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We present a new technique to study preferential concentration of droplets in a turbulent
air flow. Preferential concentration is the tendency of droplets to cluster in regions of strain,
while avoiding regions of rotation. We study the properties of the droplet concentration
field in zero mean flow turbulence that was created using an array of synthetic jets. The
droplets are made of a phosphorescent solution of Europium chelate. They are excited
by a laser sheet from a pulsed UV laser, after which the glowing droplets are followed
using a high-speed intensified camera. We quantify preferential concentration through
measurement of moments of the coarse-grained local droplet density. At the Stokes
numbers studied (St ≈ 2) the fractal dimension, a scaling property of this coarse-grained
density field, points to clustering. Clustering is a consequence of the compressibility of the
droplet velocity field. We also quantify the dynamical behavior of clustering by moving
with this velocity field. We find a preference for clustering in the Lagrangian frame during
the time interval set by the decay of the phosphorescence.
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I. INTRODUCTION

Transport of small particles in turbulent flow is a ubiquitous phenomenon encountered in both
natural and industrial processes, yet the physics governing these situations remains unclear. Many
questions regarding the effects of turbulence on suspended particles have been addressed in the
past few years with the help of numerical simulations and advanced experimental techniques (see
Refs. [1–3] and references therein); however, many remained unanswered.

In this paper we describe a new method to study the evolution of the concentration field of
droplets suspended in a turbulent flow. At initial time, a sheetlike volume of droplets is tagged
by briefly (5 ns) illuminating them with a laser pulse from a UV laser. The droplets contain a
phosphorescent solution of a Eu-based lanthanide chelate and glow long enough to follow them
during a few Kolmogorov times. The Kolmogorov timescale τη is the turnover time of the smallest
eddies in turbulence, which in this experiment is approximately half a millisecond. The droplets are
followed during a few milliseconds using a fast intensified camera. This is repeated many times, so
that adequate statistics of the evolving concentration field is gathered.
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Glowing droplets can be used in a number of different ways, for example to estimate the
concentration of particles by tracking the signal intensity as will be done in this paper, or by
measuring the size evolution of small tagged volumes for a study of the dispersion of droplets, as
was done by Ref. [4]. Additionally, this technique may be integrated into particle tracking methods,
to follow only a specific set of particles in dense clouds.

Preferential concentration is a phenomenon observed in particle- and bubble-laden flows due to
inertial effects of the dispersed phase [5,6]. For heavy particles, inertia prevents them from faithfully
following the flow, filtering out the strongest fluctuations in the acceleration [7] and creating
singularities (caustics) in their distribution [8–10]. These inertial effects create concentration
inhomogeneities with particles being expelled from vorticity-dominated regions and agglomerating
in strain-dominated ones (the sling effect). Inertia is quantified by the Stokes number St = τp/τη,
where τp is the particle relaxation time. The particle relaxation time τp is determined by Stokes
friction, and defined as τp = ρpd2

p/18μ, where dp is the droplet diameter, ρp the liquid mass density,
and μ the dynamic viscosity of air. The smallest time and length scales of the flow are defined using
the energy dissipation rate ε and the kinematic viscosity ν of air τη = (ν/ε)1/2 and η = (ν3/ε)1/4.

Preferential concentration is most outspoken for Stokes numbers close to one, where the particle
relaxation time is comparable to the Kolmogorov time. It is our aim to design an experimental
diagnostic that allows us to observe the dynamics of preferential concentration on the smallest
relevant length and timescales of the flow. At the turbulence conditions realized in this experiment,
τη ≈ 0.5 ms, which calls for small droplets, dp ≈ 13 μm, to make St = 1 in air.

