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It is known that the turbulence in a fast-rotating volume becomes effectively two-
dimensional. The latter is characterized by an inverse energy cascade leading to the
formation of coherent flow in finite systems. In a rotating three-dimensional vessel this
flow has the form of columnar vortices. Here we develop an analytical theory describing
interaction of the vortex with turbulent pulsations. This interaction results in energy
transfer from small-scale eddies to the large-scale vortex. We derive the equation for the
radial velocity profile of the vortex and solve it for the simplest boundary conditions. We
indicate the domain of physical parameters where our theory works.
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I. INTRODUCTION

Fluid flow at large Reynolds numbers is nonstationary and should be described within a statistical
approach. The first successful theory was built by Kolmogorov for statistically isotropic three-
dimensional (3D) developed turbulent flow. The theory established scaling laws based on direct
energy cascade within inertial interval of scales; see Ref. [1]. Direct energy cascade implies that
large eddies split into smaller eddies and so on.

Two-dimensional (2D) turbulence, in contrast, is characterized by inverse energy cascade, when
small eddies join together to form larger eddies [2]. Bounded 2D flow is of particular physical
interest. If the bottom friction is small enough, the size of the largest eddies is limited by the size
L of the cell, and large-scale coherent vortices are formed [3,4]. The kinetic energy dissipation
due to the bottom friction inside a coherent vortex is compensated by direct energy transfer from
small-scale eddies to the vortex in this case, in contrast to the local in scales energy cascade, which
is in unbounded systems. The relatively small amplitude of fluctuations compared with the coherent
component of the flow allows one to build an analytical theory of the vortices structure [5,6]. The
theoretical predictions were recently experimentally verified for the first time [7].

The 2D flow is usually a simplified model of 3D flow that has a suppressed third velocity
component. The suppression can be forced for geometric reasons when the third direction is
restricted by a scale that is smaller than the scale of the lateral flow (see, e.g., numerical simulations
[8] and [9,10], where coherent vortices were observed). For instance, this concerns experiments
with excitation of turbulence in thin fluid layers [7,11]. The theory developed for the 2D case can be
applied almost directly. The suppression of the third velocity component can be caused by rotation
and thus is not associated with geometrical factors [12]. The Taylor-Proudman theorem states that
the velocity of the fluid becomes constant along the rotation axis at low Rossby numbers due to
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FIG. 1. (a) Vortex scheme and reference systems. (b) The radial profile azimuthal velocity U for � = −�0.
The dashed line corresponds to the region of the vortex core, ρ � ru, where the curve is a hypothetical. It was
taken as Ru/ru ≈ 5.

the Coriolis forces. As a result, the lateral flow and the flow along the z-axis (the axis of rotation)
become uncoupled. In particular, the case is believed to be realized inside the Earth’s fluid outer
core (see, e.g., [13]).

In the paper, we investigate a coherent columnar vortex at low Rossby and high Reynolds
numbers. Such vortices were observed in recent direct numerical simulation [14,15] at strong
enough forcing. It was checked experimentally that the evolution of the inertial waves is uncoupled
from the large-scale two-dimensionalized flow [16] created by the inverse energy cascade [17] and
having a form of large-scale columnar vortices [18]. Before that, inverse energy cascade along with
direct cascade in the sector of inertial waves was observed in numerical simulation [19] at moderate
low Rossby number. In our investigation, the small-scale inertial waves are assumed to be excited
by a random small-scale force with homogeneous statistics in time and space. The inertial waves
are affected by local shear flow produced by the differential rotation in the vortex before they die
out due to viscosity. We show that the shear flow influence leads to a strong anisotropy of the
wave statistics and in particular to the wave energy being transferred to the vortex. We establish the
equation governing the radial mean velocity profile in the vortex and find the profile.

