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Viscous flow in a slit between two elastic plates
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Soft plates immersed in fluids appear in many biological processes, including swim-
ming, flying, and breathing. The plate deforms in response to fluid flows, yet fluid stresses
are in turn influenced by the plate’s deformation. We present a mathematical model
examining the flow of a viscous fluid in a narrow slit formed by two rectangular elastic
plates, and demonstrate a strongly nonlinear flow response. The volumetric flow rate first
increases linearly with pressure; however, the bending of the plates causes the corners to
approach. This in turn reduces the flow rate. In some cases, the corners meet and the slit no
longer permits flow. Our model, which is based on low-Reynolds-number hydrodynamics
and linear plate theory, yields insights into two competing effects: While the plate bending
generally reduces the slit aperture, it also causes the two plates to move apart, thus
increasing the gap. Relations to biomedical flows are outlined and potential applications to
flow control in man-made systems are considered.

DOI: 10.1103/PhysRevFluids.5.044101

I. INTRODUCTION

An elastic plate will bend if placed perpendicular to the flow of a fluid, a phenomenon which
plays an essential role in the operation of fins, wings, heart valves, and vocal cords [1–4]. The
degree of deformation will depend on the material and geometric properties of the plate and on the
fluid flow. If two plates are placed opposite one another, such as in the vocal folds, the fluid will be
forced to pass through the narrow slit formed by the plates, the shape of which will be influenced
by the fluid stress (Fig. 1). We present theory for low-Reynolds-number flows in this system, and
demonstrate a highly nonlinear relationship between the applied pressure drop �p and the resultant
flow rate Q. At low pressures, the flow rate increases linearly with pressure through the slit. At
higher pressures, however, the bending and rotation of the plates causes the corners to approach.
This reduces the gap size and the flow rate decreases. The topic of this paper is a detailed analysis
of fluid-structure interactions in this system.

Fluid-structure interactions have a long history and many important applications within the
technical, biological, and biomedical branches of science; see, e.g., [5,6] for recent reviews. Of
particular relevance to the system under scrutiny here are the following studies that highlight the
surprisingly diverse dynamics which arise from interactions between viscous liquids and elastic
solids attached to channel boundaries. Wexler et al. [7] studied the bending of an elastic fiber
clamped to a wall in viscous flows, while Young et al. [8] modeled the primary cilium as an elastic
beam connected to a spring subjected to shear flow. Pozrikidis [9] simulated how single and arrays of
elastic rods bend when a shear flow is passed across them. Moreover, Alvarado et al. [10] considered
flow-induced bending of multiple soft hairs, and found a nonlinear flow impedance which they
rationalized using a coupled fluid-structure model. Additionally, Gosselin et al. [11] carried out
experiments to study the drag on flexible plates, and Duprat et al. [12] created a microfluidic setup
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FIG. 1. Schematic of the channel geometry. (a) A pressure difference �p drives the flow rate Q of a viscous
liquid through a narrow slit between two elastic plates of height �, width w, and thickness t . The elastic
deformation W (y) modifies the gap geometry. (b) The gap has constant height h(x) = h0 when no pressure is
applied. (c) When �p > 0, elastic deformations constrict the slit; see Eqs. (9d) and (9e). (d) Phase diagram. The
closing pressure �p− [Eq. (11b), solid line] and reopening pressure �p+ [Eq. (11c), dashed line] normalized
by �p0 [Eq. (9c)] are plotted as functions of the pore-plate aspect ratio ε = �h0/t2 [Eq. (10d)], normalized by
the critical value ε0 = 7/18.

to measure mechanical properties of gels by considering the deflection of gel beams at different
flow velocities. Numerous engineering applications that involve fluid flows across soft structures
have been considered, including pneumatic valves [13]. Another example is Ledesma-Alonso et al.
[14], who conducted experiments on valves consisting of two flexible plates, to study under which
conditions they block backflow. Finally, Park et al. [15] found a nonlinear pressure-drop–flow-rate
relation across a valve comprising a sphere connected to a spring in a tapering channel.

