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Theory is developed to predict the growth and structure of “sibling” waves developing
through triadic resonant instability of a vertically confined mode-1 internal “parent” wave
in uniform stratification including the influence of background rotation. For a sufficiently
hydrostatic parent wave, two branches for growth of sibling waves are dominant. The
branch with largest growth rate corresponds to sibling waves having frequencies much
larger than that of the parent; the other branch corresponds to sibling waves having
frequencies close to half the frequency of the parent. Numerical simulations show that
sibling waves corresponding to the subharmonic branch appear in practice. In the absence
of rotation, the sibling waves corresponding to this branch are predicted to have near-
constant growth rate as their horizontal wave number increases. With rotation, however,
the growth rate peaks at moderate wave number. In all cases, as confirmed by numerical
simulations, the e-folding time for the growth of the sibling waves can be thousands of
buoyancy periods for parent waves having amplitudes typical of realistic oceanic internal
modes. In nonuniform stratification, the parent wave self-interacts immediately to force
superharmonics. Nonetheless, numerical simulations with symmetric top-hat stratification
show that triadic resonant instability eventually emerges. Such emergence is not evident
in simulations with stratification more representative of the ocean. The results suggest
a reconsideration of the efficacy of parametric subharmonic instability in leading to the
breakdown of low-mode internal tides in the ocean.

DOI: 10.1103/PhysRevFluids.5.034801

I. INTRODUCTION

It is estimated that globally 1 TW of power is transferred from the lunisolar tides to internal tides
[1]. The action of the barotropic tide over bottom topography can generate vertically propagating
beams near the source. While some fraction of that energy is dissipated in the near field (as observed,
for example, near the Hawaiian Ridge [2]), most of the energy becomes manifest as low-mode
internal tides in the far field where they may then propagate thousands of kilometers from the source
[3]. An outstanding question asks how the energy from these waves ultimately cascades from large to
small scale where it may be dissipated, thus closing this branch of the oceanic energy budget. Several
possibilities have been explored, including dissipation when the internal tide interacts with rough
bottom topography, with the continental slopes and shelves, and with mean flows and eddies (for
a recent review, see MacKinnon et al. [4]). It has also been suggested that, away from topography
and background flows, internal modes may be dissipated due to nonlinear wave-wave interactions
including the case of triadic resonant instability (hereafter TRI), in which a pair of “sibling” waves
grow out of the background noise field through resonant interactions with the “parent” wave (for a
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recent review, see Dauxois et al. [5]). TRI is more general than parametric subharmonic instability
(PSI), in which the sibling waves are both restricted to have lower frequency than the parent (and,
typically, each has half the parent wave frequency). That said, TRI is a special case of “resonant
triad interactions” [6], in which the three interacting waves can have comparable amplitude. Here
our theoretical focus is on the growth of sibling waves when their amplitude remains small compared
to the parent. Indirect evidence for the occurrence of TRI has been inferred from observations of
enhanced dissipation equatorward of about 30◦ latitude [7,8]. It has been proposed that within this
latitude band about the equator the dominant M2 internal tide becomes unstable to subharmonics
with nearly half the M2 tidal frequency. Because these subharmonics have the same frequency as the
Coriolis frequency at 28.9◦ latitude, they are predicted to pile up and break near this critical latitude.
Although the hypothesis was verified in idealized numerical simulations [9,10], in situ observations
around 29◦N close to Hawaii did not reveal a particularly strong “subtropical catastrophe,” although
some evidence for the occurrence of subharmonic resonance was inferred through the examination
of bispectra [11]. Inspired by these observations, high-resolution ocean general circulation models
have been performed and analyzed with bispectral analyses to assess the occurrence of TRI in
the global oceans [12]. In an idealized numerical study of internal modes in uniform stratification
lying in the latitude band between 28◦S and 28◦N, TRI for sibling waves with half the internal tide
frequency was found to transfer energy at a rate approximately half of that presently assumed to be
input through barotropic to baroclinic energy conversion [13].

Strictly speaking, the theory for TRI considers the interaction of a pair of “sibling” waves with
a “parent” wave in vertically and horizontally unbounded uniformly stratified fluid. In this case,
each monochromatic wave has a well defined frequency and wave number vector corresponding to
sinusoidal waves [5]. It is expected that a bounded internal mode in uniform stratification should
likewise be susceptible to TRI since the vertical structure can be viewed as a superposition of two
oppositely propagating phase-locked sinusoidal waves. Indeed, this has been observed in laboratory
experiments in which a mode 1-1 internal wave was excited in a tank with square vertical cross
section by vertically oscillating the tank at the predicted frequency of this mode [14,15]. Notably,
the growth of the instability was most pronounced in the center of the tank, whereas no such spatial
localization occurs for TRI developing from an unbounded plane wave. TRI has also been observed
to develop in a laboratory experiment in which a horizontally propagating, vertically bounded mode-
1 wave was generated at one end of a tank filled with uniformly stratified fluid [16]. After a time
corresponding to about 30 periods of the highly nonhydrostatic parent mode, sibling waves were
observed to develop as sets of upward and downward propagating beams emanating most strongly
at middepth near the wave generator.

It is unclear how the theory for TRI can rigorously be extended to the case more representative of
low-mode internal tides in the ocean that propagate horizontally through nonuniform stratification.
Key to the theory leading to the wave number and frequency triadic resonance conditions is that
the parent and sibling waves are sinusoidal both vertically and horizontally. Thus one sinusoidal
wave interacts with a second sinusoidal wave through the advective terms in the equations of
motion to create a third sinusoidal wave. However, internal modes in nonuniform stratification
do not have sinusoidal vertical structure. Furthermore, such modes are known to self-interact
through the advective terms so as to provide superharmonic forcing to the medium [17–20]. In
applying the theory for TRI to internal waves in nonuniform stratification, a typical assumption is
that the resonantly excited sibling waves have such small vertical scale that they develop through
interaction with the parent mode over a relatively small vertical depth, presumably where the vertical
structure of the stream function of the parent mode is largest and so partially map onto a sinusoidal
disturbance. In the special case of a parent wave having double the background Coriolis frequency,
Young et al. [21] predicted that subharmonic near-inertial sibling waves should grow through
parametric subharmonic instability. Here our intent is to examine TRI for parent waves spanning
the range from nonhydrostatic (as in laboratory experiments) to hydrostatic (as in the ocean) and,
aided by numerical simulations, examine the influence of the vertical confinement of the parent
mode upon the occurrence of TRI.
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The general theory for TRI including the influence of Coriolis forces is reviewed in Sec. II,
wherein predictions for the structure and frequency of sibling waves in uniform stratification are
provided. The setup of the numerical model is described in Sec. III with the results for uniform
stratification presented in Sec. IV and results for nonuniform stratification discussed in Sec. V. The
interpretation of these results for understanding the occurrence of TRI from internal tides in the
ocean is discussed in Sec. VI.