II. THE MODEL

We assume that the fluid is rotating as a whole with angular velocity �. In the rotating frame, the
Navier-Stokes equation acquires an additional term describing Coriolis forces,

∂tv + (v,∇)v + 2[� × v] = −∇p + ν�v + f . (1)

The fluid is incompressible, so div v = 0. In (1), p is the effective pressure divided by the fluid
mass density, which differs from the physical pressure by addition of the potential produced by
the centrifugal forces. We divide the full velocity field v into large-scale and slowly varying in
time velocity U describing the coherent vortex and the small-scale rapidly varying in time turbulent
pulsations u, v = U + u. The coherent vortex is assumed to be homogeneous along the rotation axis
and axially symmetric; its axis is parallel to the rotation direction. We refer to the vortex as columnar.
We introduce a cylindrical reference frame {ρ, ϕ, z} with the z-axis coinciding with the vortex axis;
see Fig. 1(a). Thus the vortex has only an azimuthal velocity component, which we denote by U
including the sign. By definition, the temporal mean value of the small-scale component u is zero.
It is excited by a random force f with zero mean value. The force produces the energy flux per unit
mass ε, has a correlation length in space equal to 1/k f , and is assumed to be shortly correlated in
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time. We model the force to be statistically homogeneous in time and space:

〈
f i
k(t ) f j

q (t1)
〉 = (2π )3

(
δi j − kik j

k2

)
ε δ(k + q)δ(t − t1)χ (k),

∫
χ (k)d3k

(2π )3
= 1, (2)

where, e.g., k is the wave vector in Fourier space, so f i
k = ∫

d3r exp(−ik · r) f i(r). The characteris-
tic radius of the vortex Ru is assumed to be large compared to the force scale, k f Ru � 1. We choose
the Gaussian spatial profile for the correlation function,

χ (k) = 16π3/2

3k5
f

k2 exp

(
−k2

k2
f

)
, (3)

to elucidate analytical calculations up to final estimates.
The Navier-Stokes equation averaged over fast small-scale velocity pulsations leads to the

equation for the mean vortex velocity,

∂tU = −
(

∂ρ + 2

ρ

)
�ϕρ, �ϕρ = 〈uρuϕ〉 − ν�. (4)

Here, uρ and uϕ are the projections of the velocity field u on local orthonormal basis vectors eρ and
eϕ , respectively [see Fig. 1(a)], � = ρ∂ρ (U/ρ) is the local large-scale shear rate, and �ϕρ is the
mean value of the ϕ-component of momentum flux per unit mass in the radial direction. In other
words, �ϕρ (ρ0) is the tangent force applied at the surface ρ = ρ0. In particular, the average 〈uρuϕ〉 is
the Reynolds stress contribution into the flux. Equation (4) differs from that for the two-dimensional
vortex by the absence of bottom friction [5]. In what follows, we consider the stationary limit when
∂tU = 0. Then, the momentum flux �ϕρ should be zero because −ρ2

0�ϕρ (ρ0) is the torque (per
unit length in the z-direction), which acts on the fluid inside the circle, ρ < ρ0, and the stationarity
implies that it is equal to zero. Thus, the equation governing the vortex velocity profile has the form

�ϕρ = 〈uρuϕ〉 − ν� = 0. (5)

Now let us consider the evolution of the pulsating component of the flow u. Assuming that
both the Coriolis force and the interaction of the pulsations with the coherent flow U exceed self-
nonlinearity, we linearize the Navier-Stokes equation with respect to u:

∂t u + (U∇)u + (u∇)U + 2[� × u] = −∇p + ν�u + f . (6)

Here p is a fluctuating part of the pressure. Consider some Lagrangian trajectory in the mean flow,
which is ϕ(t ) = tU (ρ0) + ϕ0, z = z0. Because the velocity pulsations are assumed to be small-
scale, one can consider the evolution of the pulsations locally in the vicinity of the Lagrangian
trajectory, when |ρ − ρ0| � ρ0. To exploit the approximation, we go into the new reference frame
that moves with the Lagrangian trajectory and rotates with angular velocity U (ρ0)/ρ0 around the
z-axis. We consider the limit of small Rossby number RoR � 1 for the large-scale vortex, which
implies U/ρ � . In the reference frame, we choose Cartesian coordinates {x, y, z} as depicted
in Fig. 1(a); note that the basis vectors of the Cartesian coordinates form a right triad. The mean
velocity profile in the neighborhood can be approximated as a linear shear flow, U x = −�y. Thus,
Eq. (6) can be rewritten in the form