A key question in cloud physics is how the droplet size distribution evolves under the influence of
collisions. In a kinetic equation, collisions are quantified by the collision kernel, which is determined
by the probability to find two droplets at a distance where they touch, and by their relative
velocities. The chance to find two droplets at a distance r is quantified by the radial distribution
function g(r). The one-dimensional version of the radial distribution function g1D(r) was measured
by Saw et al. [11] in strong (Reλ = 440–800) homogeneous, isotropic wind-tunnel turbulence.
The Stokes numbers were small (St = 0.01 . . . 1) and the experimental correlation functions were
obtained using Taylor’s frozen turbulence hypothesis. At large r insufficient mixing time of the
injected droplets prevented the correlation functions to reach the asymptote g1D(r → ∞) = 1.
Clustering was most evident at scales � 10η, and a strong dependence of g1D(r) on the Stokes
number was found. Good agreement was found with numerical simulations at Reλ = 143 [12].
At small separations, a power law g3D(r) = c0(η/r)c1 was observed with the clustering exponent
c1 asymptotically reaching a value c1 ≈ 0.7 at St ≈ 1. [13] measured radial distribution functions
g3D(r) from droplet coordinates obtained holographically in a turbulent flow at Reλ = 108 . . . 147
stirred by 8 fans in the corners of a box with linear dimension 0.38 m; a device similar to ours.
Also in this experiment the Stokes numbers were small, St = 0.21 . . . 0.60, with the corresponding
clustering exponents c1 = 0.25 . . . 0.40.

Preferential concentration leads to a droplet distribution with voids and clusters. Such a
distribution resembles a fractal, which is characterized by structure at all scales. It can be quantified
by counting the number of droplets N (δ) in boxes with increasing linear size δ. In case of a
homogeneous distribution in three dimensions, N (δ) ∝ δD, with dimension D = 3. However, if the
particles agglomerate, then the dimensionality of the droplet distribution is reduced; Calzavarini
et al. [14] found a fractal dimension of D ≈ 2.4. This number was reached in two different ways: by
viewing the motion of a single droplet as a six-dimensional dynamical system, a fractal dimension
can be computed from the associated Lyapunov exponents using the conjecture of Kaplan and Yorke
[15]. Alternatively, the correlation fractal dimension was also computed from the spatial droplet
distribution.

Other box-counting measurements have been performed by Bec et al. [16], where the probability
density function of the number of particles per box showed longer tails compared to that of a
random distribution as a result of voids and clusters. The deviation from randomness, characteristic
of clustered particle suspensions, was also found by Monchaux et al. [17], who analyzed the particle
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distribution using Voronoi tesselation and compared the inertial particle distribution to that expected
of tracers, finding a large amount of clusters and voids.

While the radial distribution function and the fractal dimension quantify the distribution of
droplets in snapshots, very few experimental studies exist that quantify the dynamics of clustering.
An exception is the work by Bewley et al. [10] who, in pursuit of the sling effect, analyzed gradient
dynamics of the droplet velocity field v(x, t ) in volumes that were only a few Kolmogorov lengths
large.

As is well known, the velocity field v(x, t ) of inertial particles is compressible,

∇ · v = −τp∇ · (u · ∇u), (1)

where u is the turbulent velocity, and τp is the Stokes time. By separating the field ∇u in Eq. (1) into
strain and rotation components, it readily follows that the particle velocity field v is compressible in
regions of strain. The particle density field n(x, t ) satisfies the continuity equation,

∂n

∂t
+ ∇ · (v n) = 0, (2)

where we have ignored diffusion (Brownian motion) of the droplets. In the Lagrangian frame,

dn

dt
= −n(∇ · v), (3)

such that the density n grows in regions of strain. Droplet clusters are singled out by the positive
moments 〈nα (t )〉 with α > 0, of the local density field. Formally, the compressibility of the droplet
velocity field can only be proven for small Stokes numbers. However, the result is consistent with
the sling effect and emphasizes the Lagrangian frame for understanding droplet clustering.

The quantity −∇ · v plays the role of a fluctuating finite-time Lyapunov exponent in the theory
of dynamical systems. Balkovsky et al. [18] argue that over time intervals much longer than the
correlation time of the turbulent velocity field, 〈nα (t )〉 increases exponentially. These times are out
of reach in our experiments where the phosphorescence only lives a few Kolmogorov times, but
we are still able to distinguish the dynamical behavior of density moments in the Eulerian and
Lagrangian frame.

Our experimental method allows measurement of 〈nα (t )〉 both in the Eulerian, 〈nα (t )〉E and in
the Lagrangian 〈nα (t )〉L frame, and we will show the ratio 〈nα (t )〉L/〈nα (t )〉L. In the Eulerian case,
averages 〈. . .〉 are just done over squares that fill the tagged sheet. These squares remain stationary as
time progresses. In the Lagrangian case these squares, also filling the sheet at the instant of tagging
t = 0, go with the flow at later times t > 0.