II. THEORY

We consider triadic resonant instabilities associated with horizontally periodic two-dimensional
internal waves on the f -plane in a domain of uniform depth H bounded above and below by free-slip
boundaries. With the intent to model the evolution of oceanic internal tides, the effects of diffusion
and viscosity are neglected. As such this work is an extension of the theory of Bourget et al. [22] who
neglected the Coriolis parameter, f , but included viscosity to aid in the interpretation of laboratory
experiments, and of the work of Young et al. [21] who focused upon parametric subharmonic
instability for sibling waves having frequencies near f .

A. Fully nonlinear equations of motion

Neglecting viscosity and diffusion, the fully nonlinear equations of motion confined to the x-z
plane for an incompressible, rotating, Boussinesq fluid on the f plane are

∂t u + ∂x(uu) + ∂z(wu) − f v = −∂x p/ρ0, (1a)

∂tv + ∂x(uv) + ∂z(wv) + f u = 0, (1b)

∂tw + ∂x(uw) + ∂z(ww) = −∂z p/ρ0 + b, (1c)

∂t b + ∂x(ub) + ∂z(wb) = −N2w, (1d)

∂xu + ∂zw = 0, (1e)

in which b = −gρ/ρ0 is the buoyancy, (u, v,w) is the velocity vector with components respectively
in the x, y, and z directions, ρ and p are, respectively, the fluctuation density and pressure,
g is gravity, ρ0 is the characteristic density, f is the (constant) Coriolis parameter, and N2 =
−(g/ρ0)d ρ̄/dz is the squared buoyancy frequency expressed in terms of the vertical gradient of
the background density ρ̄. In writing these equations, the x axis is aligned with the horizontal phase
velocity of the parent wave and it is assumed that the spanwise extent of the wave is so wide that
it can be considered to be y-independent. As follows from (1e), the velocity in the x-z plane can be
defined in terms of the stream function ψ , so that (u,w) = (−∂zψ, ∂xψ ).

Taking the curl of (1a) and (1c) to formulate the equation for the evolution of the spanwise
vorticity and using (1b) and (1d) gives the following equation written as a linear operator L acting
on ψ forced by nonlinear terms N :

[∂tt (∂xx + ∂zz ) + N2∂xx + f 2∂zz]︸ ︷︷ ︸
≡ L

ψ = �∇ · [∂t (�uζ ) − ∂x(�ub) + f ∂z(�uv)]︸ ︷︷ ︸
≡ N

, (2)

in which ζ = ∂zu − ∂xw is the spanwise vorticity, �∇ = (∂x, ∂z ) and �u = (u,w).

B. Small-amplitude internal modes

For small-amplitude waves with horizontal (in x) wave number k and frequency ω, the nonlinear
terms on the right-hand side of (2) can be neglected, yielding a linear differential eigenvalue equation
whose solution gives the vertical structure, �, of the stream function as it depends upon N2(z)
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together with the corresponding dispersion relation ω = ω(k). Explicitly, for given k, � satisfies

� ′′ + k2 N2(z) − ω2

ω2 − f 2
� = 0. (3)

In the case of uniform stratification (N = N0 constant) for vertically bounded waves in a domain of
depth H , such internal modes with horizontal wave number k = k0 are given by

ψ0(x, z, t ) = 1
2 a0 sin(m0z) exp[ı(k0x − ω0t )] + c.c. (4)

in which c.c. represents the complex conjugate, a0 is the stream function amplitude, m0 = π/H is
the vertical wave number of the lowest internal mode and the dispersion relation is

ω0 =
√

N2
0 k2

0 + f 2m2
0

k2
0 + m2

0

. (5)

Of course one can write sin(m0z) = −(ı/2)[exp(ım0z) − exp(−ım0z)]. As such, ψ0 in Eq. (4) can
be considered as the superposition of two vertically phase-locked plane-periodic waves.

C. Resonant triads

Here we take the traditional view of triadic resonant instability (TRI) that, from a given a
“parent wave” of known frequency ω0, two “sibling waves” with frequencies ω± can grow out
of a background noise field through resonant interactions with the parent, provided the sum of the
sibling frequencies equals the parent wave frequency. (In the special case of parametric subharmonic
instability, the sibling waves have frequencies ω+ = ω− = ω0/2.) Our approach thus differs from
studies that have examined the self-interaction of a parent mode resulting in the creation of
superharmonics [18–20,23] and mean flow disturbances [20,24]. Furthermore, rather than consider
the vertical structure of the stream function given by the solution of (4), we approximate the parent
mode structure as being locally sinusoidal where the structure function is near its maximum. We
then predict the growth rate of various resonant triads following the approach of Bourget et al. [22]
(see also Dauxois et al. [5]), but including rotation and neglecting viscosity.

In the consideration of TRI of internal modes in uniform stratification, the parent wave with
stream function given by (4) has well-defined wave number (k0, m0) and frequency ω0. Superim-
posed on this mode are pairs of vertically propagating waves having wave numbers (k±, m±) and
corresponding frequencies ω±. For this ansatz to hold, m± must necessarily be larger than that of
the lowest vertical mode, m0 = π/H , to ensure at least a half vertical wavelength fits in the domain.
Crucial to this assumption is that the resonantly excited waves extract their energy from the parent
wave far from the upper and lower boundaries where the stream function amplitude, ∝sin (m0z), is
largest, consistent with experiments [16] and the simulations [9,10]. Hence the presence of the upper
and lower boundaries play no role in their excitation, although the consequent vertical propagation
of these waves, which reflect from the boundaries, may be influenced by the boundaries in that the
reflected waves interfere constructively or destructively with the waves being excited within the
domain.