(∂t − �y∂x )u − uy�ex + 2[ez × u] = −∇p + ν�u + f , (7)

where � = �(ρ0). To be accurate,  should be substituted by  + U (ρ0)/ρ0 in Eq. (7), but
the assumed small Rossby number causes the correction to be negligible. The smallness of the
correction means that there is no difference between cyclones and anticyclones in this limit. The
equation is convenient to solve in Fourier space,

(∂t + �kx∂ky )uk = −2[ez × uk] + �uy
kex − ikpk − νk2uk + f k. (8)

A low Rossby number RoR for the large-scale flow assumes that � � .

034604-3



KOLOKOLOV, OGORODNIKOV, AND VERGELES

III. DYNAMICS OF SMALL-SCALE EDDIES

First consider a homogeneous version of Eq. (8), that is, without force. The main term is the
Coriolis force, which leads to inertial wave oscillations [20]. The oscillations are described in terms
of two circular polarizations,

uk =
∑
s=±1

aksh
s
k, hs

k = [k × [k × ez]] − isk[k × ez]√
2 kk⊥

, (9)

where k⊥ =
√

k2
x + k2

y . The basis vectors hs
k satisfy the normalization condition and the symmetry

relations: (
h−s

k , hs
k

) = 1,
(
hs

k, hs
k

) = 0, h∗,s
k = h−s

k = hs
−k, (10)

where an asterisk denotes complex conjugation. If only the Coriolis force is acting, the dynamics of
wave amplitude aks is governed by the equations

∂t aks = isωkaks, ωk = 2(kz/k). (11)

The main influence of the shear flow stems from the left-hand side of (8) and results in moving the
wave amplitudes along characteristics in Fourier space:

k′
y(t ) = ky + �tkx, k′(t ) = {kx, k′

y(t ), kz}. (12)

The full equation (8) rewritten based on the characteristics in terms of the wave amplitudes has the
form

∂t ak′s =
∑

σ=±1

Hsσ (k′) ak′σ − νk′2ak′s + f s
k′ , (13)

where the matrix elements of Ĥ are

Hss
k = is(ωk + δωk ) + �k, �k = −�

kxky

2k2
, δωk = �

kz
(
3k2

x + k2
y

)
2kk2

⊥
, (14)

H−s,s
k = �hs,x

k hs,y
k = �

kxky
(
k2 + k2

z

) + iskkz
(
k2

x − k2
y

)
2k2

⊥k2
. (15)

The force statistics (2) leads to the following correlation function of the Fourier components f s
k (t ):〈

f s
k (t1) f σ

q (t2)
〉 = ε (2π )3δ(k + q) δ(t1 − t2)χ (k) δsσ . (16)

The formal solution of (13) can be written as

ak′(t )s(t ) =
∫ t

−∞
dτ exp

(
−ν

∫ t

τ

dt1k′2(t1)

) ∑
σ

Qsσ (t, τ ) f σ
k′(τ )(τ ), (17)

where the evolution matrix Q̂ satisfies the equation

∂t Q̂(t, τ ) = Ĥk′(t )Q̂(t, τ ), Qsσ (τ, τ ) = δsσ , (18)

and it can be formally written as an ordered exponential:

Q̂(t, τ ) = Tt1 exp

(∫ t

τ

dt1 Ĥk′(t1 )