Both quantities, the fractal dimension and the evolution of clusters, are a property of the
concentration field of the droplets. We do not resolve individual droplets, but because our droplets
are close to monodisperse, the measured phosphorescent light intensity is proportional to the droplet
concentration. Therefore, our experimental method is suited well for the measurement of these
quantities.

Our experiment is in the realm of molecular tagging velocimetry, a full description of which
is given in Sec. II. The turbulence chamber and the characteristics of the generated turbulence are
discussed in Sec. III. Our results in Sec. IV are for the fractal dimensions and the temporal evolution
of the density moments.

II. PHOSPHORESCENCE TAGGING

Using glowing droplets to probe preferential concentration in turbulence is related to the well-
known technique of molecular tagging velocimetry (MTV), in which marked molecules are used to
trace the flow that carries them. This marking differentiates them from other molecules, including
those that make up the fluid or the gas. Examples are the photoactivation of caged fluorescent
molecules in a liquid, first proposed by Lempert et al. [19]. In flows of gases, several techniques have
been described to either excite molecules to a metastable state [20,21] or to create tracer molecules
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by photoactivated chemistry [22,23]. An extensive review on MTV is given by Koochesfahani and
Nocera [24].

MTV is based on the generation of tracers within the fluid. That is, the fluid itself is locally trans-
formed, photophysically or otherwise, into a tracer which is made from the same composition as the
fluid. Many variations of MTV exist, with the first option being the choice between fluorescence
and phosphorescence. Depending on the timescales of the particular experiment at hand, one must
decide what type of luminescent solution to use. Both fluorescence and phosphorescence have been
used previously for flow diagnostics. The former has the advantage of an immediate and relatively
strong light emission. The latter prolongs the luminescence duration at the expense of its intensity.
Also, gas or liquid can be used as the working fluid.

Our aim is a study of preferential concentration in turbulence, using phosphorescent droplets.
This method is inspired by Krüger and Grünefeld [25] who used a similar technique, but with
another molecular tracer, to measure the velocity field of dispersed droplets using a grid of laser
beams. The deformation of the resulting grid of glowing molecules was measured using a correlation
technique similar to the one used in particle image velocimetry.

The turbulence in our experiment is characterized by a smallest eddy turnover time τη = 0.5 ms,
which requires a phosphorescence life time of the tagged droplets of a few times τη (a few ms), to
be able to follow the dynamics of preferential concentration. In addition, the small volume of the
St ≈ 1 droplets necessitates maximization of the phosphorescence intensity.

In our experiment, the droplets are made from a water-based Europium solution, with the
Europium ions organised in a chelate. The structure of the chelate consists of a “cage” created by
one or more ligand molecules which contains the Europium ion (Eu+3). This cage, however, does
not impede the phosphorescence of the lanthanide. On the contrary, the ligands act as antennae that
absorb laser light and transfer the excitation to the Eu-ion, which in turn emits photons of a specific
wavelength, 614 nm in the present case [26]. The ratio of concentrations of ligands and lanthanide
has an impact on the phosphorescence intensity [27].

The ligands used in this solution were thenoyltrifluoroacetone (TTA), which has a broad
absorption peak around 365 nm, and trioctylphosphine oxide (TOPO). Although the stoichiometric
composition of the solution was found to be Eu(TTA)3(TOPO)2 by Arnaud and Georges [27], they
also concluded that phosphorescence reached a maximum when the concentration of TTA was at
least ten times that of Europium. Since a stronger phosphorescent signal allows for a longer tracking
of the droplets, the solution used in the present study was prepared with large TTA concentration.

Stock solutions for each of the three components were mixed separately. The Europium stock
solution used distilled water as a solvent and Europium(III) chloride hexahydrate, while the TTA
and TOPO solutions used ethanol; all stock solutions have a concentration of 10−2 M. The dilute
solution was then prepared by mixing distilled water with the necessary amount of each solution.
The final concentration of the solution was 8.3 × 10−5M Eu+3, 8.3 × 10−4M TTA, 8.3 × 10−4M
TOPO. Finally, to clear the solution and serve as a wetting agent, 0.1% by volume of Triton X-100
was added.