In nonuniform stratification, the parent wave frequency and horizontal wave number are
prescribed and the vertical wave number, m0, is given by inverting (5) in which N0 is taken to
be the buoyancy frequency where the vertical structure of the stream function is largest. Under the
assumption that m± is large, the buoyancy frequency about the depth where the sibling waves are
strongly excited can be considered as approximately constant: N � N0. The sibling waves can then
be represented by

ψ±(x, z, t ) = 1
2 a± exp[ı(k±x + m±z − ω±t )] + c.c., (6)

034801-4



TRIAD RESONANT INSTABILITY OF HORIZONTALLY …

in which

ω± =
√

N2
0 k2± + f 2m2±
k2± + m2±

. (7)

In these expressions, and below, the subscript sign convention is that the equation holds taking
either the upper signs or the lower signs on both sides of the equation. Resonant triads involve the
interaction between sibling waves given by (6) and the parent wave such that energy from the parent
wave is funneled into the sibling waves. For resonance to occur, the wave numbers and frequencies
must satisfy the following resonant triad conditions [5]:

k+ ± k− = k0, (8a)

m+ ± m− = m0, (8b)

ω+ ± ω− = ω0. (8c)

Together with the dispersion relation for ω0 and ω±, this constitutes an implicit equation for m+ in
terms of some k+ for given k0, m0 and corresponding ω0. As shown in the Appendix, the result can
be recast as the root of a polynomial in m+(k+) of degree 8 from whose (real) roots one can then
determine m−(k+), k−(k+) and the corresponding values of ω±(k+).

D. Triadic resonant instability

Equation (2) is used to determine how one of the sibling waves grows in time due to the
interaction between the other sibling wave and the parent wave through derivation of evolution
equations for a±(t ). In doing so, it is assumed the growth rate is small so that second time-derivatives
on the left-hand side of (2) can be neglected in comparison with first time derivatives of a±.
Likewise, time derivatives on the right-hand side of (2) acting on exp(−ıω±t ) are assumed to be
much larger than time derivatives acting upon the amplitudes a0 and a±.

Thus, after some algebra, we find

ȧ± = I± m0k0a0 a	
∓ (9)

in which ȧ± represents the time-derivative of a±, and a	
∓ is the complex conjugate of a∓. In this

expression we have defined the nondimensional quantity I± to be

I± = 1

8

m∓/m0 − k∓/k0

κ2±ω±

{
ω±(χ0 − χ∓) + N2

0 k±

(
k0

ω0
− k∓

ω∓

)
+ ı f 2m±

(
m0

ω0
+ m∓

ω∓

)}
, (10)

in which κ± = (k2
± + m2

±)1/2 and

χ± =
(

N2
0 − f 2

ω2± − f 2

)
k2
±. (11)

In the special case with f = 0, these expressions reduce to those of Bourget et al. [22] by neglecting
viscosity in their result.

The time evolution separately of a+ or a− is thus given by

ä+ = I+I	
− m2

0k2
0 |a0|2 a+, ä− = I−I	

+ m2
0k2

0 |a0|2 a−. (12)

If f 
= 0, I± is possibly complex. And so the exponential growth rate of a± is given by

σ ≡ ω0(m0Aξ ) σ0 in which σ0 ≡ |I+I	
−|1/2 cos(θ/2). (13)

Here Aξ = a0k0/ω0 is the amplitude of the vertical displacement field, and θ is defined so that tan θ

is the ratio of the imaginary and real parts of I+I	
−. Of course if f = 0, then I± is pure real and

θ = 0. The prediction (13) is expected to be good provided the stream function amplitudes, a±,
of the sibling waves remains much smaller than the stream function amplitude, a0, of the parent.
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FIG. 1. Values of the sibling wave number (k+, m+) with component normalized respectively by the parent
wave number (k0, m0 ) shown in four cases for a mode-1 wave, with f = 0 and values of k0H as indicated. Pairs
of sibling waves both with vertical wavelength smaller than H are allowed in the light gray-shaded regions.
The nondimensional growth rate, σ0 is indicated by color with scale indicated in (a). Sibling waves with the
largest growth rate having k+ > k0 in the case k0H = 3, and by extension to cases with k0H = 1, 0.5, and 0.2
are denoted by “branch 1”; sibling waves with the highest growth rate appearing for k0H = 1, 0.5, and 0.2 are
denoted “branch 2.”

As will be shown, σ0 is of order 0.1. Also, in uniformly stratified fluid, the waves are overturning
if m0Aξ � 1. Hence (13) shows that the growth rate relative to the parent mode frequency is on
the order of a tenth the amplitude of the waves relative to the overturning amplitude. Of course,
for low-mode internal tides, the amplitude is far below overturning. Hence the time for resonant
growth of sibling waves from the parent is very much longer than the period of the parent mode.
And because the internal tide frequency is on the order of f at midlatitudes, this suggests that TRI
should take weeks to grow to non-negligible amplitudes.

E. Empirical results

As in Fig. 5 of Bourget et al. [22], Fig. 1 shows normalized values of the wave number (k+, m+)
associated with one of the pair of sibling waves in the resonant triad with the parent having wave
number (k0, m0). It is understood that the other sibling has wave number (k−, m−) = (k0, m0) −
(k+, m+). In each plot the middle region, for which −1 < m+/m0 < 2, is shaded medium gray as
a reminder that sibling waves with |m+| < m0 or |m−| < m0 are not permitted when spawned by
a mode-1 internal wave in uniform stratification because their half-wavelength is larger than the
vertical extent of the domain. Likewise the points representing values of m+(k+) are smaller within
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this prohibited region. For each sibling wave number (k+, m+), the values of I± in Eq. (10) can
be computed. Thus, for given vertical displacement amplitude Aξ , the predicted growth rate of the
siblings can be found using (13). In Fig. 1 the nondimensional growth rate, σ0, is illustrated by the
color of each point.

The curves in Fig. 1 a are similar to those appearing in Fig. 5 of Bourget et al. [22] who examined
the case with k0 = m0(=π ). The branch for k+ > k0 with the largest growth rate emanates upward to
the right. A second set of unstable sibling waves also exists corresponding to the branch emanating
downward to the right. However, its growth rate is significantly smaller.

For a parent mode that is more hydrostatic (having smaller k0/m0) the normalized growth rate
corresponding to the up- and rightward branch decreases while a new branch develops with larger
corresponding growth rate. This branch is evident in the case with k0H = 1 [Fig. 1(b)], but the
corresponding vertical wave numbers of the sibling waves are too small to be manifest in the
vertically bounded domain. For k0H = 0.5 and k0H = 0.2, this new branch is associated with
sibling waves that both have sufficiently large vertical wave number. Separately, these curves have
been computed taking into account the influence of Coriolis forces by setting f = 0.01N0. In all
cases, the values of m+(k+) are qualitatively similar even for the case with k0H = 0.2. However,
some quantitative differences become apparent for small k0H , as examined next.