)
, (19)

where Tt1 denotes antichronological ordering.
Evolution matrix (19) can be expressed in terms of some special functions; see [21]. However,

in the limit of small Rossby number, RoR ∼ �/ � 1 it can be simplified drastically. Indeed, in
this case almost all small-scale eddies evolve as superpositions of fast oscillating inertia waves with
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kz/k � �/. The corresponding frequencies ωk are much greater than all other contributions in
(14). Keeping the zero order in the small parameter �k/kz, only diagonal matrix elements should
be counted in the matrix Ĥk. Then (17) becomes

ak′(t )s(t ) =
∫ t

−∞
dτ

√
k′(τ )

k(t )
exp

(
isGk(t, τ ) − ν

∫ t

τ

dt1k′2(t1)

)
f s
k′(τ )(τ ), (20)

where the phase Gk(t, τ ) = ∫ t
τ

dt1(ωk′(t1 ) + δωk′(t1 ) ). To find expectation values like 〈uρuϕ〉, the
following elementary averages are needed:

〈a∗
ksaqσ 〉 = (2π )3δ(k − q)Aksσ . (21)

Using the correlation function of the force (16) and the expression (20) for the wave amplitudes, it
can be found that

Akss = ε

∫ 0

−∞
dτ χ (k′(τ ))

k′(τ )

k
e−2

∫ 0
τ

dt1 νk′2(t1 ), Aks,−s = 0. (22)

The diagonal average Akss describes the spectrum of the inertial wave ensemble; the off-diagonal
average, which characterizes the correlation between waves with opposite polarization, is zero.

The influence produced by off-diagonal matrix elements Hs,−s
k on the right-hand side of (13)

can be considered as nonresonant perturbation of amplitude ∼� in terms of quantum mechanics.
Such perturbation produces corrections that are relatively small as �/ωk. We explicitly show this in
Appendix A.

IV. THE STATISTICS OF THE VELOCITY IN SMALL EDDIES

Here we calculate the correlator 〈uρuϕ〉 = −〈uxuy〉, which enters into Eq. (4). Expressions (9)
for the components of the basis vectors of the circular polarizations yield

−ux
kuy

−k =
∑
s=±1

|aks|2 kxky + iskkz

2k2
+ 2

�
Re(a∗

k,+ak,−H+−
k ). (23)

When calculating (23), it should be taken into account that the inertial wave amplitude distribution
(21) is symmetric under vertical reflection kz → −kz, and the cross-correlations between opposite
polarizations are negligible [see Eq. (22)]. As a result,

〈uρuϕ〉 = ε

∫
d3k

(2π )3

∫ 0

−∞
dτ χ (k′(τ ))

kxky k′(τ )

k3
exp

(
−2ν

∫ 0

τ

dt ′k′2(t ′)
)

. (24)

The integrand in (24) is very similar to that in the two-dimensional case [5]. It is not an
incident, since we have accounted for the same movement along characteristics whereas nonlinear
interactions of three-dimensional pulsations are suppressed due to inertial wave oscillations. The
difference is in the power of the factor k′(τ )/k, which does not effect the calculation scheme. To
evaluate the integral (24), first we choose the dimensionless time variable, τ → −τ/�; then we
introduce the parameter γ = 2νk2

f /� � 1, which characterizes the relative intensity of the viscous
dissipation. After that, we proceed to the “reversed” time via the transformation ky → ky + τkx. As
a result,

〈uρuϕ〉 = ε

�

∫
k2 sin θ dk dθ dφ

(2π )3
χ (k)

∫ ∞

0

dτ

2λ3/2

dλ

dτ
exp(−γ k2�), (25)

where λ(τ ) = 1 + τ sin2 θ sin(2φ) + (τ sin θ cos φ)2, �(τ ) = ∫ τ

0 λ(τ ′)dτ ′, and θ, φ are spherical
angles of the wave vector k. Now we integrate by parts over τ , keeping in mind that λ(0) = 1 and
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the normalization condition for χ (k) (2):

〈uρuϕ〉 = ε

�

(
1 − γ

5

8π

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∫ ∞

0

√
λ dτ

(1 + γ�)7/2

)
≈ ε

�
. (26)