The decay time of the phosphorescent solution was measured by illuminating droplets using
frequency-tripled Nd:YAG laser pulses and recording the decay of the phosphoresence intensity.
It varied between 500 and 800 μs, giving us the opportunity to image the particles during
approximately 4τη. A typical decay curve is shown in Fig. 1(a). With the aim of increasing the
quality of the recorded images we inspect the dependence of the emission strength on the laser
power. As shown in Fig. 1(b), the phosphorescent signal saturates as the laser power is increased.
Multiple scattering may contribute to tagging, with the effect of widening of tagged volumes.
Therefore, the laser power must be chosen judiciously.

III. EXPERIMENTAL SETUP AND PROCEDURE

The goal of our experiments is to measure preferential concentration of heavy particles in a
turbulent flow using the new diagnostic of glowing droplets. Homogeneous, isotropic turbulence
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FIG. 1. (a) Exponential decay of the phosphorescent signal of a collection of droplets. It was measured by
registering the intensity with a fast camera after illumination with the laser at τ = 0; an average over 2400
laser pulses is shown. The decay time is τph = 710 μs. (b) Saturation of the phosphorescence intensity with
increasing laser power (Nd:YAG laser at 355 nm).

with zero mean flow was created in a box using an array of synthetic jets, in an arrangement inspired
by the work of Hwang and Eaton [28]. A spinning disk droplet generator is used to fill the box with
a mist of phosphorescent droplets.

A. Turbulence chamber

The design of the turbulence chamber takes advantage of the property synthetic jets possess in
which momentum transfer is possible without mass transfer occurring, in an average sense. The
apparatus consists of a PVC cubic box with truncated corners, each fitted with speaker-driven
synthetic jets. Hwang and Eaton [28] were able to reach Reλ = 218, in our setup we reach
Reλ = 563. In this way, the inertial range is widened, and the Kolmogorov timescale τη is shortened,
so that droplets can be tracked for a few τη during their phosphorescent lifetime. The box, which
is shown in Fig. 2, has a side length of 400 mm and speakers of 365-mm diameter (MTX Audio
sub-woofer model RT15-04, Mitek Corporation, Phoenix, AZ). Optical access was available on four
of its six sides through perspex windows.

y

x

FIG. 2. Model of turbulence chamber, with arrangement of light sheet and camera. For clarity, only one
speaker is shown. The inner side length of the chamber is 40 cm. The jet orifices have a diameter of 4 cm. For
the measurement of the concentration field, the camera images a square with size 32 × 32 mm2.
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The synthetic jets point toward the center of the box, and are driven independently with
random voltages generated by series of independent pseudorandom numbers. By employing a
Gaussian filter, the driving voltages have a broad spectrum, E ( f ) ∝ exp[−( f − f0)2/σ 2] with center
frequency f0 = 40 Hz and spectral width σ = 19 Hz. The eight instantaneous driving voltages add
to 0, so that the pressure in the chamber stays approximately constant.

The driving voltages were generated using a 16-bit, eight-channel analog output card (model
16AO16, General Standards Corp., Huntsville, AL) which has sample buffers large enough to allow
uninterrupted generation of the driving voltages. Those voltages were transmitted to eight amplifiers
(model RN-2160, Rodek, Garden Grove, CA). Slight differences in speaker performance resulted
in a mean flow. Added to this, the aerosol generator used for the production of the phosphorescent
droplets also induced a mean flow. To counteract these effects, speaker-specific coefficients were
implemented in the driving algorithm, allowing fine tuning of the synthetic jets.

B. Flow characterization

Particle image velocimetry was used for the turbulence characterization, allowing a 2D measure-
ment of the velocity. The PIV setup consisted of a dual-head Nd:YAG laser (CFR400, Quantel) and
a 1600 × 1200 pixel2 digital camera (ES2020, RedLake). Seeding for the PIV measurements was
done with a commercial smoke generator capable of producing droplets of approximately 1 μm.
The region of view was approximately 60 × 80 mm2 (resulting in a magnification of 20 pixel/mm),
and the sampling rate was 15 Hz. The processing was done with commercial software (PIVtec,
Göttingen, Germany) using a 32 × 32 pixel interrogation area with a 50% overlap.