Corresponding to three of the four cases examined in Fig. 1, Fig. 2 focuses upon the properties
of the sibling waves corresponding to the branches with the largest growth rates and k+ > k0. A
fourth case considers the effect of nonzero f . In the case with k0H = 1, the vertical wave numbers,
frequency and growth rate asymptote to constant values as k+/k0 becomes large. This lies in contrast
to the study of Bourget et al. [22], who included viscous effects and so observed the decrease of the
growth rate with increasing k+/k0. As might be expected from studies of parametric subharmonic
instability, the frequency of both sibling waves is close to ω0/2 for large k+/k0. Correspondingly the
relative vertical wave number of each sibling is close to twice the relative horizontal wave number,
m±/m0 � 2k±/k0, as follows directly from the dispersion relation for hydrostatic, nonrotating
internal waves: ω � Nk/m.

In the case with k0H = 0.5 [Fig. 2(b)], a second branch corresponding to sibling waves with
larger growth rate and frequencies much larger than the parent mode becomes manifest for 5 �
k+ � 11, which is the range over which the sibling waves have |m±| > m0. The subharmonic branch
has characteristics similar to those in the case with k0H = 1 such that the growth rate of the sibling
waves is nearly constant for increasing k+ and the frequencies are close to half that of the parent
mode. Similar behavior occurs in the case with k0H = 0.2 and f = 0 [Fig. 2(c)] except that here the
superharmonic branch exists with |m±| > m0 for much larger k+, with the growth rate increasing
as an approximate power law with k+. The superharmonic behavior is similar with the inclusion of
background rotation [Fig. 2(d)]. But in this case the subharmonic sibling waves exhibit a peak in
their growth rate for k+ comparable to k0.

While these results suggest that superharmonic sibling waves should dominantly be excited
through TRI from a hydrostatic parent mode, the simulations that follow will show that only
subharmonic sibling waves develop. The near-uniformity of the growth rate for subharmonic sibling
waves developing from a parent wave in inviscid nonrotating fluid suggests that one might expect
to see the emergence of broad-banded wave beams oriented at an angle � � sin−1[ω0/(2N0)] to
the horizontal and with slope � k0/(2m0) = H/λ0: half the effective slope of the parent wave.
On the other hand, because the growth rate of subharmonic sibling waves in rotating fluid peaks
at relatively small k+/k0, one might expect more narrow banded beams in this case. In fact, the
numerical simulations presented below show that the subharmonic sibling waves are manifest as
narrow-banded beams in all cases.

III. SIMULATIONS: SETUP AND ANALYSIS METHODS

The numerical model solves the fully nonlinear equations of motion for a horizontally periodic
internal mode with free-slip upper and lower boundary conditions in arbitrary though stable
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FIG. 2. Relative wave number ratio (blue), frequency (red), and the nondimensional growth rate σ0 (thick
black) computed for four different parent waves with k0H and f /N0 specified as indicated. Solid (dotted) lines
give the predicted values corresponding to branch 1 (branch 2) as indicated in Fig. 1. Open circles correspond
to the relative wave number ratio (blue), frequency (red), and nondimensional growth rate (black) measured in
corresponding numerical simulations with Aξ = 0.01H . Note that the ordinate in (a) and (b) is on a linear scale,
whereas the ordinate in (c) and (d) is on a log scale. In all cases k+/k0 is plotted on a log scale, as indicated in
the bottom plots.

stratification with and without uniform background rotation [18]. The code is effectively two-
dimensional, meaning that the fields are spanwise uniform (in the y direction); the equations are
solved in the x-z plane. Thus, with the inclusion of dissipative terms in the momentum and internal
energy equation, (1) can be recast in terms of the spanwise vorticity (ζ ) as well as the spanwise
velocity (v) and buoyancy (b):

ζt = −uζx − wζz + f vz − bx + Dζ ζ , (14a)

bt = −ubx − wbz − wN2 + Dbb, (14b)

vt = −uvx − wvz − f u + Dvv, (14b)

in which the subscripts on u, v, w, b, and ζ denote partial derivatives. In practice, the fields are
represented by Fourier series components in the horizontal and in discrete evenly spaced steps in real
space in the vertical. The operators for viscous and substance diffusion, Dζ and Db, are, respectively,
defined to operate as Laplacian diffusion operators, (1/Re)∇2 and (1/PrRe)∇2, that act only upon
disturbances with horizontal wave number greater than a cutoff kc. In all cases Re ≡ N0H2/ν =
100 000 and Pr = 1. Although the Prandtl number is much smaller than that appropriate for relative
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thermal/saline diffusion in water, it is sufficient to use this value since diffusion does not act upon
the parent or sibling waves; it is included only for the purposes of numerical stability.

For given ζ at any time, the stream function is found by inverting the Poisson equation ζ =
−∇2ψ in mixed spectral-finite difference space. Given ψ , the u and w velocities are computed.
Then (14) can be used to advance each of ζ , b, and v in time. Of course, if f = 0, it is unnecessary
to evolve the spanwise velocity, v.

The simulations are initialized with a mode-1 internal wave in which the horizontally periodic
domain contains two horizontal wavelengths of the mode. If N = N0 is constant in a domain with
−H � z � 0, the vertical structure of the mode is given in terms of the stream function by �(z) =
sin(m0z) [see (3)], in which m0 = π/H . For simulations of waves in nonuniformly stratified fluid,
the vertical structure, �, is found using a Galerkin method, as described by Sutherland [18]. Thus
the initial stream function corresponding to the parent wave is ψ (x, z, t = 0) = a0�(z) cos(k0x), in
which a0 and k0 specified positive real values and −2π/k0 � x � 2π/k0. In practice, we specify
Aξ , the initial vertical displacement amplitude of the parent wave, and from this compute the stream
function amplitude as a0 = (ω0/k0)Aξ , in which ω0 is given by the dispersion relation (5) if N = N0,
or is found empirically in the process of determining � if N is nonconstant. Polarization relations
are then used to initialize ζ (x, z, 0), b(x, z, 0), and v(x, z, 0).

As well as initializing the structure of the parent mode, small-amplitude spectral noise is superim-
posed. The noise mimics the midrange of the Garrett-Munk spectrum such that the stream function
of the noise varies as ω−1/2m−5/2, in which the frequency, ω, is determined from the dispersion
relation for given wave number (k, m) of the noise. After specifying the spectrum, the noise field
is inverse Fourier transformed to real space and the result multiplied by N2(z). The amplitude of
the noise is set to be three orders of magnitude smaller than the amplitude of the parent wave.
Simulations have also been performed with different noise spectra and amplitudes. In simulations
where TRI was evident, the spectra and amplitudes were found moderately to influence the time
for onset of TRI, but the growth rate and structure of sibling waves were found to be relatively
insensitive to the prescribed noise.