For the latter integral, we have used a particular form of the spatial profile for the force correlation
function (3) and integrated over k. The integral only produces a correction that is relatively as small
as γ 1/3; see (B7) in Appendix B. Note that the main part of the integral (25) is accumulated at a
timescale t ∼ 1/� (that is, τ ∼ 1 in terms of the dimensionless time); see Eqs. (B3) and (B4) in
Appendix B. This is a significant difference from the two-dimensional case, where the Reynolds
stress is determined by the timescale t ∼ t∗ = (νk2

f �
2)−1/3 [5] (that is, τ ∼ τ∗ = γ −1/3 in terms of

the dimensionless time).
The unaccounted for nonlinear interaction between the small-scale eddies is irrelevant for

Reynolds stress (25) because the stress is formed on the time interval of the order of ∼1/�. Indeed,
the nonlinear interaction of inertial waves is determined by the omitted term (u∇)u in (6), the
relative amplitude of which can be estimated as k f u. The fast inertial wave oscillations suppress
the nonlinear interaction, so it becomes important at times ttr ∼ /(k f u)2 [22]. The relative impact
of the nonlinear interaction on the mean (26) is 1/�ttr ∼ k2

f u2/�. It can be found in a similar

way to how (26) was obtained that 〈u2〉 ∼ (ε/�) ln2(�/νk2
f ); see (B11) in Appendix B. Below

it is shown that � ∼ √
ε/ν. Hence, the relative impact is small, being of the order of a small

Ekman number Ek = νk2
f / � 1. Thus, the constructed analysis of the Reynolds stress component

is self-consistent.
If the shear rate � becomes small enough, the evaluation (26) is not valid anymore. In-

stead, inertial waves should be considered to form isotropic weak turbulence with the spectrum
E (k) ∼ √

ε/k2 [23,24], which implies the estimation 〈u2〉 ∼ √
ε/k f . The isotropic turbulence

is established if the energy transition rate 1/ttr ∼ k f
√

ε/ [22] is greater than the shear rate �,
� � k f

√
ε/. Then the shear can be considered as weak perturbation, and the cross-correlation is

evaluated as 〈uρuϕ〉 ∼ (�ttr )〈u2〉 ∼ �/k2
f .

It is also worth mentioning that the presented calculations (20)–(26) do not account for the quasi-
two-dimensional sector of the eddy pulsations that are characterized by wave vectors with kz �
(�/)kx. However, the relative fraction in wave-vector space of the pulsations is as small as �/.
This estimate is valid for the relative contribution into the cross-correlation 〈uρuϕ〉 as well.

V. MEAN VELOCITY RADIAL PROFILE

First, let us evaluate power P (linear density along the z-axis), which is transmitted from the
small-scale eddies to the vortex flow. It is

P = −2π

∫ Ru

0
ρU

(
∂ρ + 2

ρ

)
〈uρuϕ〉dρ = 2π

∫ Ru

0
�〈uρuϕ〉 ρ dρ − 2πρU 〈uρuϕ〉

∣∣∣Ru

0
(27)

according to (4), where Ru is some fixed radius. Suppose that the shear rate � is strong enough that
estimate (26) is valid over a major part of the region ρ < Ru. Then the first term on the right-hand
side of (27) approaches πR2

uε from below, i.e., almost all of the power is produced inside the region
by the random force (2). Here we note that the sign of the cross-correlation (26) is opposite to the
sign of the cross-correlation for simple shear flow without rotation [25]. According to (27), this
difference corresponds to the difference in energy transfer: the transfer is directed from large-scale
flow to small-scale fluctuations in the simple shear flow. The other term on the right-hand side of
(27) should be treated as a power flux that comes into the region from outside. So if we now call Ru

the vortex radius, it would be reasonable to suppose that the product U 〈uρuϕ〉 becomes zero at the
vortex boundary ρ = Ru. This can be due to either U or the shear rate � or both of them dropping
to zero at the boundary.
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In the region where (26) is valid, the solution of stationary equation (5) is � = ±�0, where
�0 = √

ε/ν. Our theory is valid if the Rossby number RoR ∼ �0/ characterizing the large-scale
flow is small, that is, RoR ∼ Ro f

