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We investigate experimentally the defect-mediated turbulence (DMT) which is induced
by bubbles injection in a Taylor-Couette flow when the inner cylinder is rotating while
the outer cylinder is fixed. Bubbles of 1.2 mm in diameter are injected at the bottom of a
Taylor-Couette device of radii ratio equal to 0.91. The tangential Reynolds number range
is [2 200, 19 300] and the air injection rate varies up to 800 ml/min. For these conditions
of the experiments, bubbles are trapped in the gap by the Taylor vortices and arranged as
patterns (toroidal, wavy toroidal, spirals, and wavy spirals). Visualizations of the bubble
patterns were carried out. When decreasing the Reynolds number or increasing the air
injection rate, spiral and toroidal patterns can coexist in a composite flow. Defects occur
in the bubble’s patterns (merging or splitting of the Taylor vortex pairs). By analyzing
the space-time diagram of bubbles patterns and their complex demodulation, we highlight
different regimes and transitions in the DMT of the bubbly Taylor-Couette flow. The
control parameter of the transitions is the air volumetric fraction, which evolves as the
ratio between the axial injection Reynolds number and the tangential Reynolds number.
By increasing the air volumetric fraction, the defects in the DMT flows are classified as
three flow regimes: (i) structured composite flow where the defects are periodic in space
and time, (ii) intermittency defects chaos where the defects zones alternate randomly with
the patterns in time and space, and (iii) developed defects chaos with a large defects density.
The statistical properties of these three regimes of the DMT are analyzed in the framework
of the complex Ginzburg-Landau equation.

DOI: 10.1103/PhysRevFluids.5.034302

I. INTRODUCTION

In the sheared flows, the presence of bubbles in Newtonian liquid is expected to modify the way
of the transition to turbulence. Bubbles can modify the turbulence for a wide range of scales from
the Kolmogorov scales, up to the large scales of the turbulence. Bubble wakes induced fluctuations
can create additional turbulence in turbulent flow [1] or in laminar flow [2]. For some particular con-
ditions, microbubbles, bubbles, or large deformable bubbles can also reduce the shear induced tur-
bulence by interacting with the streak wall turbulence and reduce by this way the wall friction [3,4].

The Taylor-Couette flow that consists of a flow confined in the gap between two coaxial
differentially rotating cylinders presents a great interest from a fundamental point of view to study
the transition to turbulence. In the transition from laminar to turbulence, the Taylor-Couette flow
with the outer cylinder at rest is characterized by streamwise counter-rotating vortices (Taylor
vortices), as large as the gap width, separated by inflow and outflow jets, with an axially periodical
arrangement. The Taylor vortices are arranged as toroidal patterns. Bubbles can interact with these
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FIG. 1. Conceptual sketch of the bubbly Taylor-Couette flow: (a) Taylor-Couette system; (b) view of
preferential localization of the bubbles in the gap (bubbles are represented as full circles).

large-scale vortices. When the outer cylinder is at rest, the Taylor-Couette flow is thus one of the
academic sheared flows that is suitable for investigating the effect of bubbles on the transition to
turbulence of Newtonian liquid [5,6] and studying the bubbles interaction with the wall friction in
a context of bubbly drag reduction [7–9]. For small Reynolds numbers and small Froude numbers,
bubbles are accumulated uniformly along the inner cylinder and slide upward along the wall. By
increasing the Reynolds number, the Taylor vortices can capture the bubbles. Bubbles are trapped
either in the core of the vortices (preferentially in the counterclockwise vortex) or in the outflow
jet near the inner rotating cylinder [5,9–12], as represented on the conceptual sketch of Fig. 1. This
flow is called the captured bubbles regime.

For the captured bubbles regime, Fokoua et al. [9] have evidenced that a preferential capture of
the bubbles in the vortices induces a reduction of the axial wavelength, associated with an increase
of the viscous torque at the inner cylinder. On the contrary, a preferential entrapment of the bubbles
in the outflow jet leads to an increase of the axial wavelength associated to a reduction in the torque
of the inner cylinder. Moreover, it was highlighted that the preferential capture depends on the
geometry of the gap (ratio of the outer to the inner cylinders radii η). A small gap plays in favor of
bubbles capture by the Taylor vortices, while a large gap enhances bubbles capture by the outflow jet.

Although bubble accumulation modifies the flow by changing the size of the vortices, bubbles
can be used as tracers to visualize the arrangement of the Taylor vortices. In Yoshida et al. [13],
visualizations of the bubbles carried out simultaneously with the characterization of the Taylor
vortices by particle image velocimetry attested that bubbles patterns and Taylor vortices are arranged
in the same way. Even though the single-phase flow is characterized by a toroidal arrangement of the
Taylor vortices, bubbles can modify this arrangement. At small air injection rate, bubbles patterns
still exhibit a toroidal arrangement [9]. But at higher air injection rates, different bubbles patterns
such as toroidal or spiral patterns or the combination of these two patterns (i.e., composite flow) have
been observed according to the Reynolds number and the air injection rate [8,13,14]. Yoshida et al.
[13] showed an example of the space-time diagram in the axial direction of the bubbles patterns
for the composite flow where the space-time sequences of toroidal and spiral patterns are visible
(see Fig. 5(a) in Ref. [13]).

In Van Ruymbeke et al. (2017) [15], based on visualizations of the bubbly pattern, the contri-
bution of cloud bubbles (entrapped in the outflow jet) was discriminated from the contribution of
vortices (swirl bubbles). The analysis of preferential positions, azimuthal velocities, and equivalent
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void fraction, of these two kinds of bubbles separately, gave a new insight into the dynamics of the
bubble’s entrapment for a toroidal arrangement of the Taylor vortices.

In the bubbly Taylor-Couette flow, the spiral pattern comes from bubbles effect under gravity
conditions [12]. Note that a spiral arrangement of the Taylor vortices can also be observed in the
single Taylor-Couette flow for the outer cylinder at rest when an axial flux is superimposed [16].
In Ref. [8], for low to moderate turbulent Taylor-Couette flows, Murai et al. (2008) [8] examined
the link between the viscous torque modification at the inner cylinder and the bubbles patterns.
Interestingly enough, it was observed that the torque is minimized for the composite pattern [8].

In the composite flow, the patterns present nucleation of spatiotemporal defects, corresponding to
splitting or merging of the Taylor vortices (see Fig. 5(a) in Ref. [13]). Murai et al. (2018) [14] also
analyzed the transition between toroidal, and spiral patterns in the composite flow. They inferred
that the transition from toroidal to spiral patterns comes from a collapse of the clockwise vortex
when bubbles accumulation in the clockwise vortex during the toroidal sequence exceeds a critical
value. During the spiral sequence, the gas has been widely evacuated. The transition from spiral to
toroidal patterns takes place again when the void fraction is small.