The basic state fields are advanced in time using a leap-frog method for the advective and linear
terms, with an Euler backstep taken every 20 time steps. In all simulations the time step was
0.005/N0. The diffusion operators are forward advanced to ensure numerical stability. The cutoff
wave number used in the application of the selective diffusion operators Dζ , Db, and Dv was set to
be kc = 32k0.

In simulations with uniform stratification, the vertical was discretized by 129 evenly spaced
points and the horizontal was decomposed spectrally by horizontal wave numbers between 0
and 128k0. Spatial and temporal resolution tests confirm that these choices provide satisfactory
convergence with respect to the measured exponential growth rate of triadic resonance disturbances
for sufficiently small-amplitude parent modes (Aξ � 0.02H).

A standard diagnostic to assess the manifestation of TRI driven by the low-mode internal tides
in the ocean involves the computation of bispectra, which reveals how pairs of waves interact to
put energy into a third wave. With observational data being limited in spatial extent, it is typical
to construct plots of bispectra from an ensemble of frequency spectra so as to examine favorable
transfers from disturbances with frequencies ω1 and ω2 into a disturbance with frequency ω0 =
ω1 + ω2 as measured at some fixed depth [11,12,25–27].

With numerical models the freedom exists to examine specifically how kinetic energy is put
into or taken out of one wave by the quadratic interaction of two other waves [28,29]. Explicitly,
neglecting fluxes up associated with kinetic energy transport by waves, the change of kinetic energy
per unit mass due to wave-wave interactions is given by

∂

∂t

(
1

2
|u|2

)
= −u · (u · �∇u), (15)

in which u(x, z, t ) = (u, v,w). In uniformly stratified fluid, the right-hand side of this expres-
sion may be rewritten in terms of the spatially Fourier transformed velocities �̂u(k, t ), in which
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k = (k, m). In particular, focusing upon the interaction between the parent mode (having wave
number k0) and a sibling wave (having wave number k+) so as to transfer energy to the other
sibling (with wave number k− = k0 − k+), we have

∂

∂t

(
1

2
|u−|2

)
=

∑
k+

Re{−(û0 · ık+)(û+ · û	
−) − (û+ · ık0)(û0 · û	

−)}, (16)

in which û0 = û(k0, t ), û± = û(k±, t ), Re{} denotes the real part of the enclosed expression, and
the star denotes the complex conjugate. The terms in the sum represent the bispectrum which, for a
given parent mode, is a function of the wave number vector (k+, m+).

In the consideration of TRI of an internal mode in nonuniformly stratified fluid, this approach
is invalid because the parent mode is not sinusoidal in the vertical. Although one could expand
the vertical structure as a Fourier series, this would falsely introduce a corresponding range of
frequencies associated with each vertical Fourier mode. Recognizing that the parent mode is
monochromatic in frequency and horizontal wave number, we take a new approach that acts as
a hybrid between (16) and the observational oceanography approach of constructing bispectra from
frequency spectra measured at a point in space. Because the growth of sibling waves occurs on
a slow timescale compared with the frequency of the parent and sibling waves, we can construct
a frequency spectrum from a time series that is long compared to the parent wave period but
short compared to the e-folding time of the resonantly growing sibling waves. More precisely,
we construct a horizontal time series of the stream function, ψ (x, t ; z0), and horizontal velocity,
u(x, t ; z0), at some depth z0 and then double Fourier transform to construct the spectra ψ̂ (k, ω) and
û(k, ω). To compute the corresponding energy transfers in (k, ω)-space, we write the right-hand side
of (15) explicitly in terms of a double sum over pairs of horizontal wave numbers and frequencies of
expressions involving ψ̂ and û alone. In doing so, we recognize that v̂ = −ı( f /ω)û and ŵ = ıkψ̂ .
Also, because the vertical structure of the stream function, �(z), satisfies (3), the terms involving
∂zu = −∂zzψ in Eq. (15) can be recast in Fourier space in terms of ψ̂ with N2 being evaluated at
z = z0. The corresponding bispectrum is

B(k+, ω+) = Re
{−ıû	

−[(β+k+ + β0k0)û0û+ + k0k+(β+α+k+ + β0α0k0)ψ̂0ψ̂+]

− ı
(
k2
+ − k2

0

)
ψ̂	

−[k+û0ψ̂+ − k0û+ψ̂0]
}
. (17)

Here we have defined αi ≡ (N2(z0) − ω2
i )/(ω2

i − f 2) and βi ≡ 1 − f 2/(ω−ωi ) where the subscript i
represents 0 or +. The subscripts 0, +, and − on ψ̂ and û respectively indicate whether the argument
of the spectral field is (k0, ω0), (k+, ω+) or (k−, ω−) = (k0, ω0) − (k+, ω+).

IV. SIMULATIONS RESULTS

Here we present the results of numerical simulations showing TRI developing from horizontally
periodic mode-1 internal waves in uniform stratification. The simulations examined the occurrence
of TRI of a horizontally periodic, vertical mode-1 parent wave as it depended upon its amplitude and
horizontal wave number as well as the influence of background rotation. Generally it was found that
significant time passed before coherent resonant sibling waves emerged and grew exponentially.

The results from a simulation with k0H = 1 and Aξ = 0.02H are shown in Figs. 3–5. Figure 3
shows snapshots of the total and mode-filtered horizontal velocity field at three times. The latter is
found by Fourier-filtering disturbances with horizontal wave number k = k0. At time t = 3000/N0,
the total horizontal velocity field appears the same as it does initially, although the filtered horizontal
velocity at this time reveals a weak disturbance dominated by structures with horizontal wave
number 2k0. The clear appearance in the filtered horizontal velocity of coherent internal wave beams
is evident at time t = 5000/N0, their amplitude being large enough to distort significantly the total
horizontal velocity field. As these sibling waves continue to grow in amplitude, other high wave
number disturbances grow, resulting in a less coherent perturbation.
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ũ

−6 −3 0 3 6

x/H

−1

0

z/
H

−0.02 0 0.02

u
(c) N0t = 7000

−6 −3 0 3 6

x/H

−0.005 0 0.005
ũ

FIG. 3. Total horizontal velocity (left) and mode-filtered horizontal velocity (right) from a simulation
with two horizontal wavelengths of a mode-1 internal mode with k0H = 1 and Aξ = 0.02H shown at
nondimensional times (a) N0t = 3000, (b) 5000, and (c) 7000. The values of velocity are represented by colors
as indicated to the upper right in each plot. In all cases, the fields are shown in a frame of reference moving
with the phase speed of the wave so that the phase is fixed.