A challenge of the setup is achieving homogeneous turbulent flow with zero mean velocity. This
required balancing the rms amplitude of the loudspeaker signals. To this aim, a series of short PIV
measurements in two perpendicular planes was performed to fine tune the speaker power. Once
satisfactory flow conditions were reached, an extended measurement was performed to characterize
the turbulence, for which approximately 1500 2D PIV fields were obtained.

The mean and fluctuating velocity fields are shown in Fig. 3, where we also indicate the region
of interest of the droplet tagging experiments. The balancing of the synthetic jets is not perfect
and inside the region of interest a mean velocity of approximately 10% of the fluctuating velocity
remains. Over the entire 78 × 58 mm2 field of view, the total fluctuating velocity, (u2 + v2)1/2

ranges from ≈2.3 − 3.0 m/s, but inside the region of interest of the tagging experiments, the
homogeneity is much better.

The turbulence characteristics were inferred from the PIV measurements. As PIV involves
averaging of the velocity field over the interrogation windows, a direct measurement of gradients at
the smallest scales, needed for the computation of the turbulent dissipation rate ε, underestimates the
magnitude of these gradients. We have used a model to correct for this intrinsic averaging [29,30].
This procedure relies on the Smagorinsky model [31] for the calculation of the subgrid stresses.

In addition, we have estimated ε from measured second- and third-order structure functions.
These structure functions are shown in Fig. 4. With two components of the velocity field
measured in the x y plane, the longitudinal second-order structure functions are Gx

xx(r) = 〈[u(x +
rex ) − u(x)]2〉x,y and Gy

yy(r) = 〈[v(x + rey) − v(x)]2〉x,y, while the transverse structure functions
are Gy

xx(r) = 〈[u(x + rey) − u(x)]2〉x,y and Gx
yy(r) = 〈[v(x + rex ) − v(x)]2〉x,y. For the third-order

structure functions, the only non-zero ones are Gx
3 and Gy

3, with the velocity components and the
separation vector pointing in the same direction.

Due to the inhomogeneity of the velocity field, third-order structure functions are difficult to
measure. Therefore, we have removed some of the inhomogeneity by normalizing the velocity field
by first subtracting the (small) mean field, and then normalize u(x)〈〈u · u〉〉1/2

x,y /〈u · u〉1/2 where 〈〉
denotes a time average and 〈〈〉〉 both space- and time averages.

From a direct measurement of the velocity gradients, which are measured using a least-squares
differentiation formula [30], we obtain ε = 54 m2s−3, while the second-order structure functions
were fitted with GL x,y

2 (r) = C2 ε2/3r2/3, with ε = 64 m2s−3, and the third-order structure functions
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FIG. 3. (a) Mean velocity field and (b) gray-scale plot of the total fluctuating velocity (u2 + v2)1/2,
measured using particle image velocimetry. (c) Snapshot of the tagged sheet 3 μs after tagging. The droplet
tagging experiments have a smaller field of view, indicated by the squares in (a), (b).

were fitted with Gx,y
3 = −(4/5)ε r, with ε = 56 m2s−3. The fit of the second-order structure function

overestimates ε due to the averaging which is intrinsic to the PIV procedure. Therefore, we adopt the
value ε = 54 m2s−3. With a measured turbulent velocity u = 1.9 m/s, we obtain a Taylor microscale
Reynolds number Reλ = 490, and Kolmogorov time- and length scales τη = 5.3 × 10−4 s and η =
89 μm, respectively. Together with the mean droplet diameter dp = 18 μm, this leads to a Stokes
number St = 1.9. Finally, the turbulent velocity field, is isotropic to within 10%, both at large and
small scales [30]. The phosphorescent tagging experiments were carried out independently from the
flow characterization (PIV) experiments, under the assumption that the presence of the dispersed
phase has a negligible impact on the characteristics of the flow.
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3 = −(4/5)ε r, with ε = 56 m2s−3.
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FIG. 5. (a) Probability distribution function (PDF) of droplet diameters, as produced by the spinning disk
aerosol generator, and measured using IPI. The large peak at small diameters represents droplets with sizes
dp � 5 μm, that cannot be distinguished with IPI. These diameters have been grayed. (b) PDF of diameters,
but now corrected for droplet visibility. (c) PDF of Stokes numbers, also corrected for droplet visibility. The
dark gray lines indicate the mean droplet size dp = 18 μm and mean Stokes number St = 1.9.