The occurrence of defects in the bubbles patterns was evidenced for the first time by Atken
et al. [17] in a highly turbulent Taylor vortex flow, with a superimposed axial flow and ventilation
of bubbles at the free surface. Nevertheless, in the study of Atken et al. [17], the composite flow
was not identified as a switching regime between toroidal and spiral patterns but as a switching
regime between classic traveling Taylor vortices and intermittent pulses of vortices with higher
phase velocities. Moreover, in Murai et al. [8,14] and Atken et al. [17], no quantitative information
was given about the spatiotemporal defects. To our best knowledge, no detailed investigation of the
spatiotemporal defects in a bubbly Taylor-Couette flow has been reported so far.

In the nonlinear theory of the transition to turbulence, the states with spatiotemporal defects are
called defect-mediated turbulence (DMT) [18,19]. In the framework of this theory, the development
of spatiotemporal defects affects the mixing properties of the flow by changing the time and length
scales of the flow. The present work is thus focused on the characterization of the spatiotemporal
defects occurring in the bubbly Taylor-Couette flow patterns and identification of bubbly parameters
that control the development of these defects.

The DMT has been observed in many experiments of driven spatially extended nonlinear systems
[20–29]. The DMT is investigated in the theory using the one-dimensional complex Ginzburg-
Landau equation (CGLE) by several authors [18,30,31]:

∂A

∂t
= A + (1 + ic1)

∂2A

∂z2
− (1 − ic3)|A|2A, (1)

where A is the complex order parameter of the field pattern, t and z are, respectively, time and
space coordinate while c1 and c3 represent the linear and nonlinear dispersion coefficients. All plane
waves solutions of the CGLE [Eq. (1)] are linearly unstably beyond the Newell line 1 − c1c3 = 0
to the Benjamin-Feir instability for c3 > 1/c1 in the plane (c1, c3) [30]. Beyond the Newell line
(c3 > 1/c1), the numerical simulations of the CGLE [Eq. (1)] [30] show the occurence of two
chaotic regimes in the plane (c1, c3): “phase chaos” without defects and DMT, where the plane
waves can present a dislocation of their phase with annihilation of their amplitude (|A| = 0).
Just beyond their threshold, the nucleation density of defects increases with the driving nonlinear
coefficient of dispersion c3 of the CGLE [30,31]. In the waves pattern, the presence of defects
generates rapid exponential decay of temporal and spatial correlations functions [30]. The inverse of
the correlation time is proportional to the density of defects. The mean separation time between two
defects is found to be of the same order as the correlation time in the DMT states [30]. Even if the
DMT is explored by the CGLE following one-dimensional direction; their properties resemble the
ones obtained in the experimental investigations of the flows in three-dimensional directions [25,29].

In the present work, we address the issue of the DMT in the bubbly Taylor-Couette flow for the
bubbles captured regime. For the purpose, we have performed visualizations of the bubbles patterns
for different Reynolds numbers (based on the rotational velocity) and different air injection rates.
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FIG. 2. Scheme of the IRENav Taylor-Couette facility.

The geometry of the device is same as in Fokoua et al. [9] for same bubble size, but the study is
performed for higher air injection rates, making possible to observe the different bubbles patterns
(not only toroidal pattern but also spiral and composite patterns) for same Reynolds numbers range
as in Ref. [9]. The gap’s geometry (η = 0.91) is similar to the one used in Atken et al. [17] but, unlike
in Atken et al. [17], the air volume injected in the device is controlled and the study is performed
for moderate Reynolds numbers. In our study, we investigate higher Reynolds numbers and higher
air injection rates than in Murai et al. (2008) [8]. Unlike in Murai et al. (2008) [8], Yoshida et al.
(2009) [13], Van Ruymbeke et al. (2017) [15], Murai et al. (2018) [14] for whom bubbles were
preferentially entrapped in the outflow region, in the present study, the geometry of the gap implies
preferential capture of the bubbles in the vortices (larger η value). This can potentially make a
difference in the bubbly patterns development and defects occurrence.

We have carried out statistical analysis of space-time diagrams of the intensity scattered by the
bubbles. The bifurcation scenario of the DMT is highlighted by the characterization of correlation
time and length and by the characterization of the statistical properties of the defects such as their
number, their lifetime, their separation time, and their separation length. The paper is organized
as follows: Sec. II describes the experimental setup and flow visualization method. Results are
described in Sec. III. Our conclusions are provided in Sec. IV.

II. EXPERIMENTAL SETUP, CONTROL PARAMETER, AND FLOW
VISUALIZATION TECHNIQUE

The experiments were carried out in the vertical Couette-Taylor device of IRENav composed
of concentric inner and outer cylinders (Fig. 2) [9,11]. The fixed outer cylinder is made of PPMA
with a radius Ro = 220 mm. The rotating inner cylinder is made of Plexiglass with a radius Ri =
200 mm. The gap’s width is d = 20 mm and the effective height is L = 880 mm. The radii ratio is
η = Ri/Ro = 0.9 and the aspect ratio is �a = L/d = 44. Two liquid mixtures of water and glycerol
(65% and 40% in mass of glycerol) were used in this study.

Spherical air bubbles were injected in the gap at the bottom of Taylor-Couette device through
17 injectors connected to microholes (65 μm in diameter) equally spaced in the azimuthal direction
(Fig. 2). By varying the number of injectors activated and varying the air injection pressure, the input
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gas flow rate Qg was varied between 24 to 800 ml/min and controlled with an accuracy of ±1.2%.
The bubble diameter db was characterized by high speed video recording and image processing. db

is approximately 1.2 mm (i.e., 6% of d). The terminal rising velocity of the bubbles Vb achieved
in the motionless mixture can be deduced from a balance between buoyancy and drag forces using
the drag coefficient established by Maxworthy et al. [32]. The value of Vb in the mixture of 40%
glycerol is twice the value of Vb in the mixture of 65% glycerol.

The varying control parameters of the bubbly Taylor-Couette flow (BTCF) are the angular
velocity of the inner cylinder �i(s−1), the kinematic viscosity of the liquid phase ν, and the air
injection rate Qg. Based on these control parameters, the BTCF is characterized by the following
nondimensional parameters:

The Reynolds number Re compares the inertial centripetal force due to the rotation of the inner
cylinder and the viscous force:

Re = 2πRi�id

ν
. (2)

It is defined as in single-phase flow, because the viscosity is not expected to be modified by the
bubbles volume fraction which remains very small.

The Froude number Fr represents the ratio of the inertial centripetal force and the buoyancy force
applied on the bubbles:

Fr = 2π�iRi√
gRi

. (3)

Fr influences the bubbles capture. The capture occurs for Fr larger than the unity.
The axial Reynolds number of the gas phase Reg is

Reg = Qg

2πRiν
. (4)

The volumetric fraction α of the gas injected in the gap which is defined as the ratio of the volume
of air injected during one rotating period to the volume of the liquid contained in the device:

α = Qg

2πRi�idL
= Reg

Re

2πRi

L
. (5)

α controls the quantity of air available in the gap, according to the rotation velocity. α evolves as
the ratio between the Reynolds numbers Re and Reg.