It is clear that the sibling waves in Fig. 3(b) (right) are not uniform over the domain but
are manifest as localized beams coinciding with nodes of the horizontal velocity field at the top
and bottom of the domain. The origin of the beam development is revealed in Fig. 4, which
shows vertical and horizontal time series of the mode-filtered horizontal velocity field between
nondimensional times N0t = 4000 and 5000. These time series are extracted from mode-filtered
snapshots in a frame of reference moving with the horizontal phase speed of the parent wave. In
order to focus on the structure of the exponentially growing waves, the color field shows values of

{ũ} ≡ sgn(ũ) ln(|ũ|). (18)

From the vertical time series of {ũ}(x = 0, z, t ) it is clear that the waves first develop in the middle
of the domain and then extend over time to the upper and lower boundaries as the beam grows in
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FIG. 4. (a) Vertical time series at x = 0 and (b) horizontal time series at half-depth of {ũ} ≡ sgn(ũ) ln(|ũ|)
shown over nondimensional times 4000 � N0t � 5000. In both cases the mode-filtered horizontal velocity ũ,
is fixed in a frame of reference moving with the phase speed of the wave.

amplitude. The spatial development is reminiscent of the laboratory experiments of Benielli and
Sommeria [14,15] and Joubaud et al. [16] in which subharmonic instabilities developing from a
parent mode were found to grow first near the middle of their tanks. In the simulations presented
here, the domain is horizontally periodic. Nonetheless, the horizontal time series constructed from
the filtered horizontal velocity at middepth in the domain, {ũ}(x, z = H/2, t ), shows the waves first
develop about the region where the horizontal velocity is rightward above and leftward below.
The dominant vertical wave number, m	, of the growing resonant disturbances is measured by
determining the peak of the spectrum found from the Fourier cosine transform of ũ(x = 0, z, t ) at
N0t = 5000. Likewise the dominant horizontal wave number, k	, is found from the Fourier transform
of ũ(x, z = H/2, t ) at N0t = 5000. Explicitly, in terms of the respective wave numbers of the parent
mode, we find m	 = 12.9m0 and k	 = 7.00k0. Their ratio, 1.84, is indicated by the blue circle to the
right of Fig. 2(a). Consistent with theory, the ratio is close to 2.

A plot of the total disturbance energy, KE, in Fig. 5 shows that it fluctuates about values
close to e−12 � 6 × 10−6 of the kinetic energy, KE0, of the parent mode until shortly be-
fore nondimensional time N0t = 4000 when the disturbance energy rises exponentially. After

σk = 0.0050

0 2000 4000 6000 8000
N0 t

−12
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E
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E
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)

FIG. 5. Log plot of the normalized disturbance kinetic energy plotted versus time. The best-fit line to the
kinetic energy curve with slope σk (dashed black line) is determined over times 4500 � N0t � 5500.
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0 2 4 6 8 10
k/k0

−3

−2

−1

0

1

2

3

ω
/ω

0

(b) log10(B+(k, ω)), 3500 ≤ Nt ≤ 3914

FIG. 6. (a) Log of the magnitude of the spectrum of horizontal velocity determined from horizontal time
series at z0 = −0.25H spanning 20 periods of the parent mode starting at Nt = 3500, when the development of
superharmonics becomes evident. (b) Log of the corresponding bispectrum for values of B > 0. In both plots,
negative frequencies correspond to leftward-propagating waves.

N0t � 5500, the disturbance energy saturates. Clearly the time over which exponential growth
occurs is associated with the formation of the coherent beams evident in Fig. 3(b) (right). The kinetic
energy growth rate, σk , is found from the slope of the best-fit line through the plot of log(KE/KE0)
over times when this value lies between −8 and −4. For the example shown in Fig. 5, the relative
kinetic energy growth rate is σk/N0 � 0.005014 (±1.3 × 10−6).

For comparison with theory, the kinetic energy growth rate is recast in terms of the growth rate
of the amplitude of the resonant disturbances as given by (13). The result is then normalized for
comparison with the predicted nondimensional growth rate, σ0, in Eq. (13). Explicitly, we compute
the numerically determined nondimensional growth rate as

σ 	
0 = σk

2ω0m0Aξ

. (19)

For the case shown in Fig. 5, we find σ 	
0 � 0.134, which is in very good agreement with the

predicted value of σ0, as indicated in Fig. 2(a).
As another diagnostic check, we compute the spectrum of the horizontal velocity û(k, ω), from

the horizontal time series constructed at z = −0.375H for times between N0t = 3500 and 3914, a
duration of 20 periods of the parent wave. As shown in Fig. 6(a), there is a clear peak at the frequency
and horizontal wave number of the parent mode as well as a sequence of peaks at (k/k0, ω/ω0) =
(4,−1.5), (6,−0.5), (7, 0.5), (7, 1.5). The bispectrum computed from this spectrum [Fig. 6(b)] is
strongly peaked at k = 7(±0.5)k0 and ω = 0.5(±0.25)ω0, consistent with the spectral analysis
discussed above. While the subharmonic frequency is consistent with theory, it is unclear why the
growth of the sibling waves (at k+ = 7k0 and k− = 6k0) is so narrow banded given that the growth
rate of subharmonic sibling waves is predicted to be nearly constant for large k+.

The detailed analysis above for the case of a parent mode with k0H = 1, Aξ = 0.02H , and f = 0
clearly shows the emergence of quasimonochromatic internal wave beams through TRI, having
frequency and growth rate consistent with theoretical predictions. The ratio of the relative vertical
to horizontal wave number, being close to 2, is also consistent with theory.

In numerous simulations in which the parent mode wave number varied between k0H = 0.1
and 3 and its amplitude varied between Aξ = 0.01 and 0.04, only subharmonic sibling waves were
observed to grow, with their structure and growth rate being well represented by theory. For example,
in Fig. 2 some of the simulation results are indicated by the open circles for comparison with theory.
Overall, the results suggest that the theory for TRI of plane waves can reasonably be adapted to the
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FIG. 7. Snapshots of the total (left) and mode-filtered (right) horizontal velocity shown at times (a) N0t =
100 and (b) N0t = 3500 from a simulation initialized with a mode having k0H = 1 and Aξ = 0.02H in
symmetric top-hat stratification with N2 � N2

0 in the middle half of the domain and N2 = 0 otherwise.

study of internal modes with the proviso that the confined vertical geometry results in the growth
of subharmonics alone with the faster growing superharmonics being excluded. Reasons for this
exclusion are discussed in Sec. VI.