Many biological processes also take advantage of interactions between viscous liquids and elastic
solids to control fluid flow by channel confinement. For instance, both heart and venous valves
prevent backflows by channel occlusion, and valve dysfunction is associated with medical disorders
[3,16]. During respiration—the body’s cyclic intake and exhalation of air—gas flows past the slit
between the vocal folds. Vocal chord dysfunction is due to transient constriction of the vocal cords
during parts of the respiratory cycle [17]. While several triggers of vocal cord dysfunction have been
identified, the physical mechanism of flow impediment remains poorly understood [18].

Inspired by these processes, the focus of our paper is the system shown in Fig. 1: viscous flow
in a slit between two elastic plates. In particular we seek to predict the volumetric flow rate Q
as function of the applied pressure �p. We begin this paper by describing, in Sec. II, our system
and propose a mathematical model for fluid-structure interactions based on geometric and material
characteristics. This step allows a reduction of the model complexity to lubrication theory for the
liquid flow (Sec. II A) and linear plate theory (Sec. II B) for the elastic deformations. We derive a
pressure-drop versus flow rate relation (Sec. II C–II D) and conclude with a summary and discussion
of our results (Sec. III).

II. RESULTS

The system under consideration consists of a long channel with two rectangular plates of
thickness t and height � � t extending from the top and bottom walls as shown schematically in
Figs. 1(a) and 1(b). The two plates are separated by a slit of height h0 which is significantly smaller
than the plate thickness t . The fluid flows in the x direction and the plates extend in the y direction.
The plates are flexible and the flow of a Newtonian fluid of viscosity η and density ρ is driven by
an applied pressure difference �p across the gap. The width of the channel and plates along the z
direction is w � �, making the problem essentially two-dimensional. The dynamics of the fluid are
described by the Navier-Stokes and continuity equations:

ρ(∂t u + u · ∇u) = −∇p + η∇2u, (1)

∇ · u = 0, (2)
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where u = (ux, uy) is the two-dimensional velocity field and p is the pressure. Throughout our
analysis, we assume that the channel aspect ratio h0/t � 1 and that the ratio of inertial forces
ρu2/t to viscous forces ηu/h2

0 is small, i.e., ρuh2
0/(tη) � 1. In this limit, we can safely neglect the

inertial terms and use the Stokes’ equations and the lubrication approximation thereof to describe
the hydrodynamics. We note that the asymptotic relative error in these approximations is the aspect
ratio squared, O(h2

0/t2). Next we consider the deformation of the plates where balance of stresses in
the solid leads to ∇ · σ = 0 and the boundary condition at the solid-fluid interface is σ · n = −pn.
In this analysis, we assume that the horizontal deflection is small relative to the plate thickness, so
that a linear elastic theory suffices to describe the material response.

A. Low-Reynolds-number flow

The pressure p and the velocity field u in the slit are described by the lubrication equations

∂ p

∂x
= η

∂2ux

∂y2
, (3a)

∂ p

∂y
= 0, (3b)

∂ux

∂x
+ ∂uy

∂y
= 0. (3c)

In the local slit coordinate system, y = 0 corresponds to the channel centerline, while x = 0 is
located at the channel entrance. Assuming no-slip boundary conditions at the edges of the pore
(y = ±h(x)/2), the horizontal velocity component is found as

ux(x, y) = 1

2η

∂ p

∂x

(
y2 − yh(x)

2

)
, (4)

corresponding to the flow rate

Q = − w

12η

∂ p

∂x
h3(x). (5)

The pressure-drop versus flow-rate relation is found by integration across the slit along the x
direction:

�p = 12ηQ

w

∫ b

a
h−3(x) dx, (6)

where x = a and x = b are the inlet and outlet positions on the x axis, respectively. The hydraulic
resistance R = �p/Q of the undeformed pore is