√
Re f � 1 [14], where the Rossby and Reynolds numbers for the

pumping are Ro f = (εk2
f )1/3/ and Re f = (ε/k4

f )1/3
/ν by definition. The solution for U should

satisfy the condition U = 0 at the vortex boundary ρ = Ru. Then the energy flux indeed turns to
zero at the boundary:

U (ρ) = ±ρ

∫ ρ

Ru

dρ ′ �0

ρ ′ = ∓ρ�0 ln
Ru

ρ
. (28)

Since the logarithm (28) is always positive at ρ < Ru, the first and second choices of sign in
(28) correspond to anticyclone and cyclone, respectively. There is a symmetry between them in
the considered limit of fast rotation. The relative correction to the vortex profile (28) due to the
finiteness of the Rossby number is of the order of �0/; see (A3). These corrections should reveal
a weak difference between cyclones and anticyclones. The form of the profile of U is universal,
and it is plotted in Fig. 1(b). Note that the integral vorticity that is associated with the vortex is
zero. Indeed, the z-component of vorticity is ωz = (1/ρ)∂ρ (ρU ) = ∓�0[2 ln(Ru/ρ) − 1]. Then the
integral vorticity is

∫ Ru

0 ∂ρ (ρU ) dρ = 0.
The necessary condition for the expression (28) to be valid is ρk f � 1. However, the local shear

approximation used in (8) ceases to work at larger radius ru due to the spreading of inertial waves
excited by the pumping. The value of the core size ru can be found as the product of the characteristic
time ∼1/� with the group velocity of the inertial waves vg ∼ /k f , which leads to the estimation
ru ∼ k−1

f /RoR. At ρ � ru, this smearing of the pumping effect leads to the diminishing of � and
analyticity of the function U (ρ). The precise shape of U (ρ) in this small-ρ region is beyond the
scope of this paper.

VI. CONCLUSION

We have presented an analytical theory that shows how inertial wave turbulence in rotating fluid
transfers its energy to a large-scale columnar vortex. Inertial waves excited by a small-scale force
donate almost all their kinetic energy to the vortex so that the vortices quickly disappear, and there
is no time to waste the energy into heat under the action of the viscosity. In this sense, the energy
transfer efficiency from the small-scale force to the large-scale coherent flow approaches unity.

The presented theory is correct only in the limit of a rapidly rotating fluid. In the limit, there is
symmetry between cyclones and anticyclones. The symmetry was observed in numerical simulation
[14], where the limit was called a “viscous condensate” and it reached RoR ≈ 0.2. The considerable
difference between cyclones and anticyclones arises if the ratio of the local shear parameter to the
rotation frequency �/ becomes of the order of 1. This is the case of, e.g., the experimental work
of Ref. [18], where Ro(l )

√
Re(l ) � 1.6, and the numerical simulation of Ref. [15], where RoR =

u2
0/(ν

√
Reλ) � 10. To describe the regime, one should solve the evolution equation (13), taking

into account the strong coupling between inertia waves with opposite circular polarizations.
Summing up, we conclude that the coherent vortex is the result of (i) the existence of inertia

waves and their uncoupling from quasi-two-dimensional flow under the action of rotation, and (ii)
inverse energy cascade, which is locked at scales of the order of the cell size L [14], as it is in pure
two-dimensional flow [4]. Then the vortex size Ru should be of the order of L. The statement is in
agreement with numerical simulation [14], where it was observed that one cyclone and anticyclone
pair occupies the whole cell. Our theory, which is based on the local shear approximation, is valid
if k f Ru � 1/Ro f

√
Re f . In other words, the scale 1/k f of the random force should be quite small.