We can also define the bubbles Reynolds number based on the bubbles terminal rising velocity
and their diameter:

Reb = Vbdb

ν
. (6)

The ratio Reb/Re (i.e., the ratio between the bubble terminal rising velocity Vb and the inner
cylinder’s tangential velocity Vi) is expected to control the bubbles entrapment inside the gap
(preferentially in the Taylor vortices or in the outflow region near the inner cylinder). But the best
nondimensional parameter that controls the axial entrapment of the bubbles is the parameter C
[9,10,12], defined in Eq. (7). C is the ratio between the axial velocity of the Taylor vortices W and
the bubble terminal rising velocity Vb. C depends on Reb/Re, Re, and η. The higher the C value, the
most important the bubbles entrapment in the gap:

C = W

Vb
. (7)

Hnew is the ratio between the centripetal force induced by the Taylor vortices and the centripetal
force due to the inner cylinder rotational velocity. By taking into account the axial wavelength λ in
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FIG. 3. Map of the bubbles localization in the gap as a function of parameters C and Hnew Fokoua et al. [9].

this formulation, Fokoua et al. [9] established a universal map of the bubbles localization in the gap,
with regard to parameters C and Hnew (Fig. 3):

Hnew = 4
W 2

Vi
2

Ri
2

λ2
. (8)

The parameters range of the experimentation are reported in Table I. For the geometry of our
Taylor-Couette device, the Taylor vortices occur above a critical value of the Reynolds number
Rec1 = 137 [33]. The use of the two mixtures makes it possible to cover a large range of the
Reynolds number Re. The Re range of the study here is [2 200–5 600] and [8 160–19 300] for the
mixtures of 65% and 40% glycerol, respectively, which corresponds in the single-phase flow to
the transition from the early turbulent regime to the turbulent regime with persistence of the Taylor
vortices [33].

For this range of Reynolds numbers, in the single-phase flow, the Taylor vortices are arranged
as steady toroidal patterns, periodically spaced in the axial direction, and no azimuthal wave was
observed [33]. No defects are present in the single-phase flow. The axial wavelength measured by
Fokoua et al. [9] in the single-phase flow is plotted according to Re number in Fig. 12.

The air volumetric fraction α varies up to 0.07%. Figure 3 shows the operating points of the
present study superimposed on the map of Fokoua et al. [9]. For the range of Hnew and C values
of the present study, bubbles are trapped by the vortices. For the mixture of 65% glycerol and
Re < 4000, the bubbles are trapped in both vortices; and for Re > 4000, they are captured in
both vortices and in the outflow region. For the mixture of 40% glycerol, bubbles are trapped
in the counterclockwise vortex and in the outflow region, they are not captured by the clockwise
vortex.

As a consequence of the bubbles capture, the bubbles were used as tracers to visualize the
organization of the Taylor vortices in the bubbly two-phase flow. The reflected intensity of the
bubbles flow patterns was recorded at 500 f/s in a front view plane (θ, z)with a Photron Fastcam
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TABLE I. Geometric specifications of the Taylor-Couette device, physical properties of the test fluid, and
setting parameters of the bubbly Taylor-Couette Flow (BTCF).

Inner cylinder radius Ri = 200 mm
Outer cylinder radius Ro = 220 mm
Radius ratio η = 0.91
Aspect Ratio �a = L/d = 44
Critical Reynolds number of the
transitions in the single-phase flow
[33]: Taylor vortex flow at Rec1; wavy
vortex flow at Rec2; modulated wavy
vortex Flow at Rec3; Early turbulent
Taylor vortex flow (disappearance of
the azimuthal wave) at Rec4; turbulent
Taylor vortex flow Rec5

Rec1 = 137; Rec2 = 157; Rec3 = 841; Rec4 = 2214; Rec5 = 2688

Fluid mixtures (water-glycerol) 65% of glycerol 40% of glycerol

Temperature range [25.6–31.9]◦C [22.5–29]◦C

Density: ρ(kg/m3) 1154 1089
Viscosity [9–11.6] Cst [2.6–3.1] Cst

Critical Reynolds of bubble capture
(characterized by Fokoua et al. [34]
for bubbles of 1–1.2 mm in a
Taylor-Couette device of same
geometry)

1264 7906

�i range [53.81–120.97] tr/min [60–130] tr/min

Reynolds range Re [2200–5600] [8160–19270]

Froude number range Fr [0.80–1.81] [0.90–1.94]

Input gas flow rate Qg [30–800] ml/min [24–99.2] ml/min

Axial Reynolds range Reg [0.04–1.15] [0.14–0.45]

α(%) range [1.3×10−3–6.68×10−2](%) [8.29×10−4–4.5×10−3](%)

Bubble diameter db/d [0.053–0.065] [0.053–0.06]

Average value of Vb(m/s) 0.042 0.1

Bubble velocity range Vb/Vi [0.0146–0.0474] [0.037–0.086]

Bubble Reynolds range Reb [3.3–7.5] [36.4–49.8]

C range [3.76–8.32] [0.88–1.96]

Hnew range [0.52–1.02] [0.02–0.24]

Acquisition time (second) 42s 42s

Size of the viewing window
(z, x = 2πRiθ )

656.4×164 mm232.8d×8.2d 648×162 mm232.4d×8.1d

Sa3 120K high-speed camera with 256 grayscales (Fig. 2). The size in the axial direction (z) of the
visualization window was, respectively, 32.8d for the 65% mixture and 32.4d for the 40% mixture,
corresponding to 1024 pixels. By the help of a spot light, the contrast was improved between the
light reflected by bubble and the black inner cylinder and gives the best visualization of the bubbles
flow patterns [Fig. 4(a)].

The bubbly patterns were analyzed following the spatiotemporal technique. For this purpose, at
each time step, from each image I (z, x), we have extracted at midlength in the azimuthal direction
of the viewing window one intensity line I (z, x = mid-window) [Fig. 4(a)]. The chronological
superposition of these lines I (z, x = mid-window) obtained at regular time interval (1/500 s)
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FIG. 4. Visualization of the bubble patterns in the 65% glycerol mixture for Re = 2648; Reg = 0.16; Qg =
160 ml/min; α = 0.0088%: (a) instantaneous image, (b) space-time diagram, (c) first filtered diagram, and
(d) homogenized diagram with defects (circle).

provides a space-time diagram I (z, t ) [Fig. 4(b)]. In the space-time diagrams, we observe regions
with high intensity (bright color) that correspond to captured bubbles by the Taylor vortices and
regions with low intensity (dark color) that correspond to liquid phase.

Figure 4(b) presents one example of a space-time diagram of the composite flow made of the
wavy toroidal and wavy spiral patterns. Time t is systematically scaled by Ti, the period of rotation
of the inner cylinder (Ti = 1/�i), while the axial distance is scaled by the gap’s width d . In the
space-time diagram of the Fig. 4(b), the axial distance between two bright patterns is representative
of the axial distance between a pair of counter-rotating vortices.