R0 = 12ηt

wh3
0

. (7)

B. Elastic deformation of the plate

To characterize the change in the slit geometry with applied pressure, we consider the horizontal
deflection W of the lower plate. In the local coordinate system, y = 0 is located at the base of
the clamped plate while the tip at y = � is free to move. Stress balance in the solid yields the
one-dimensional Föppl–von Kármán plate equation [19]

D
∂4W

∂y4
− t

∂

∂y

(
T

∂W

∂y

)
= �p, (8a)
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where D is the flexural rigidity,

D = Et3

12(1 − ν2)
, (8b)

T is the tension along the plate, and E and ν are Young’s modulus and Poisson’s ratio of the plate,
respectively. Note that the ends are free, and the tension throughout the plate is T = 0. The pressure
is treated as uniform on the plate face [20], and we neglect the effects of horizontal shear forces
in the narrow slit. These scale as

∫
η∂yux dx ∼ ηuxt/h0 ∼ �ph0, which is much smaller than the

pressure force �p� on the vertical plate surface. The boundary conditions are

W (0) = W ′(0) = W ′′(�) = W ′′′(�) = 0, (8c)

corresponding to clamped edges at the channel walls (y = 0) and free edges at the slit (y = �).
Solving Eq. (8a) with T = 0 and the boundary conditions of Eq. (8c) leads to

W (y) = (6�2y2 − 4�y3 + y4)

24D
�p. (8d)

If the deformations are small, the horizontal plate face remains flat in accord with Kirchoff’s
hypothesis of straight normals. The height profile h(x) of the slit between the two opposing plates
is thus a linear function of position x, which we write as

h(x) = hmin + 2x tan φ for 0 < x < t cos φ, (9a)

where hmin is the minimum gap size and φ is the tilt angle [Fig. 1(c)]. For clarity in the geometric
interpretation we express the following results in terms of trigonometric functions. Note, however,
that, because the deformations are small, the tilt angle φ is also small and the functions are
approximated as tan φ = sin φ = φ, cos φ = 1, etc., consistent with linear elasticity theory. The
angle φ is determined by evaluating the deflection at the free end of the plate,

tan φ = ∂yW |y=� = h0

t

�p

�p0
, (9b)

where we have introduced the characteristic pressure �p0 at which the pore closes if the motion is
purely rotational:

�p0 = E

2(1 − ν2)

t2h0

�3
. (9c)

The minimum (and maximum) plate-to-plate separation distance follows from geometric consider-
ations [Fig. 1(c)]:

hmin = 2� + h0 − 2

(
�′ + t

2
sin φ

)
= h0 + 2(� − �′) − t sin φ and (9d)

hmax = 2� + h0 − 2

(
�′ − t

2
sin φ

)
= h0 + 2(� − �′) + t sin φ. (9e)

The two main competing effects in the fluid-structure interaction process are contained in Eq. (9d).
First, the two leading-edge corners of the top and bottom plates begin to approach as the plates bend.
Quantitatively, the angle φ increases and the absolute magnitude of the term −t sin φ grows. Thus
hmin diminishes linearly with pressure. However, since the length of each plate is unaltered by the
bending process, they retract to a new effective length �′. Thus, hmin increases by a term 2(� − �′).
The projected length �′ of the deflected plate on the y axis can be found by considering the arch
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length of the plate center line, which should equal the equilibrium plate height �:

� =
∫ �′

0

√
1 + (∂yW )2 dy, (10a)

which, in the small slope limit ∂yW � 1, leads to

�′ � �

[
1 − 9

28

h2
0

t2

(
�p

�p0

)2
]
. (10b)