For example, the parameters used in [14] are close to this requirement, since Lk f ≈ 25 in the case.
If the requirement is not fulfilled, the eddies cannot be treated as small-scale, and the local shear
approximation (7) is not applicable anymore. The development of a rapid distortion theory on a
background of nonuniform large-scale velocity is needed to describe the statistics of the eddies in
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this case. As an example, this was done in [26] for the particular case of the vortex profile U ∝ 1/ρ

in the limit of weak backreaction of the turbulent pulsations onto the mean flow.
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APPENDIX A: EVALUATION OF THE CORRECTIONS INTO THE CORRELATION FUNCTIONS

Here we show explicitly that off-diagonal matrix elements Hs,−s
k in (14) produce a correction in

(22) that is relatively as small as �k/kz. For this purpose, let us extract in Q̂ (19) the unperturbed
evolution factor corresponding to zero off-diagonal terms:

Qsσ
k (t, τ ) = exp(isGk(t, τ ))Psσ

k (t, τ ). (A1)

The evolution equation on the introduced matrix P̂k(t, τ ) is

∂t P̂k(t, τ ) =
(

0 Bk(t, τ )
B∗

k(t, τ ) 0

)
P̂k(t, τ ), Psσ

k (τ, τ ) = δsσ , (A2)

where Bk(t, τ ) = H+−
k(t ) exp ( − 2iGk(t, τ )). The off-diagonal element of matrix P̂k is approximately

equal to the result of the first iteration of the solution of Eq. (A2),

P+−
k (t, τ ) =

∫ t

τ

Bk(t1, τ )dt1 ≈ iH+−
k(t )

2ωk(t )
− iH+−

k(τ )

2ωk(τ )
∼ �k

kz
, (A3)

due to the integrand containing a fast oscillating factor. To find the correction to the diagonal element
of matrix P̂k, the next iteration should be implemented in the solution of (A2), which is based on
the result of the previous iteration (A3). Thus, the correction is of the order of �k/kz as well.

APPENDIX B: CALCULATIONS OF THE REYNOLDS STRESS

Here we demonstrate the calculations of pair averages 〈uρuϕ〉 and 〈u2〉 in detail. In particular, we
find out the convergence rate of the integrals in inverse time τ ; see (25) and (26). Our analysis will
use the asymptotic behavior of functions λ(τ ) and 1 + γ�(τ ) at large τ � 1 and when | cos φ| � 1.
In the limit, one has for λ(τ )

λ(τ ) = cos2 θ + sin2 θ

(
sin2 φ

τ 2 + 1
+

(√
τ 2 + 1 cos φ + τ sin φ√

τ 2 + 1

)2
)

≈ cos2 θ (1 + ζ 2), (B1)

ζ = tan θ

(√
τ 2 + 1 cos φ + τ sin φ√

τ 2 + 1

)
≈ tan θ (τ cos φ + sin φ).

We need a combination of 1 + γ�; see (26). In the limit τ � 1 and | cos φ| � 1,

1 + γ� = 1 + γ τ + γ τ sin2 θ

(
τ sin(2φ)

2
+ τ 2 cos2 φ

3

)

≈ 1 + γ τ (3 cos2 θ + sin2 θ )

4
+ γ τ cos2 θ

3

(
ζ + tan θ

2

)2

. (B2)

Note that γ� � 1 at all angles if τ � τ∗ with τ∗ = γ −1/3.
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First we start from Reynolds stress 〈uρuϕ〉 (25). To find the characteristic timescale where the
integral is converged, consider its residue that is the part of the integral in (25) over the time interval
T < τ � ∞:

ε

�

∫
d3k

(2π )3
χ (k)

∫ ∞

T
dτ

dλ/dτ

2λ3/2
= ε

�

∫
d3k

(2π )3
χ (k)

(
e−γ k2�(T )

√
λ(T )

− γ k2
∫ ∞

T
dτ

√
λe−γ k2�

)
.