With the occurrence of a propagative azimuthal wave, there is a preferential accumulation of
the bubbles at the crest of the wave, leading to a nonhomogenous distribution of bubbles in the
azimuthal direction [10,15]. This is visible by the alternance with time of regions of higher intensity
at the crest and lower intensity at the trough (holes) in a same bright pattern. To better highlight the
bubbles patterns characteristics (axial wavelength, frequency, phase velocity, …), a special image
post-processing is used according the following two steps:

(1) A two-dimensional Gaussian filter in Fourier coordinates [̂I (k, f )] was applied to the space-
time diagram I (z, t ). This filter has the following characteristics: f ∈ [0.01 fp, 10 fp] and in k ∈
[0.1kp, 4kp], where kp and fp are, respectively, the principal wave number and frequency of the
pattern. It enables to merge bubbles strings trapped on both sides of the outflow jet [see Fig. 1(b)]
and keep the large-scale structure of the patterns [Fig. 4(c)].

(2) To reduce the difference of the light intensity between the crest (high intensity) and the trough
(low intensity) of the azimuthal wave, a homogenization procedure of the intensity is applied to the
filtered space-time diagram of Fig. 4(c). The space-time diagram is sampled on n small windows
with a size of 2d in space and of 0.064 s in time. In each small window, the light intensity is
rescaled in gray level from 0 to 255. This procedure permits to converge the light intensity of the
holes (trough) to the high intensity of the crest.

In Fig. 4(d), we observe the composite pattern obtained after filtering and homogenization
procedures. After applying the homogenization procedure, the intensity close to zero corresponds
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clearly to the inflow regions where the bubbles are not accumulated, while the intensity larger than
zero corresponds to outflow regions. For some particular flow conditions, the homogenized space-
time diagram highlights the occurrence of spatiotemporal defects characterized by the disappearance
of a pair of vortices (i.e., outflow merging) or the birth of a new pair of vortices (outflow splitting).
With this procedure of the homogenization, although the intensity of the troughs of the azimuthal
wave is not perfectly equal to the intensity of the crests, defects are clearly distinguished from holes.
In the next section, we will discuss about the results.

III. RESULTS

In this section, we will present the different patterns obtained according to the control parameters
(Re, Reg). The evolution of the frequency and wavelength of the different patterns will be presented
with the control parameter α. We will pay a particular attention to the analysis of the DMT properties
with regard to the control parameter α: evolution of the number of defects, correlation time and
length, separation time between two defects, lifetime of defects. The transitions of the different
regimes in the DMT will be presented in this section.

A. Flow regimes

In the bubbly flow, the basic patterns we observe are: toroidal [denoted as T, example is given
in Fig. 5(a)], wavy toroidal [denoted as WT, example is given in Fig. 5(b)], spiral [denoted as S,
example is given in Fig. 5(c)], or wavy spiral patterns [denoted as WS, example is given in Fig. 5(d)].
The wavy patterns are characterized by strong axial oscillations of the bubbles patterns in time and
in the azimutal direction. As can be seen in Figs. 5(b) and 5(d), the wavy patterns are characterized
by a dissymmetry in the azimuthal wave, the duration from the crest to the trough being larger
than the duration from the trough to the crest. This is due to the upward motion of the bubbles
under gravity effect. The toroidal (wavy and nonwavy) patterns correspond to axially periodically
spaced horizontal rings of air bubbles trapped in the Taylor vortices. The spiral (wavy and nonwavy)
patterns are characterized by strongly inclined stripe bubbles patterns. For the spiral patterns, the
Taylor vortices are connected through a single upward bubbles helicoidal path. For the spiral pattern,
the slope of the inclined stripes is representative of the axial traveling velocity of the bubbles (axial
phase velocity) Vphase, which is limited it upper value at Vb. The periodic axial distance between
the stripes is representative of the axial pitch of the helicoid, while the time between two stripes is
representative of the time period of the helicoid. As can be seen in Figs. 5(c) and 5(d), the spiral and
wavy spiral patterns are characterized by a time period of the helicoid of 2Ti, which means that the
azimuthal traveling velocity of the bubbles in the helicoidal path is βVi with β ≈ 0.5 in agreement
with bubbles velocity in the bulk. The establishment of the spiral pattern depends on gravity effect.
It requires that the axial wavelength equals the axial pitch of the bubbles helicoidal path [8]. For our
geometry of the Taylor-Couette device, by assuming that bubbles are moving azimuthally in the gap
at an azimuthal velocity of βVi (0 < β < 1), and that the bubbles are moving axially at Vphase, the
establishment of the spiral pattern requires the following condition of the axial wavelength λ:

λ

d
= axial pitch

d
≈ −2πη

β(1 − η)

Vphase

Vi
. (9)

Figures 6(a)–6(d) show space-time diagrams of bubbles that depict a composite flow which
derives from a combination in space and time of basic patterns: wavy or nonwavy, toroidal, and
spiral patterns.

At the junction between toroidal and spiral patterns, defects occur. The composite patterns
flow, for which spatial and temporal punctual defects are observed periodically in time and space
[Figs. 6(a) and 6(b)] is considered as a structured composite pattern flow (SCP). Unstructured
composite patterns flows [Figs. 6(c) and 6(d)] can be discriminated in different flow regimes that
we will describe hereafter.
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FIG. 5. Examples of space-time diagrams sequences that evidence different bubbly basic patterns. Ex-
amples are shown for the mixture of 40% glycerol: (a) toroidal pattern T (Re = 8156; Qg = 32 ml/min;
Reg = 0.13; α(%) = 0.0024); (b) wavy Toroidal pattern WT (Re = 17000; Qg = 40 ml/min; Reg = 0.19;
α(%) = 0.0016); (c) spiral pattern S (Re = 14500; Qg = 60.8 ml/min; Reg = 0.28; α(%) = 0.0027). The
axial phase velocity determined by the slope of the stripes is Vphase = 0.071 m/s; Vphase/Vb = 0.72; (d) wavy
spiral pattern WS (Re = 11361; Qg = 80 ml/min; Reg = 0.36; α(%) = 0.0045). The axial phase velocity is
Vphase = 0.039 m/s; Vphase/Vb = 0.41.