The relative retraction K can be expressed as

K = 2
� − �′

h0
= 1

4

ε

ε0

(
�p

�p0

)2

, (10c)

where we have introduced the parameters

ε = �h0

t2
and ε0 = 7

18
≈ 0.389, (10d)

where ε is the ratio of the channel and plate aspect ratios, h0/t and t/�, respectively.
The gap will close (hmin = 0) if a real pressure drop �p can be found such that

h0 + 2[� − �′(�p)] − t sin φ(�p) = 0, (11a)

where we emphasize that the projected plate length �′ [Eq. (10b)] and tip angle φ [Eq. (9b)] are
pressure dependent. The potential closure, and reopening, of the pore can thus be characterized by
the critical pressures at which hmin = 0, i.e.,

�p− = 2ε0

ε

(
1 −

√
1 − ε

ε0

)
�p0, (11b)

�p+ = 2ε0

ε

(
1 +

√
1 − ε

ε0

)
�p0, (11c)

where the indices indicate closing (−) and reopening (+) of the pore. We note the importance
of the geometric parameter ε in Eqs. (11c) and (11b): the pressures �p± are real when ε < ε0,
hence there is a range of �p for which the slit is open, closed, and reopens. In contrast, for ε > ε0

the retraction is sufficiently strong that the channel remains open for all pressures; see the phase
diagram in Fig. 1(d).

We end our discussion of the closing process by discussing limits to the value of the geometric
parameters in the problem. The rotation must be small for the one-dimensional plate equation to
hold, i.e., W ′(�) � 1 or equivalently φ � 1. Further, the lubrication approximation dictates that the
channel height must remain well below the channel thickness t . Taking the global assumption that
h0/t � 1 leads to the conditions

φ = h0

t

�p

�p0
� 1 and

hmax

t
= �h2

0

t3

(
�p

�p0

)2

� 1. (12)

We note that the whole (ε,�p) parameter space can be reached provided that the aspect ratios h0/t
and t/� are chosen judiciously.
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FIG. 2. Pressure-drop versus flow-rate characteristics. Flow rate Q [Eq. (13b)] plotted as a function of
pressure drop �p. The flow is normalized by the maximum rate Q∗

max [cf. Eq. (14b)], while the pressure is
normalized by the characteristic pressure �p0 [Eq. (9c)]. (a) Pressure-drop versus flow-rate relation in the
limit ε = 0 [Eq. (14a)]. (b) Flow characteristics below the critical value ε < ε0 = 7/18 where the slit closes at
�p− and subsequently reopens at �p+ [cf. Eqs. (11b) and (11c)]. (c) System behavior for ε > ε0 where the slit
remains open for all �p. Note that, at the critical value ε = ε0, the slit closes and reopens at the same pressure
�p = �p± = 2�p0. See also the phase diagram in Fig. 1(d).

C. Flow-rate versus pressure-drop characteristics

Having established the height profile of the deformed slit, we return to the pressure-drop versus
flow-rate relation in Eq. (6). The pressure drop obtained with the height profile of the distorted
channel [Eq. (9a)] is

�p = 12ηQ

w

∫ t cos φ

0
h−3(x) dx = 12ηQ

w

1

4 tan φ

(
h−2

min − h−2
max

)
. (13a)

Inserting the expressions for the maximum and minimum gap height, Eqs. (9d) and (9e), the flow
rate Q as a function of pressure difference �p becomes

Q = �p

R0
(1 + K )3

[
1 −

(
1

1 + K

�p

�p0

)2
]2

, (13b)

where K (�p) is the relative retraction [Eq. (10c)] and R0 is the hydraulic resistance of the
unperturbed slit [Eq. (7)]. Note that Q = 0 for pressures in the closed state �p− < �p < �p+
[Eqs. (11b) and (11c)].