C. Droplets

To create the phosphorescent droplets spinning disk aerosol generator (SDAG) fabricated in
house was used. The SDAG idea was first proposed by Walton and Prewett [32], and modifications
to it have followed. This type of droplet generators create a relatively monodisperse aerosol and are
robust and relatively simple to use.

Interferometric particle imaging (IPI) [33] was used to measure the particle droplet size
distribution. The technique is an appealing way of measuring droplet sizes since its setup is relatively
simple while yielding two-dimensional data. In a nutshell, the method consists of measuring the
interference pattern created by the path length difference between the reflection (zeroth order
refraction) and first order refraction of polarized light by a droplet. When imaging out of focus,
the interaction between the two different refractions creates interference fringes whose separation
can be related to the particle diameter [34]. In out-focus images, each droplet is a disk whose
diameter is determined by the focal distance and the size of the camera aperture. The number of
interference fringes in this disk is proportional to the droplet size. The diameter of small droplets
(dp � 5 μm) cannot be measured because these droplets produce less than one interference fringe
in our setup. A robust algorithm to measure the droplet size probability density function in case
of dense droplet collections is explained elsewhere [35]. A typical probability density function Pdp

of measured particle diameters is shown in Fig. 5(a). It is well known that a spinning disk aerosol
generator not only produces the main droplets with diameter dp, but also satellite droplets with
diameter ≈ dp/4. These satellite droplets, whose diameter cannot be measured using IPI, produce
the large peak at dp � 5 μm.

A key advantage of our tagging technique is that the phosphorescent light intensity of a droplet is
proportional to its volume, so that the brightness of satellite droplets is approximately two orders of
magnitude smaller than that of the main droplets. Therefore, the satellite droplets do not contribute
to the measured droplet density field. This is illustrated in Fig. 5(b), where we plot the distribution
function corrected for the droplet visibility, (4/3)π (dp/2)3 Pdp . Because the Stokes number is
proportional to the square of the droplet radius, even a fairly narrow distribution of droplet sizes
results in a large (70%) spread of Stokes numbers, as Fig. 5(c) illustrates.

D. Tagging experiments

To measure the dynamical behavior of preferential concentration we tag the droplets present
inside a thin slab within a cloud. This is accomplished by illuminating the droplets with a
weakly focused laser sheet (width δS = 1 mm), and recording them until their phosphorescence
has extinguished using a high-speed camera. The tagging is done using a frequency-tripled pulsed
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Nd:YAG laser (Powerlite Precision II 8010, Continuum, Santa Clara, CA) at a rate of 10 Hz and
a power output of approximately 120 mJ/pulse. Our field of view is approximately 32 × 32 mm2,
which translates to a magnification of 64 μm/pixel.

Each realization of the experiment consists of a tagging event and the subsequent recording of
16 images; 3275 realizations are performed to reach convergent statistics. We take cycle averages,
such that the averaged quantity depends on the time τ since tagging. The droplet volume fraction is
estimated through a balance between the droplet generation rate and the droplet collision rate with
the apparatus walls. Our calculations indicate that the volume fraction is on the order of 10−7, so
that the droplets do not influence the turbulent flow (one-way coupling).

The images were recorded using an intensified CMOS camera (HiCAM 5000, Lambert Instru-
ments, Roden, The Netherlands). The intensifier is necessary due to the low signal intensity emitted
by the glowing droplets coupled with the small exposure inherent to the high frame rate. The camera
has a maximum frequency of 5000 FPS with a 512 × 512 pixel spatial resolution. To counteract the
decaying intensity of the glowing droplets we used a field programmable gate array (FPGA) board
which externally controlled the intensifier gate time, increasing the exposure time exponentially
until a maximum exposure time of 200 μs is reached.

The first (dark) image is recorded before the laser shot, the image after that comes at 0.5 μs after
the laser shot. This image sets the origin of time, τ = 0. In each cycle the dark background image
(with laser off) is subtracted from the images, and a flat field correction is done by division with the
(spatially filtered) cycle-average field at τ = 0.