(B3)

The exponent in (B3) is unity for k � k f at times 1 � T � τ∗ in the first summand on the right-hand
side of (B3). Now assume for simplification that χ (k) is isotropic and depends only on the absolute
value of the wave number k. Then the first summand on the right-hand side of (B3) is estimated as

ε

�

∫ π

0

dθ

4πT

∫ 2π

0

T | tan θ | dφ√
1 + ζ 2

∼ ε

�

∫ π

0

dθ

πT

∫ ∼T | tan θ |

0

dζ√
1 + ζ 2

∼ ε

�T

∫ π

0

dθ

π
ln(T | tan θ |) = ε

�

ln T

T
(B4)

with logarithmic accuracy in T . If T > τ∗, then the estimation for the first summand is less
than (B4). The second summand on the right-hand side of (B3) is a viscous correction and it is
parametrically small; see Eq. (B7). Thus, our consideration leads to the conclusion that the overall
integral (25) is accumulated at times τ ∼ 1, that is, t ∼ 1/� for dimensional variables.

Next, let us evaluate the correction to the asymptotic value ε/� of the Reynolds stress. The
deviation is determined by the integral in (26). One has

√
λ ≈ τ sin θ | cos φ| at large times τ � 1

and thus the first part of the integral is

5γ

8π

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∫ τ∗

0

√
λ dτ(

1 + γ�
)7/2 ≈ 5γ

8π

∫ π

0
dθ

∫ 2π

0
dφ

∫ τ∗

0
dτ τ sin2 θ | cos φ| = 5

4
γ 1/3.

(B5)
If τ � τ∗, the denominator in (26) becomes large and it leads to domination of the domain with
| cos φ| � 1. If τ � 1/γ and | cos φ| � 1, one has according to (B1) and (B3)

√
λ sin θ dφ

(1 + γ�)7/2
≈ cos2 θ

√
ζ 2 + 1 dζ

τ (1 + μ2)7/2
≈ 3

γ τ 2

|μ| dμ

(1 + μ2)7/2
, (B6)

where μ = √
γ τ/3 | cos θ | (ζ + 1

2 tan θ ). Thus the next part of the integral is

5γ

8π

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∫ 1/γ

τ∗

√
λ dτ

(1 + γ�)7/2
≈ 3

2

∫ 1/γ

τ∗

dτ

τ 2
= 3

2
γ 1/3, (B7)

which coincides with (B5) by an order of magnitude. If follows from (B5) and (B7) that the integral
in (26) is accumulated at times τ ∼ τ∗. The physical time corresponding to τ∗ is t∗ ∼ (�2νk2

f )−1/3

and it can be found from the estimation ν
∫ t∗

0 dt k′2(t ) ∼ 1.
Finally, let us evaluate the averaged kinetic energy 〈u2〉 per unit mass stored in the small-scale

turbulent pulsations:

〈u2〉 =
∑
s=±1

∫
d3k

(2π )3
|aks|2 = 2ε

∫
d3k

(2π )3

∫ 0

−∞
dτ χ (k′(τ ))

k′(τ )

k
exp

(
−2ν

∫ 0

τ

dt ′k′2(t ′)
)

.

(B8)
Analogously to (25), we get

〈u2〉 = 2ε

�

∫
d3k

(2π )3
χ (k)

∫ ∞

0

dτ√
λ

exp(−γ k2�). (B9)
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To make further estimations, we adopt the Gaussian isotropic form of the correlation function of the
external force (3) and obtain

〈u2〉 = ε

�

∫ π

0

sin θ dθ

2π

∫ 2π

0
dφ

∫ ∞

0

dτ√
λ(1 + γ�)5/2

. (B10)

Now we divide the time integration interval (0,∞) into three intervals (0, τ∗), (τ∗, 1/γ ), and
(1/γ ,∞). The integrals over the first and second intervals give the main contribution to (B10),
and we arrive at the result

〈u2〉 ≈ ε ln2 γ

3�
. (B11)

Note that the logarithmic dependence of (B11) on γ is determined by the viscous timescale
τ ∼ 1/γ , that is, t ∼ 1/νk2

f in terms of dimensional time. Note that the mean velocity squared
(B11) is parametrically less than its value in the two-dimensional case, where 〈u2〉 ∼ ε/νk2

f and it
is accumulated at the same timescale t ∼ 1/νk2

f [6].
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