂x in units of θ ′/η along the same diagonal as (a), indicating that the highest amplitudes are captured by
this criterion.

regime of high-Schmidt-number turbulence [36–38]. For this purpose, we refine the analysis and
examine strain-dominated subsets in the cliff regions. They are extracted from a local eigenvalue
analysis of the velocity gradient tensor ∇u (at every grid point); see Refs. [39,40]. The dominance
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FIG. 5. Scaling of scalar iso-level conditioned on the high strain rate of the cliffs. (a) The compensated
log-log plot of N (r) versus size r, for the strain-dominated regions of the flow. The plateau region marked
by the solid line corresponds to the 4/3 scaling and is exhibited by all iso-levels sets shown. The small- and
large-scale regimes exhibit a −1/3 (dashed line) and −3 (dash-dot line) scaling dependency, respectively.
(b) Relative volume fraction of strain-dominated (filled triangles) and rotation-dominated regions (open
triangles) for the chosen scalar iso-level set θ/θ ′. This analysis relates to the strain-dominated cliff regions
only with (|∂θ/∂x| > 0.2θ ′/η).
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of local pure strain (as opposed to local rotation) implies that the velocity gradient tensor is locally
symmetric and possesses three real eigenvalues that sum up to zero due to incompressibility. Box-
counting results for these regions are shown in Fig. 5. We find in Fig. 5(a) that for all iso-levels the
scaling is uniformly the same and approximately 4/3, suggesting that the strain dominated regions
of the cliff are better regarded as highly convoluted line-like objects rather than surfaces full of
holes. Figure 5(b) shows the relative volumes of the strain- and rotation-dominated regions in the
spatial support of the cliffs, which have to sum up to unity; these results are the outcome of the
eigenvalue analysis of the velocity gradient tensor. It is seen that the volume fractions do not change
much with the value of the iso-level. The conclusion is that in strain-dominated regions of the spatial
support of the cliffs, there is a unique fractal scaling dimension for all iso-level sets, and its value is
approximately 4/3. Such a box-counting dimension could correspond to material lines that are most
probably stirred by velocity increments in the inertial range, characterized by the spatial scaling
of r1/3.

Finally, we may now turn to the physical meaning of the upper bound of about 2.67 for the fractal
dimension of the iso-scalar surfaces, which corresponds to θ = 0. This shows that such levels sets
are not space filling in the inertial range. If perfect mixing occurs in the inertial range, such a
surface would have a space-filling dimension of 3. Given that the regions where mixing has been
accomplished on inertial-range scales are only 8/3, we conclude that there is an upper bound to the
mixing in turbulent flows [8]. It would be rewarding to prove this result analytically. The presence
of strong ramp-cliff structures at even the highest Reynolds numbers considered here is completely
consistent with this view of incomplete mixing with a finite bound.

VI. CONCLUSIONS

We have conducted a geometric analysis of passive scalar iso-level sets in three-dimensional
turbulence at high Reynolds numbers and a Schmidt number Sc = 1. The homogeneous and
isotropic box turbulence advecting the flow is characterized by an inertial range over an order of
magnitude in which the Kolmogorov 4/5-ths law holds, as shown in Ref. [10]. Furthermore, the
Kolmogorov scale η is resolved with one grid spacing, which provides a high-quality DNS data set
as the basis of analysis.

We have shown that a box-counting scaling dimension DF can be obtained for all iso-levels,
excepting those for high amplitudes, say, |θ̃ | > 3, because there is essentially no mixing at such high
iso-levels and the front, such as may exist, has very little likelihood of developing any contortions
that lead to fractal scaling. Below that threshold level, the box-counting dimension DF varies with
the iso-level magnitude.

By means of geometric measure theory, we derived an upper bound DF � 8/3 which is the
maximum possible dimension of the iso-level sets; this corresponds to the iso-level set of zero,
towards which all mixing processes are driven. If the mixing were complete, the zero iso-level sets
would be space-filling, and we would obtain a dimension of 3. The fact that we do not achieve this
condition suggests that the mixing is not complete in a turbulent flow. This is because there is a finite
probability of encountering cliffs across which the scalar jumps by almost the amount allowed in the
flow. Expressed differently, there are always positions in the flow where the lowest concentrations
of the scalar are separated by the highest concentration levels only by the smallest scale available
to the flow. That this happens for the case of homogeneous and isotropic turbulence suggests that it
must be a general feature of turbulence, which leads us to conclude that there is an upper bound to
turbulent mixing in practice.

We already noted that the box-counting dimension DF varies with the iso-level magnitude and
that a unique monofractal behavior with a scaling dimension independent of the iso-level is not
obtainable. However, such a unique monofractal scaling of scalar iso-levels can be obtained when
two additional conditions are imposed: (1) select those points of space that spatially support the
steep scalar cliffs, and (2) condition the box-counting analysis of iso-levels on this support to high-
strain events. In some sense, this is the backbone of structures that prevent complete scalar mixing.
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An extension of this analysis for high-Schmidt-number passive scalar turbulence can be consid-
ered as the natural next step. A first step of the Schmidt-number dependence within the framework
of geometric measure theory was already presented in Ref. [41]. A more extensive study is currently
under way and will be reported elsewhere.
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APPENDIX: THE DEFINITION OF THE SCALAR ISO-LEVEL THICKNESS

Consider passive scalar fluctuation θ with diffusivity Dφ , mean scalar dissipation εθ , and Schmidt
number Sc = ν/Dφ where ν is the kinematic viscosity of the advecting fluid. The typical scalar
variation across grid cell δ = L0/N in a cube with edge length L0 with N points to a side can be
written as

δθ =
(

εθ

Dφ

)1/2

δ. (A1)

Denoting the small-scale resolution parameter kmaxηB by C, where kmax is the highest resolvable
wave number in a N3 simulation with smallest nonzero wave-number magnitude k0 = 2π/L0 and
ηB is the Batchelor scale ηB = η/Sc1/2, we can write

C =
√

2

3
Nk0ηB =

√
2

3

(
L0

δ

)(
2π

L0

)
ηB. (A2)

Solving for δ in the above equation, substituting into Eq. (A1) and dividing both sides by the root-
mean-square scalar fluctuation θ ′ we get

δθ

θ ′ =
(

εθ

Dφ

)1/2 1

θ ′
2
√

2π

3C
ηB . (A3)

Assuming dissipative anomaly for the scalar field in isotropic turbulence [42] we can write

εθ = A[1 +
√

1 + (B/Rλ)2]
θ ′2u′

L
, (A4)

where u′ is the root-mean-square velocity fluctuation, L is the flow integral scale, and A and B
are constants that depend on the Schmidt number [42]. Substituting Eq. (A4) into Eq. (A3) and
rearranging we get

δθ

θ ′ = 2
√

2π

3C
{A[1 +

√
1 + (B/Rλ)2]}1/2(Re Sc)1/2

(
ηB

L

)
, (A5)

where Re and Rλ denote the Reynolds numbers based on the integral scale and the Taylor microscale,
respectively, and are related to each other in isotropic turbulence as Rλ = ( 20

3 Re)1/2. For Sc = 1,
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ηB = η and thus we can finally write

δθ

θ ′ = 2
√

2π

3C
{A[1 +

√
1 + (B/Rλ)2]}1/2

(
20

3

)1/4

R−1/2
λ . (A6)

For a resolution of N3 = 40963 in our DNS with Rλ = 650 and C = 2.72, substituting A ≈ 0.4 and
B ≈ 31, it follows that the iso-level thickness is effectively

±δθ/θ ′ ≈ ±0.03, (A7)

for the present data. In the final analysis, this is a rough estimate only.
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