In Fig. 7, we have plotted the different bubbly patterns regimes observed in the (Re, Reg) plane
for both mixtures. Some characteristic isovalues of the air volumetric fraction α are superimposed.
Generally speaking, in the bubbly flow, we observe that both an increase in the Reynolds number
Re or a increase in the air injection rate (Reg) play in favor of the occurrence of the azimuthal wave,
by increasing the effective gas volume fraction. In Van Ruymbeke et al. (2017) [15], it was claimed
that the azimuthal wave was driven by swirl bubbles localized inside the vortices. From our diagram
of Fig. 7, it is now clear that this is the increase in the effective gas volume fraction of bubbles
entrapped in the counterclockwise vortex which is responsible for the occurrence of this wave. The
azimuthal wave is a mean for the flow to evacuate the excess of bubbles trapped in the Taylor vortices
at its crest. As shown by Van Ruymbeke et al. (2017) [15], the gas volume fraction is maximum
and the azimuthal velocity of the bubbles is minimum at the crest of the azimuthal wave. Bubbles
jump axially from a Taylor vortex pair to the next upper pair at the crest of the azimuthal wave. A
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FIG. 6. Examples of space-time diagrams that evidence the different bubbly composite patterns regimes:
(a) Structured composite patterns regime Re = 8339; Qg = 56 ml/min; α(%) = 0.0042; Reg = 0.24; 40% of
glycerol, highlights periodical punctual defects in circles. (b) Structured composite patterns regime Re = 2478;
Qg = 51 ml/min; α(%) = 0.0031; Reg = 0.054; 65% of glycerol, highlights periodical punctual defects in
circles. (c) Intermittency defect chaos regime, Re = 3714; Qg = 160 ml/min; α(%) = 0.0065; Reg = 0.17;
65% of glycerol, highlights burst of defect in ellipse. (d) Developed defect chaos regime, Re = 3669; Qg =
800 ml/min; α(%) = 0.038; Reg = 0.98; 65% of glycerol, no basic patterns identified beyond one rotation
period.

jump of a moderate number of isolated bubbles will not connect the Taylor vortex pairs and will not
introduce defects. An example of isolated bubbles jumping is displayed in Fig. 8. Moderate bubbles
jumping is visible on space-time diagrams of the bubbles brightness before applying filtering and
homogenization procedures.

For the mixture of 40% glycerol, Re > 12 000 and α < 0.0022%, the BTCF is rather a unique
pattern flow: the preferential bubble pattern is the wavy toroidal pattern. For this mixture, for
Re < 12 000 or α > 0.0022%, the flow is preferentially a SCP flow.

For the mixture of 40% glycerol, the axial pitch induced by the bubbles rising path is adjusted to
the axial wavelength at one Reynolds number (Re = 14 500). At Re ≈ 14 500, considering the axial
phase velocity achieved (Vphase ≈ 0.071 m/s), Eq. (9) is satisfied only for β ≈ 0.5. The occurrence
of the spiral also requires that the effective gas volume fraction of the bubbles trapped in the Taylor
vortices exceed a critical value, as described by Murai et al. (2018) [14]. For our geometry, we
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FIG. 7. Map of the bubbly patterns regimes in the (Re, Reg) plane. Isocontours of characteristic values of
the parameter α are also plotted with lines and colors.

conclude that the establishment of the steady spiral requires a minimum volumetric fraction α of
0.0027% at Re = 14 500. For smaller volumetric fraction, at this Reynolds number, the effective
gas volume fraction in the vortices is too small to ensure the steady spiral to develop and we
observe a switching between the toroidal and spiral space-time sequences (SCP). For lower or higher
Reynolds numbers, the axial wavelength of the Taylor Vortices is too small or too large, respectively,
to enable the steady spiral and a SCP is rather observed when α > 0.0027%. Generally speaking, the
composite patterns flow takes place when the spiral is the best solution for the excess of bubbles to
be expelled while the axial wavelength of the Taylor vortices is too small, not in agreement with the

FIG. 8. Bubbles jumping on a zoom of the space-time diagrams of the bubbles brightness: (a) before
applying filtering and (b) after applying filtering and homogenization procedures.
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FIG. 9. Sketch that summarizes the transitions from the unique pattern regime to the developed defect chaos
regime in the BTCF (for 2200 < Re < 5600 in the explored region of the map of Fig. 7 for the 65% glycerol
mixture). αdef is the critical value of α beyond which the first defect occurs. This value will be characterized in
the part dedicated to the statistical analysis of the defects. αU = 0.07% is the lower value of α of the unexplored
yet zone.

axial pitch of the bubble helicoidal path, to enable a connection between the Taylor vortices. For the
mixture of 65% glycerol, although the gravity effect is less important than for the mixture of 40%
glycerol (Vb/Vi smaller), the axial wavelength of the Taylor vortices remains too small compared
with the helicoidal pitch.

For the mixture of 65% glycerol, and for the Re and Reg ranges of the present study, the flow is a
composite patterns flow, composed of wavy basic patterns. For the mixture of 65% glycerol, despite
the fact that the gravity effect (Vb/Vi) is comparable to Murai et al. (2008) [8], the difference in the
geometry (η larger than in Murai et al. [8,14]) makes the spiral pattern unstable. Indeed, in the geom-
etry of Murai et al. [8,14], the entrapment of the bubbles preferentially near the inner cylinder and
the increase of the axial wavelength in the bubbly flow make it easier the establishment of a steady
spiral; this is not the case for the geometry of the present study which is characterized by preferential
entrapment of the bubbles at midgap by the vortices and decrease of the axial wavelength induced
by the bubbles. For the mixture of 65% glycerol,when increasing Reg (i.e., when increasing the air
volumetric fraction α, the composite flow is less and less structured with more and more defects
occurrences and transitions from different flow regimes are identified: For α < αIDC = 0.005%,
the flow is a SCP flow [Fig. 6(b)]. For α > αIDC = 0.005%, the SCP flow with punctual defects
transits to the regime of the intermittency defect chaos (IDC). For the IDC regime, the defects appear
randomly in space and time. They are no more localized in space and time, thus leading to defects
spots that alternate in time and space with basic patterns [Fig. 6(c)]. Defects spots are identified
with space and time sequences where neither the toroidal, nor the spiral patterns prevail. A further
increase in α above the critical value of αDDC = 0.01%, leads to the developed defect chaos regime:
DDC [Fig. 6(d)] for which the number of defects is high and for which the basic patterns do not
persist beyond a time period of the azimuthal wave. In this case, there is a continuous switching
between toroidal and spiral patterns. Interesting enough is the fact that Murai et al. (2008) [8] in the
range of (Re, Qg) of their study did not observe unstructured composite flows (IDC or DDC). As
mentioned before, the main difference between the two studies lies in the difference in the gap’s ge-
ometry. Indeed, the geometry of the present study does not enable the development of a stable spiral
pattern, which promotes the continuing switching between spiral and toroidal patterns (transition
to DDC regime). The increase in the effective volume fraction (by the increase of Qg) destabilizes
the toroidal pattern in favor of the spiral pattern; the increase in the axial pitch of the helicoidal
bubble path (by the decrease of Vi) destabilizes the spiral pattern in favor of the toroidal pattern. As
a consequence, an increase in the air volumetric fraction α, which is the ratio between Reg and Re is
expected to destabilize both the spiral and toroidal patterns, thus leading to more and more defects
occurrence.

The air volumetric fractions α seems to be the best parameter to characterize the transitions from
SCP to DDC regimes for the 65% glycerol mixture. Figure 9 summarizes the different transitions
taking place in the BTCF, based on the control parameter α. The defect mediated turbulence (DMT)
includes the SCP, the IDC and the DDC regimes. The critical value of αdef above which the first

034302-13



BRUNO VAN RUYMBEKE et al.