The characteristic behavior of the flow rate Q as function of applied pressure �p is illustrated
in Fig. 2 for different values of the geometric parameter ε = �h0/t2. We first note that when ε → 0
the relative retraction K is significantly smaller than unity and the pressure-drop versus flow-rate
relation in Eq. (13b) simplifies to

Q∗ = �p

R0

[
1 −

(
�p

�p0

)2
]2

. (14a)

In this limit, the flow rate initially increases linearly with �p [Fig. 2(a)]. At higher pressures,
however, the bending of the plates reduces the gap size and the flow rate decreases. Finally, the
flow rate tends to zero as the two plates approach contact at �p = �p0. The maximum flow rate in
this limit is

Q∗
max = 16

25
√

5

�p0

R0
, (14b)
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obtained when the pressure �p = �p0/
√

5. For larger values of ε, the plate retraction is significant
and we observe a transition between closing, reopening, and perpetually open slits beyond the
critical value ε > ε0 = 7/18 [Figs. 2(b) and 2(c); see also the phase diagram in Fig. 1(d)].

The preceding analysis focused on the flow rate Q as function of the applied pressure difference
�p and revealed a strongly nonlinear relationship between the two [Eq. (13b)]. Crucially, we found
that the link between flow Q(�p) and pressure �p is unique. However, the situation is qualitatively
different if we consider the flow rate Q as the prescribed quantity and seek the corresponding
pressure drop �p(Q). Here, the functional relationship is no longer one-to-one because some flow
rates correspond to one, two, or three pressure values. In the following, we thus briefly consider the
stability of the prescribed flow-rate case.

Let Q1 be the constant volumetric flow rate entering the system, which at steady-state cor-
responds to the pressure drop �p1. If a small perturbation to the plate position occurs, volume
conservation dictates that

Q1 = Q(�p) + ∂V

∂t
, (15a)

where Q is the flow through the slit, �p is the pressure drop across the plates, V is the channel
volume behind the plates, and t is time. Starting at the initial value V0 at �p = 0, the volume V
grows linearly with pressure as the plates bend, i.e., V = V0 + α�p, where the positive constant α

follows from Eq. (8d). Rewriting the volume term in Eq. (15a) and expanding near the steady state
pressure �p1 leads to

α
∂

∂t
(�p − �p1) = Q1 − Q ≈ Q1 −

[
Q1 + (�p − �p1)

∂Q

∂�p

∣∣∣∣
�p1

]
= −(�p − �p1)

∂Q

∂�p

∣∣∣∣
�p1

.

(15b)

We observe that positive values of the local resistance ∂Q/∂�p are stable, while negative values
are unstable. In the constant-flow case, the downward-sloping segment of the (�p, Q) curve is thus
unstable (Fig. 2).

D. The effects of plate shape

Up to this point we have considered elastic plates with straight horizontal edges. It is, however,
of general interest to consider the behavior of plates with curved boundaries. For instance, they may
be easier to fabricate and align in an experiment.

We let F (x̄) be the shape function such that the distance between the two unbent plates is
H (x) = h0(1 + 2F (x̄)) with x̄ = x/t ; see Fig. 3(a). For the case of rectangular plates with straight
edges F (x̄) = 0, and the distance between the plates is H (x) = h0. The maximum value the function
h0F (x̄) can take is small compared to the vertical extent, �, of the plates, such that the moment of
inertia is unaffected and the deflection as found by Eq. (8d) still holds. Moreover, we assume that
only small deflections occur so the hypothesis of straight normals remains valid. Therefore, the
horizontal edge of the plate will retain its shape during the deformation. The distance between the
two plates in the bent state is therefore H (x) = h(x) + 2h0F (x̄), where h(x) is given in Eq. (9a).
This leads to

H (x) = h0 + 2(� − �′) − t sin φ + 2x tan φ + 2h0F (x̄), (16a)

which can be conveniently expressed in terms of the parameters ε and �p0 as

H (x) = h0

(
1 + 1

4

ε

ε0

�p2

�p2
0

+ [2x̄ − 1]
�p

�p0
+ 2F (x̄)

)
. (16b)
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FIG. 3. Pressure-drop versus flow-rate characteristics for shape-perturbed slits (a). Flow rate Q [Eq. (17)]
plotted as a function of pressure drop �p for ε = 0.95ε0. The flow is normalized by the maximum rate Q∗

max

[cf. Eq. (14b)], while the pressure is normalized by the characteristic pressure �p0 [Eq. (9c)]. (b) Pressure-
drop versus flow-rate relation for a parabolic shape perturbation [Eq. (18)]. (c) Pressure-drop versus flow-rate
relation for an elliptical shape perturbation [Eq. (18)].