IV. RESULTS

Our results concern the coarse-grained moments of the droplet density,

nδ (x, τ ) = 1

Bδ

∫
Bδ (x,τ )

n(x′, τ ) dx′,

with the local density integrated over boxes Bδ (x, τ ) with side length δ and center x. In the
Lagrangian frame these boxes move (and deform) with the droplet flow field v(x, τ ); while they
are stationary in the Eulerian frame. Positive moments [nδ (x, τ )]α , with α > 0, gauge clustering.
The fractal dimension is related to the dependence of the average moments on the box size δ. It is
a property of the instantaneous droplet density. Time dependence, dynamics, is expressed by the
evolution of the moments with time τ . In both cases we use that in our tagging experiments the
initial distribution of droplets is in a sheet, so that Bδ are squares with side length δ. In fact, due to
the finite sheet width δS they are prisms with height δS.

A. Fractal dimension

To compute the fractal dimension of the droplet density, we compute the partition sum at time τ ,
following Halsey et al. [36],

L(δ; α) =
∑

i

[nδ (xi, τ )]α, (4)

where the sum
∑

i runs over all squares. This partition sum defines the fractal dimension D(α),

L(δ; α) ∼ δ(α−1)D(α). (5)

For α = 2 the dimension is known as the correlation dimension. For a completely homogeneous
distribution in a plane, D(2)(α) = 2 for all values of α, and where the superscript (2) indicates the
dimension of the embedding space (a plane in this case).

The correlation dimension of droplet distributions in a 3D simulated velocity field was reported
as D(3)(2) 
 2.4, [14,16]. However, we are measuring the distribution of droplets in a tagged sheet.
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FIG. 6. (a) Scaling of box-integrated intensity, L(δ; 2)/δ2. In case of a homogeneously filled plane, this
quantity would be independent of δ, and would equal 1 because of the chosen normalization. The time delay τ

since tagging increases from τ/τη = 0.05 to τ/τη = 2.9 in steps of τ/τη = 0.42. The dashed line fitting the data
at τ/τη = 0.42 shows L(δ; 2)/δ2 ∝ δ−0.45, which implies a fractal dimension of the three-dimensional droplet
distribution D(2) ≈ 2.5. However, the fractal scaling does not cover all scales, so that the droplet distribution
is not strictly self-similar. For the black lines, the registered phosphorescent intensity is constant due to the
exponential stretching of the exposure time, it decays for the gray lines. (b) Mean image intensity as a function
of delay time since tagging. During the first five samples the exposure time is stretched such as to compensate
for the exponential decay of the phosphorescence. The gray dots correspond to the gray lines in (a). The decay
time is τph = 760 μs [straight line fit in (b)].

The relation with the fractal scaling of the full three-dimensional droplet distribution is expressed
by the intersection rule for fractal dimensions [37]. Let us briefly rephrase this rule for the cover
dimension D = D(0). Imagine we cover the three-dimensional droplet distribution with boxes with
side length δ. The number of non-empty boxes scales as δ−D(3)

, where D(3) is the fractal dimension
measured in three dimensional space. Consequently, the chance to find a non-empty box is P(δ) =
δ3−D(3)

. This is the same as the chance to find a non-empty square in a two-dimensional intersecting
sheet, δ2−D(2)

. Therefore, the fractal dimension in the intersection D(2) = D(3) − 1. The intersection
would be empty when D(3) < 1. Using this intersection rule, the corresponding dimension in a sheet
intersecting the numerically simulated droplet distribution would be D(2)(2) − 1 = 1.4.

Instead of the partition sum L(δ; α = 2), we compute the deviation from plane filling L(δ; α =
2)/δ2. If the tagged droplets would fill the sheet homogeneously, this quantity would be independent
of δ.

In Fig. 6 we show L(δ; 2)/δ2 for increasing time delay τ since tagging. At small distances δ/η �
10, we find scaling with a fractal dimension D(2)(2) ≈ 1.5. In three dimensions this would amount
to D(3)(2) = 2.5, which agrees reasonably well with the dimensions found by Bec et al. [16] and
Calzavarini et al. [14]. As also found by the latter authors, the fractal scaling does not cover all
scales. The length scale of clusters and voids depends of the Stokes number. For St = O(1), the
length scale lies in the dissipative range; larger length scales are reached at larger Stokes numbers.

A caveat is that the intersecting sheet in our experiment is not infinitely thin; its width is δS ≈
10 η. With the dimension D(3) ≈ 2.4 found in numerics, we would have found the trivial scaling L ∝
δ2 for δ � δS . Clearly, scaling arguments may not capture well clustering of droplets at small scales.