0 1 2 3 4 5

f/ i

-5

0

5

10

15

20

25

20
lo

g
10

(d
sf

)

(b)

0 1 2 3 4 5

f/ i

-2

0

2

4

6

8

10

12

20
lo

g
10

(d
sf

)

(c)
Principal frequency
Secondary frequencies

0 1 2 3 4 5

f/ i

-10

0

10

20

30

40

20
lo

g
10

(d
sf

)

(a)

FIG. 10. Power spectrum versus frequency for: the mixutre of 65% glycerol (a) structural composite
pattern [α(%) = 0.001], (b) intermittency defect chaos [α(%) = 0.006], and (c) developed defect chaos
[α(%) = 0.067]. The dashed and dotted lines are, respectively, the background noise and zero energy.

defect appears will be characterized further. αdef is also the critical volumetric fraction beyond which
the flow shifts from a unique pattern regime to a composite pattern regime.

B. Evolution of the frequency and wavelength with the control parameter α or Re

Frequency and wavelength are obtained by the calculations of the two-dimensional FFT from
the space-time diagrams. In the frequency domain spectrum (Fig. 10), we localize the principal
frequency fp at the maximum of the energy peak. While the secondary frequencies are defined at
the energy peaks that satisfy the two following conditions:

(1) The prominence is larger than 2dB. The prominence is defined as energy difference between
the value of the energy at the peak and its background noise (the dashed line in Fig. 10).

(2) The background noise is larger than zero energy (dotted line in Fig. 10). Even if the
prominence is larger than 2dB but the background is smaller than zero, the frequencies are not
counted among the secondary frequencies as the cases of the harmonics [Fig. 10(a)].

Three examples of the frequency spectrum are given in the Fig. 10 that correspond to SCP
[Fig. 10(a)], IDC [Fig. 10(b)], and DDC [Fig. 10(c)]. The background noise and the number of
the secondary frequencies increase as the control parameter α is increased in the IDC and in DDC
regimes [Figs. 10(b) and 10(c)].

The characteristic frequencies are plotted as a function of α in Fig. 11 for the 40% and 65%
glycerol mixtures. For the different flow regimes, the principal frequency has a constant value
around fp ≈ �i/2, except for four cases in the 40% glycerol mixtures where fp ≈ �i. As explained
by Murai et al. [8], the bubbles patterns are expected to propagate azimuthally in time with a phase
velocity of half the inner cylinder tangential velocity (Vi) and with a wave number of 1. This is
in agreement with what is observed at the occurrence of the azimuthal wave in a single-phase
Taylor-Couette flow with rotating inner cylinder and steady outer cylinder (occurrence of the
third instability). In the single-phase flow, the occurrence of the third instability is systematically
characterized by an angular phase velocity of the azimutal wave of 0.5�i [35] and by an azimuthal
wave number of 1 for large aspect ratio � [36]. The difference with the single-phase flow here is that
for the Reynolds numbers range of the study, the azimuthal wave does not exist in the single-phase
flow, it occurs due to the bubbles.

Our interpretation is that this azimuthal phase velocity of 0.5Vi is in agreement with a preferential
bubble capture in the bulk flow inside the Taylor vortices. In the case when the azimuthal wave
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FIG. 11. Evolution of the characteristic frequencies normalized by the inner cylinder angular velocity as a
function of α (red, principal frequency; blue, secondary frequencies).

frequency is fp ≈ �i, this correspond to operating points at high Reynolds number in the 40%
glycerol mixture, where the flow regime is a unique flow pattern of wavy spiral or a structured
composite flow (SCP) of preferential wavy spiral. In this case, the azimuthal wave number is 2
and the frequency of the helicoidal path is 0.5�i. For α < αIDC, for the unique pattern flow or the
structured composite patterns flow, the power spectrum depicts a single peak of wavy frequency
fp. For αIDC � α � αDDC, in the intermittency defect chaos regime, the power spectrum has several
peaks around the principal frequency fp. In this case, the secondary characteristic frequencies vary
between 0.4�i and �i. The presence of these several peaks around the principal frequency 0.5�i is
due to the coexistence of different basic patterns in the composite flows with defects. For large val-
ues of α, the power spectrum is a large bandwidth spectrum in the developed defects chaos regime.

The evolution of the axial wavelength is plotted with regard to the Reynolds number (Fig. 12)
and with regard to the volumetric air fraction α (Fig. 13). The axial wavelength increases slowly
with Re number from 2.8d ± 0.2d to 3.5d ± 0.2d , same trend is encountered for our geometry of
Taylor-Couette device in single-phase flow [9]. The axial wavelength is smaller in the bubbly flow
than in the single-phase flow, as expected from Fokoua et al. [9] for a preferential capture of the
bubbles in the vortices. The axial wavelength decreases with respect to α from 3.6d to 2.5d and it
remains constant for large α.
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FIG. 12. Evolution of the normalized axial wavelength as a function of Re number.
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C. Evolution of the correlation time and correlation length with α

The patterns observed in our experiments are analyzed by the calculation of the space-time
correlation function as described in Ref. [37]:

Cor(
z,
t ) = 〈Ĩ (z + 
z, t + 
t )̃I (z, t )〉
〈Ĩ (z, t )2〉 , (10)

where Ĩ (z, t ) = I (z, t ) − 〈I (z, t )〉. The analysis of the space-time correlation functions [Eq. (10)]
permits to characterize the transitions inside the DMT regimes. Indeed, in the DMT regime, the
correlation function is expected to vary exponentially with time and distance [Eq. (11)] in agreement
with the numerical simulations of the complex Ginzburg-Landau equation (CGLE) performed by
Shraiman et al. [30]:

Cor(
z,
t ) ∼ exp(−
t/τ ) exp(−
z/ξ ). (11)

τ and ξ are, respectively, the correlation time and length of the pattern. To extract τ and ξ ,
the experimental correlation functions in time Cor(0,
t ) [Fig. 14(a)] and in space Cor(
z, 0)
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FIG. 14. (a) Time correlation and (b) length correlation and their best exponential fit for Re = 3530;
Reg = 0.32; Qg = 30 ml/min; α = 0.0013%, 65% glycerol mixture.
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FIG. 15. Dimensional correlation time as a function of the control parameter α for mixtures of 65% and
40% glycerol.

[Fig. 14(b)] are fitted by the exponential functions exp(−
t/τ ) for time and exp(−
z/ξ ) for space,
respectively.

The time correlation function can exhibit a second bump as observed in Fig. 14(a) at 
t/Ti = 25.
The occurrence of this second bump in the time correlation function corresponds to the switching
between two basic patterns (toroidal for 0 < 
t/Ti < 25 and spiral for 25 < 
t/Ti < 40). In this
case, the exponential fit of the time correlation function is applied to the pattern that has the largest
duration [toroidal for the example of the Fig. 14(a)].