The flow rate as a function of pressure difference can then be found by inserting H (x) into the
expression found from the lubrication approximation in Eq. (6):

Q = �p

R0

[∫ 1

0

(
H

h0

)−3

dx̄

]−1

. (17)

If the ends are straight [F (x̄) = 0] we recover Eq. (13b); however, in the general case of an arbitrary
channel height profile the integral is evaluated numerically.

To illustrate the behavior of the system we consider parabolic and elliptic shape functions

Fp(x̄) = Ap

(
x̄ − 1

2

)2

and Fe(x̄) = Ae

(
1

2
−

√
x̄(1 − x̄)

)
, (18)

where A denotes the amplitude of the perturbation. Typical flow rates characteristics obtained by
using Eq. (18) in Eq. (17) are shown in Fig. 3. For the geometric control parameter ε = 0.95ε0, the
plates with straight ends will meet, and hence the flow rate will reach zero across a finite pressure
range. For relatively small values of A the same behavior is observed in shape-perturbed channels.
However, for larger values of A the plates no longer come into contact and the flow rate does not
reach zero for any pressure difference across the plates. Finally, we note that the flow in perturbed
channels is greater (A > 0) or smaller (A < 0) than in the corresponding channel, because a wider
channel permits more flow.

III. DISCUSSION AND CONCLUSION

A fairly comprehensive picture of the elements that influence viscous flow in the gap between
two elastic plates has come into view. Most prominent is the discovery that this simple system can
act as a nonlinear valve with remarkably complex properties [Fig. 1(d)]. The flow rate first increases
linearly with pressure; however, the bending of the plates eventually reduces the gap size and the
flow rate is reduced. Then, the gap closes and no longer permits flow. Finally, the pore reopens at a
higher pressure. The behavior is symmetric in the applied pressure �p, i.e., the same behavior, but
with reversed flow, would be observed under the application of a negative pressure drop. It is worth
mentioning that a simplification where a rigid boundary along the symmetry axis replaces the lower
half of the setup would lead to the same overall behavior, but with different numerical prefactors.
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The qualitative behavior of the system is captured by the geometric control parameter ε

[Eq. (10d)] and the closing pressure �p0 [Eq. (9c)]. The quantitative properties depend on the
material and geometric parameters of the system. The closing pressure is determined by the height
� and thickness t of the plates, the initial gap h0, and on and the elastic parameters E and ν.
The maximum achievable flow rate [Eq. (14b)] also depends on the slit width w; hence the two
parameters can be controlled independently. We note that the full problem presented in Fig. 1
could be solved for individual cases using, for instance, a finite-element package. This solution
method could, in principle, capture higher degrees of membrane and pore deformation and the
corresponding three-dimensional flow fields [21].

Flows across soft plates are an integral part of numerous natural and technical processes. Our
results could find applications in describing, for instance, the flow dynamics in the vocal folds below
the phonation threshold pressure, the minimum lung pressure required to initiate and sustain vocal
fold oscillations [22]. Moreover, it could help rationalize aspects of vocal chord dysfunction, in
particular the transient constriction of the vocal cords during respiration [17,18]. Finally, we propose
that the nonlinear flow properties of the system under consideration could find applications in, for
example, flow control in lab-on-a-chip systems where efficient valve design remains a significant
challenge [23,24].
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