V. NONUNIFORM STRATIFICATION

Simulations were also performed examining the evolution of internal modes in nonuniform
stratification. Generally such modes self-interact so as directly to force superharmonic disturbances
with twice the horizontal wave number and frequency (but, hence, the same phase speed) of the
parent mode [17,18]. The forcing itself depends upon the gradient of the background squared
buoyancy frequency, and so does not exist in uniformly stratified fluid. Although superharmonic
disturbances immediately become evident, the question is whether sibling waves generated through
TRI can eventually emerge.

As a simple extension of the above study of TRI occurring for modes in uniform stratification,
we have performed simulations in which the stratification had an approximate symmetric top-hat
structure (N = N0 for −3H/4 � z � −H/4 and zero otherwise) in which the transition from the
unstratified to stratified layer was modelled by hyperbolic tangent functions that transition over a
distance 0.02H , as described in van den Bremer et al. [24]. To capture the transition, the simulations
were performed with a resolution consisting of 1025 evenly spaced points in the vertical.

Figure 7 shows that the occurrence of TRI in top-hat stratification is indeed possible. In this
case, the parent mode had horizontal wave number k0 H = 1 and amplitude Aξ = 0.02H . Its
corresponding frequency was ω0 = 0.277. At early times [Fig. 7(a)] the forcing, being largest
where N2 transitions from the stratified to unstratified regions, results in superharmonic disturbances
situated around z = −0.25H and −0.75H . Because the superharmonic forcing frequency, 2ω0, is

034801-14



TRIAD RESONANT INSTABILITY OF HORIZONTALLY …

KE(ω < ω0)

KE(ω > ω0)
KE total

σk = 0.00450

0 1000 2000 3000 4000
N0 t

−8

−4

0

ln
(K

E
/K

E
0
)

FIG. 8. Mode-filtered energy versus time for the simulation shown in Fig. 7, with the total energy (black)
being the sum of energy associated with disturbances having frequency less than ω0 (red) and greater than
ω0 (blue). The best-fit line through the red curve for 3000 � N0t � 3500 shows exponential growth of
subharmonics with rate σk indicated.

less than N0, the disturbances at the flanks of the stratified region can excite superharmonic waves
that propagate vertically into the stratified region. But such disturbances are not a manifestation of
TRI.

The development of TRI is apparent at time N0t = 3500, as shown in Fig. 7(b). As in the
simulation of a parent mode in uniform stratification, wave beams emerge with (k	/k0, m	/m0) �
(9, 17). The internal wave beams constructively reflect from the bottom and top extent of the
stratified region. The disturbance kinetic energy is shown in Fig. 8. After Fourier transforming
the velocity field over the time of the simulation, the disturbance kinetic energy is subdivided into
the fraction associated with disturbances having frequency larger than that of the parent mode (blue
curve) and that having frequency subharmonic to the parent mode (red curve). Although initially
most of the disturbance energy is associated with superharmonics, the rapid exponential growth of
subharmonics becomes apparent after time N0t � 3000. The growth rate associated with this energy
is σk = 0.00450 (±0.00002)N0, about 10% lower than the growth rate measured for subharmonic
disturbances arising in corresponding simulations with uniformly stratified fluid.

The spectrum of û(k, ω) was computed for 20 parent-mode periods after N0t = 3200, as shown
in Fig. 9(a). This reveals staggered peaks at half-integer frequencies dominantly for k/k0 in a range
between 6 and 9. However, the corresponding bispectrum in Fig. 9(b) shows multiple peaks, with
the largest occurring for frequency ω	 � 1.5ω0. Clearly the complicated wave field from which
TRI appears to develop makes a bispectral analysis less conclusive about the origin of the waves
as having originated from a simple triad between two subharmonic sibling waves and the parent
mode. However, the structure of the wave beams that emerge after N0t = 3200 and their growth rate
(which depends on the amplitude of the wave that generates them) suggests they do indeed arise
primarily through resonant interaction with the parent mode and not through interaction with the
superharmonics.

TRI eventually emerged because the depth of the stratified region was set to allow the beams to
interact constructively upon reflection from the flanks of the stratified layer. In other simulations
(not shown) in which the stratified layer was more or less than half-depth, no clear emergence
of triadic resonance instability was apparent through the myriad disturbances arising from the
persistent superharmonic forcing. This suggests that the eventual emergence of beams produced
by TRI shown in Fig. 7, relied on the depth of the stratified region being half the total ambient fluid
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FIG. 9. As in Fig. 6, but for the simulation with top-hat stratification shown in Fig. 7, showing (a) the
spectrum of horizontal velocity and (b) the corresponding bispectrum computed for 20 periods of the parent
mode starting at Nt = 3200. The spectrum, û, is determined from a horizontal time series at z0 = −0.325H .

depth so the beams interfere constructively as they successively reflect from the top and bottom of
the stratification.

Also crucial for the emergence of TRI in the top-hat simulation shown in Fig. 7 was the
symmetry of the stratification. If the extent of the stratified region was shifted from being centered
around middepth, then TRI was not observed even after very long times. Instead the mode-filtered
energy was dominated by low-mode superharmonics whose energy oscillates in time, as shown in
Fig. 10(a).

There was also no evidence for TRI in simulations with stratification more representative of
the ocean according to N2 = N2

0 exp(z/D) or, for the purposes of comparison with Hazewinkel
and Winters [10], N (z) = N0/(1 − z/z0) for −H � z � 0. These simulations were chosen to have
parameters representative of internal tides in the ocean. Corresponding to internal tides in a H =
4 km deep ocean with a horizontal wavelength of 100 km and a maximum surface horizontal velocity
of 10 cm/s, we set Aξ = 0.002H and k0H = 0.2. In the simulation with exponential stratification
the thermocline was taken to have depth D = 0.2H . The stratification and Coriolis frequency were
respectively taken to have characteristic values of N0 = 10−2 s−1 and f = 0.01N0. Through the
numerical solution of (3), the frequency of the mode-1 parent wave was found to be 0.027N0. By
extension of the theory for internal modes in uniform stratification through (13), the growth rate
of subharmonics is anticipated to be on the order σ � 0.1ω0(π/D)Aξ ∼ 10−4N0. Here we have
supposed the vertical wave number, m0, scales with the thermocline depth, D, and we have taken
σ0 ∼ 0.1. With N0 = 10−2 s−1, the predicted growth rate corresponds to an e-folding time scale of
12 days. This prediction is consistent with the simulations of Hazewinkel and Winters [10] (see
their Fig. 2), who observed the growth of subharmonics by nine orders of magnitude over 250 days.
Nonetheless, in our simulations with a vertical resolution of 1025 points and with a Garrett-Munk
spectrum of noise, we did not observe any growth of subharmonics even after running for times
up to 105N0. Neither was evidence for TRI apparent in simulations run with different spectra and
amplitudes of noise. Instead, like the simulations with a shifted top-hat stratification [Fig. 10(a)],
superharmonics were found to grow and decay periodically in time, as shown in Fig. 10(b). It is
now understood that this oscillatory behavior results from near-resonant beating between the parent
mode and superharmonic which itself is close to a pure mode-1 disturbance [23].