The result in Fig. 6 is shown for several time delays since tagging. As time progresses, the
intensity of the glowing drops may sink below the camera intensity threshold, resulting in increasing
sparseness of the apparent droplet distribution. As this may affect the appearance of voids and
clusters, the decay of the phosphorescence was compensated by stretching the exposure time. This
could be done for the first five frames since tagging, after which the exposure time becomes the
interframe time. The resulting mean image intensity is shown in Fig. 6(b). The scaling function
only starts to change significantly once the intensity starts to decrease.
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FIG. 7. (a) Tracks used for the Lagrangian measurement of cluster moments (only one out of two tracks is
shown). The white dot indicates the starting point. Also shown is the vector displacement field corresponding
to v at τ = 0, together with its absolute value. The droplet distribution is not optimal for PIV. (b) Difference
between Lagrangian and Eulerian statistics of droplet density moments 〈(nδ (τ ))α〉L/〈(nδ (τ ))α〉E − 1, with δ =
12η and α = 0.5 . . . 3.5.

B. Clustering dynamics

While the fractal dimension is a property of the instantaneous droplet density, we will now
study the temporal evolution of the moments 〈(nδ (τ ))α〉, both in the Eulerian and the Lagrangian
frame. The Lagrangian frame was found from planar particle image velocimetry (PIV) using
two subsequent images of evolving sheets. We used interrogation windows of 32 × 32 pixels
(23η × 23η) with a 50 % overlap region. Outliers were detected and replaced through bilinear
interpolation [38]. The tagged droplet density is not optimal for accurate particle image velocimetry
of v(x, τ ). However, as Fig. 7(a) illustrates, it allows for a fair estimate of the droplet tracks.
Displacement errors increase with τ as the phosphorescence dies out. We believe nevertheless that
this procedure allows for an adequate distinction between Eulerian and Lagrangian statistics.

Figure 7(b) shows the difference between Lagrangian and Eulerian statistics,

Dα (τ ) = 〈(nδ (τ ))α〉L

〈(nδ (τ ))α〉E
− 1,

for δ = 12η, and moments ranging from α = 0.5 to α = 3.5. The results show that there is a small
but significant preference for cluster growth in the Lagrangian frame. The time interval is short,
τ � 4τη. At times much longer than the correlation time of the turbulent velocity, density moments
are predicted to increase exponentially [18]. These times are out of reach in this experiment, but
may well be reachable in experiments where droplets can be tracked over long times.

The effect that we have measured is small, however, while the prediction of Balkovsky et al. [18]
assumes a homogeneous initial droplet distribution, the droplets in our sheet which were already
clustered at the instant of tagging, do not contribute to the (exponential) increase of the density
moments 〈(nδ (τ ))α〉L. In fact, it is not possible to experimentally realize the condition of Balkovsky
et al. [18].

V. CONCLUSIONS

Glowing drops make a unique tracer of preferential concentration. In tagged sheetlike volumes
containing many droplets—much more than could be traced individually—we have quantified
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the two-dimensional concentration field. The droplets generated are fairly monodisperse, with
the size distribution of the visualized drops narrowed by the volume weighting by their emitted
light intensity. In addition, phosphorescence, much as fluorescence is an effective way to suppress
reflected light.

After the initial tagging, the shape of the tagged sheet evolves as it is deformed by turbulent
velocity fluctuations. When the sheet is wrinkled strongly, it may lead to (apparent) clustering. The
largest deformation is done by by the largest vortices, which have a velocity difference u = 2 m/s.
During an experiment cycle, lasting ≈3τη ≈ 1.4 ms, this amounts to a displacement ≈3 mm = 3 δS,
with δS the thickness of the laser sheet. Therefore, wrinkling of the tagged sheet does not explain
small-scale clustering. Another dynamic quantity, namely the deformation of narrow (≈10η) pencil-
shaped tagged volumes has been studied by us in [4].

Our measurement of clustering dynamics is a proof of principle. It illustrates how a relevant
dynamical quantity can be extracted from time-dependent data of droplet fields. We are looking
forward to measurements of the same quantity in cases where the full three-dimensional droplet
field can be tracked over long times.
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