The correlation time and length are scaled by the principal frequency fp and the wavelength of
the pattern:

τ ∗ = τ fp, (12)

ξ ∗ = ξ/λ. (13)

The normalized correlation time τ ∗ and length ξ ∗ are presented in the Figs. 15 and 16 with
regard to the control parameter α for both mixtures of glycerol. For α(%) < αIDC = 0.005%, the
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FIG. 16. Dimensionless axial correlation length as a function of control parameter α for 65% and 40%
mixture.
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normalized correlation time and length decrease strongly with α from 200 to 1 for τ ∗ and from 4 to 1
for ξ ∗. In this regime, the increase of defects number is responsible for this strong decrease of space-
time correlation in the pattern. Meanwhile, the flow has the capacity to reproduce the pattern in axial
direction and in time; the correlation length and time remain larger than the space-time period of the
flow (ξ ∗ > 1 and τ ∗ > 1). As mentioned before, the flow is structured, as it keeps the memory of the
pattern. For α(%) � αIDC = 0.005%, the bubbly patterns have small correlations, the correlation
length and time being smaller than the space-time periods (ξ ∗ < 1 and τ ∗ < 1). This critical
value of the air volumetric fraction αIDC = 0.005% correctly characterizes the transition from the
structure patterns flow (SCP) to the intermittent defect chaos regime (IDC). In the DDC regime,
for α > 0.02%, the normalized correlation length and time saturate. This means that the dynamics
of the defects does not change anymore. Indeed, the defects number is expected to saturate, as the
gap is of finite dimension. We can suppose that saturation occurs at large alpha when a connection
between Taylor vortex pairs (defect) occurs over each time and axial periods. The azimuthal wave
promotes the connection by making easier bubbles jumping from the crest to the trough of the
upper Taylor vortex pair. Bubbles jumping (i.e. bubbles escape from the vortices) is enhanced
(1) by the increase in the gravity effect (achieved by increasing the relative contribution of
the terminal rising velocity of isolated bubbles Vb/Vi or decreasing Vi and (2) by an important
accumulation of bubbles in the Taylor vortices (achieved at large values of Qg) which induces an
important rising velocity of bubbles clouds under collective effect An important axial flux of the
bubbles is required to connect the vortex pairs by bubbles jumping: this is ensured at large values of
the volumetric fraction α ∼ Qg/Vi.

From Fig. 16, at saturation, we note ξ

λ
≈ 0.6. This value is quite in agreement with the

axial distance d2
λ

≈ 0.56 measured by Fokoua et al. [9] between bubbles rings trapped in the
counterclockwise and clockwise vortices. Thus, we can conclude that the axial position of bubbles
trapping in the vortices at equilibrium controls the axial distance of the bubbles jumping and that
this is the systematic bubbles jumping at high volumetric fraction that controls the correlation
properties of the patterns at saturation.

The axial diffusion rate of the bubbly patterns is defined as

Vdiffusion = ξ

τ
. (14)

Figure 17 shows the evolution according to α of the axial diffusion rate scaled by the terminal
rising bubble velocity Vb (values given in Table I) For the 65% glycerol mixture, it evidences
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different scaling laws of the diffusion rate with respect to the regime. For α < αDDC = 0.01%, in the
SCP and IDC regimes, the diffusion rate expands linearly with α. According to Kowe et al. [38], the
volume of a bubbly dispersed flow can be modelized using a three-fluids model. It is composed of a
volume of bubbles of effective volume fraction αv , a volume of liquid advected by the bubbles and
a volume of undisturbed liquid of velocity V0. In this framework, considering Ca, the added mass of
bubbles (Ca ≈ 0.5), the axial velocity of the liquid in the two-phase flow Vz can be approximated by
the following equation:

(1 − αv )Vz = (1 − αv − αvCa)Vz0 + αvCaVb = (1 − αv )Vz0 + αvCa(Vb − Vz0). (15)

As the basic Taylor-Couette single-phase flow is characterized by no axial mean velocity of the
flow, it yields

Vz ≈ (1 − αv )Vz = αvCaVb. (16)

The axial diffusion of the bubbly patterns is linked to the axial velocity of the liquid induced by
the bubbles Vz. Assuming that the effective air volume fraction αv evolves linearly with the air
volumetric fraction α, we obtain a linear scaling law of Vdiffusion/Vb with regard to α: Vdiffusion 

Vz ∼ αVb.

Interesting enough is the fact that the critical value of the air volumetric fraction αIDC = 0.005%,
characteristic of the transition from the SCP regime to IDC regime is also the critical value of alpha
which leads to equality between the diffusion rate and the bubble terminal rising velocity. In the
DDC regime, for α � αDDC = 0.01%, the patterns have a diffusion rate larger than the bubbles
rising velocity. At saturation, the diffusion velocity is in agreement with the value of the bubbles
jumping velocity. Collective effects of the jumping can increase the effective rising velocity of
bubbles clusters (up to 1.5Vb). This confirms the fact, that bubbles release from the Taylor vortices
and jumping at each time period and axial period is the mechanism that controls the diffusion rate
at saturation in the DDC regime. The axial diffusion rate is representative of the velocity at which
the defects will propagate axially. For all regimes, this traveling velocity of the defects obviously
increases with the terminal rising velocity of bubbles, which implies that a change in the bubble size
or viscosity would modify the dynamics of the defects under gravity effects. Next parts are devoted
to the characterization of the defects.

D. Evolution of the number of defect with α

All the spatiotemporal patterns that contain defects are analyzed using the complex demodulation
technique by Hilbert Transform to extract the module |A(z, t )| and the phase �(z, t ) [39]. The
space-time diagram is transformed into its complex quantity as

I (z, t ) = �{Î (z, t )} = �{|A(z, t )| exp(i�(z, t ))}, (17)

where � is the real part of the complex signal Î (z, t ) obtained by the complex demodulation. To
realize the complex demodulation, first, the two-dimensional spectrum is calculated from the real
signal I (z, t ) by the Fourier transforms Î (k, f ) to detect the most energetic peak of the pattern. Then,
the Fourier transform Î (k, f ) is filtered [̂IGF(k, f )] using the two-dimensional Gaussian filter (GF),
exp[−( f − fp)2/(2σ f )] exp[−(k − kp)2/(2σk )], where f , k and their standard deviations σ f , σk are
chosen to keep the energetic modes: k ∈ [0.5kp, 1.5kp] and f ∈ [0.01 fp, 5 fp]. Afterwards, from the
filtered Fourier transform ÎGF(k, f ), the Fourier inverse transform allows to recover the complex
quantity of the signal Î (z, t ) = |A(z, t )|exp[i�(z, t )], from which the space-time diagrams of the
module |A(z, t )| and phase �(z, t ) are obtained, respectively.