While the spectrum and amplitude of the background noise in the simulations of Hazewinkel and
Winters [10] may have played some role in the emergence of subharmonics, it seems likely that
the important difference between their simulations and ours is that they forced the waves from a
left boundary and damped the waves as they approached the right boundary of their domain. Thus
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FIG. 10. Results from simulations with (a) shifted top-hat stratification and (b) exponential stratification
showing, as in right plots of Fig. 7, mode-filtered snapshots at N0t = 30 000 (left) and, as in Fig. 8, the evolution
of the mode-filtered energy partitioned into low and high frequency disturbances (right) The structure of the
stratification is superimposed in white on left plots. In both simulations A0 = 0.002H , k = 0.2H .

their simulations did not show any significant development of superharmonics, as these propagate
in the direction of the parent mode and would have been damped at the right boundary. By contrast,
the subharmonics have both rightward and leftward group velocity and so could develop to finite
amplitude within their computational domain.

VI. DISCUSSION AND CONCLUSIONS

We have constructed predictions for the structure and growth rate of pairs of sibling waves that
develop from monochromatic internal plane waves in uniform stratification. While mathematically
straightforward to apply these results to a horizontally periodic mode-1 internal wave, the vertical
confinement of the mode introduces extra restrictions on what sibling waves might develop through
triadic resonant instability. Clearly the vertical wave number of both sibling waves must be greater
than that of the parent mode so that at least a half vertical wavelength can fit in the domain. So that
the waves interfere constructively upon reflection from the upper and lower boundaries, the vertical
wave number of the sibling waves in fact should be at least twice that of the parent mode.

The constructive interference of sibling waves reflecting from the upper and lower boundaries
apparently places an additional restriction on what waves grow through TRI. Although, for a
horizontally long mode, the fastest growth is predicted for sibling waves that have frequency much
larger than the parent, simulations show that the dominant sibling waves that emerge have close to
half the frequency of the parent and grow at the second fastest rate predicted by theory. These sibling
waves are manifest as beams that reflect from the upper and lower boundaries. That the ratio of their
vertical to horizontal wave number, m±/k±, is close to twice the corresponding ratio for the parent
mode means that for a beam that originates at middepth and then reflects from the top or bottom
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boundary, it returns at middepth at the same point in phase of the parent mode. Having observed
in simulations that the amplitude of the sibling waves is first largest at middepth, reaffirms the
importance of the vertically confined geometry in selecting the subharmonic over the theoretically
faster growing superharmonic sibling waves. Including background rotation, the sibling waves that
emerge have smaller horizontal and vertical wave number.

The predictions serve in part to validate numerical simulations of the evolution of a mode-1
internal mode in which sibling waves are indeed observed eventually to grow exponentially at the
growth rate and with the frequency and structure predicted for the subharmonic branch of TRI.
This resonant interaction is also confirmed by a newly formulated bispectral analysis of horizontal
time series of the flow. However, we find that the case of uniform stratification is special. Only
in simulations with symmetric top-hat stratification in which the depth of the stratified region
was half the total depth did we observe the eventual growth of subharmonics through TRI. Like
simulations with uniform stratification, the geometry of this stratification permitted constructive
interference between successive upward and downward propagating beams of sibling waves that
travel horizontally by one parent-mode wavelength after two reflections. In all other cases examined,
the generation of superharmonics through the self-interaction of the parent mode in nonuniform
stratification dominated the evolution of the system over times much longer than the predicted
e-folding time for growth of sibling waves.

On the one hand, these results suggest that TRI of the low-mode internal tides in the ocean
may not be a significant pathway for energy to transfer from large to small scale. However, some
qualification is required in light of the results of Hazewinkel and Winters [10], who did observe
the emergence of subharmonic beams in their simulations of two parent modes coevolving in
nonuniformly stratified fluid representative of the ocean. Furthermore, observations of the internal
tide north of Hawaii near 29◦N were suggestive of the occurrence of subharmonic instability putting
(albeit modest) energy into near-inertial motions. This suggests that if TRI is important for the
partial breakdown of oceanic internal tides, then other factors such as background noise and the
modulation of the tides likely play a role in the emergence of sibling waves.
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APPENDIX: SOLUTION METHOD FOR RESONANT TRIADS IN UNIFORM STRATIFICATION

Consider a parent wave with known vertical wave number m0 (= π/H) for a mode-1 wave),
horizontal wave number k0, and corresponding frequency ω0, given by (5). The frequency of the two
sibling waves are related to the parent wave by (8c). Rewriting this expression as (ω0 ± ω+)2 = ω2

−,
using the dispersion relations (5) and (7), and isolating the resulting term involving a square root on
the left-hand side gives

2ω0

√
N2

0 k2+ + f 2m2+
k2+ + m2+

= ω2
0 + N2

0 k2
+ + f 2m2

+
k2+ + m2+

− N2
0 k2

− + f 2m2
−

k2− + m2−
.

Squaring both sides, multiplying through by (k2
+ + m2

+)2(k2
− + m2

−)2, and using (8a) and (8b) to
replace (k−, m−) with (k0 ± k+, m0 ± m+), gives a degree-8 polynomial for m+ as it depends upon
k+, with the coefficients otherwise depending upon the known values of N0, f , m0, k0, and ω0.

In practice, for specified k+ the real roots of the polynomial are found using Matlab’s “solve”
function. For each resulting value of m+, the values of (k−, m−) are found using (8a) and (8b), and
ω± is found using (7). The result is checked by confirming that the frequency resonance condition
(8c) holds. This procedure is then repeated for different values of k+. In practice, by symmetry it
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is sufficient to examine a range of k+ from k0/2 and above. Values of m+ for k+ < k0/2 are found
from the values of m− for k+ > k0/2 using m+(k0 − k+) = m0 − m−(k+).
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