An example of the result of the complex demodulation technique is shown in Figs. 18(a) –18(e).
Comparison of space-time diagrams of the module and phase shows the existence of two defects
of opposite charges: ν+ = +1 for positive defect when the phase presents a positive discontinuity
(+2π ) and ν− = −1 for negative defect when the phase presents a negative discontinuity (−2π ). In
the vicinity of the defect, the module decreases strongly and vanishes in its core [Fig. 18(d-1)]. We
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FIG. 18. Complex demodulation for (Re = 2648; Qg = 160 ml/min; α = 0.0087%; Reg = 0.16; 65%
of glycerol mixture: (a) space-time diagram of analytical prolongment, (b) space-time diagram of phase,
(c) module, (d-1) axial profile of the module near a defect (t = 5.1Ti; z = 11d), (d-2) axial profile of the
module near a hole (t = 18.1Ti; z = 9d), (e) cartography of binarized module (defects in white) superimposed
with the cartography of phase.
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observe that the defects are associated with strong modules variation of the patterns [Fig. 18(c)].
The defects with absolute annihilation of the module are discriminated from the holes observed in
the bubbles patterns. Indeed, in the holes, the module reaches a minimum, that is larger than zero
[Fig. 18(d-2)]. In the presence of defects, the number of vortices of the liquid phase change: the
vortices can merge or split. For this case, the amplitude is equal to zero and the phase of the wave
presents a discontinuity of the phase (±2π ). The physical meaning of these defects is the breaking of
the phase of the vortices accompanied by the local change of the wavelength [Figs. 18(a) and 18(b)].
The axial wavelength increases when the vortices merge and decreases when the vortices have a
dislocation [Figs. 18(a) and 18(b)]. The variation of the wavelength is the result of an instability of
the phase known as Benjamin-Feir instability [19]. The dark regions in the space-time cartography
of the module [Fig. 18(c)] with absolute annihilation of the module correspond to defects. To
detect the defects in the space-time diagram, we have binarized the cartography of the module
[Fig. 18(c)]: the defects correspond to amplitude equal zero (white color: |A| = 0) and pattern
without defects correspond to amplitude larger than zero (black color: |A| > 0). In Fig. 18(e), we
present a superposition of the cartographies of both phase and binarized module relative to defect
detection.

From the binarized module [Fig. 18(e)], we can count the number NDEF of defects during a whole
experimental run and determine the mean number of defects as

〈NDEF〉 = NDEF/T̃acq = (NDEFTi )/Tacq, (18)

where T̃acq = Tacq/Ti is the dimensionless duration of data acquisition. The variation of 〈NDEF〉 with
the control parameter α is plotted in Fig. 19. The number of defects increases with the control
parameter α for α < 0.02% before saturation occurs. The defect dynamic observed in our study is
similar of that observed in the numerical simulations of the complex Ginzburg-Landau equation
[30,31]. In the theory of the DMT, the number of defects can increases with c3 following the
equation 19 suggested by Egolf and Greenside [31], where c3 is the nonlinear dispersion coefficient
in the Ginzburg-Landau equation [Eq. (1)]. c′′

3 is the critical value of c3 at the threshold of the DMT;
a, b and p are free parameters used to fit the numerical data of the number of defects [31] with
Eq. (19). In the experimental investigation of the DMT, Cros and Le Gal [25] and Latrache et al.
[29] have used Eq. (1) to fit the variation of the number of defects with c3, in their experiments, c3 is

the Reynolds number or Taylor number Ta =
√

d
Ri

Re by taking the curvature of the Taylor-Couette

system for the case of viscoelastic flow [29]. In our study, the number of defects is fitted by
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TABLE II. Eglof and Greenside [31] fitting parameter.

Fitting parameters of Eq. (19) a b c′′
3 p

Equation of Ginzburg-Landau [31] 0.66 0.98 0.70 1
Torsional Couette flow [25] 5 4 38.5 1
Viscoelastic Taylor-Couette [29] E = 0.011 0.058 ± 0.004 0.25 ± 0.04 49.8 1

E = 0.020 0.008 ± 0.001 0.86 ± 0.05 46.6 1
E = 0.046 0.032 ± 0.001 6 ± 0.08 43.5 1

Present study: bubbly Taylor-Couette flow 0.5 ± 0.2 0.10 ± 0.05 αDEF(%) = 0.5 ± 0.05
0.0016 ± 0.0002

the Eq. (19) when the control parameter of the DMT c3 considered is the air volumetric fraction
α = c3:

〈NDEF〉 = a exp[−b/(c3 − c′′
3 )p]. (19)

The best fit coefficients of Eq. (19) obtained for our experimental results of the 65% glycerol
mixture yields the values of a, b, p, and c′′

3 given in Table II; α plays the same role as c3 and c′′
3 =

αdef = 0.0016% is the critical value of the air volumetric fraction above which the defect mediated
turbulence regime DMT takes place. In Table II, we summarize also the coefficients obtained in the
previous work for the DMT observed in different systems.

In the DDC regime for α > 0.02%, it is confirmed that the number of defects saturates (Fig. 19)
as expected for a device of finite dimensions. Ndef

Tacq fp
≈ 14 is representative of the number of defects

per time period of the bubbles patterns over the entire height of the device, it is quite equal to L/λ,
which confirms that at saturation, we have one defect over each axial period of the Taylor vortices
and over each time period of the azimuthal wavelength.

E. Spatiotemporal properties in the transitions of the DMT regimes

The separation time between two consecutive defects Tsep and the lifetime Tdef of each defect are
determined, based on the cartographies of the binarized module of the space-time diagrams complex
demodulation [Fig. 18(e)]. The averaged lifetime 〈Tdef〉 and the averaged separation time 〈Tsep〉 are
the arithmetic average among all the defects of a space-time diagram. Figures 20 and 21 display
〈Tdef〉 and 〈Tsep〉 scaled by the rotation period Ti as a function of the control parameter α. For the
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FIG. 20. Normalized averaged lifetime of the defects according to α for mixtures of 65% and 40% glycerol.
Error bars represent standard deviations.
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FIG. 21. Normalized time separation between two consecutive defects according to α for mixtures of 65%
and 40% glycerol. Error bars represent standard deviations.

mixture of 65% glycerol, and for α > αDDC = 0.01%, the separation time between two consecutive
defects is of the same order as the lifetime of defect: 〈Tdef〉 ≈ 〈Tsep〉 ≈ 0.1Ti. This result has been
reported in the theoretical calculation of Afraimovich and Burnimovich [40] and is characteristic of
the DDC regime. As can be seen in Fig. 21, for the mixture of 65% glycerol, and for α > αIDC =
0.005%, the standard deviation of the separation time σTsep is of the same order as the averaged value
of the separation time Tsep. Also, for this range of α values, the mean number of defects is equal to
the inverse of the averaged separation time: 〈NDEF〉 = Ti/〈Tsep〉, as confirmed by Fig. 22. This is in
agreement with an exponential decrease of the distribution of the separation time (Fig. 23), and a
Poisson distribution of the occurrence number of the defects, as observed from [25,29]. This result
confirms that the nucleation of the defects freezes the dynamics of the patterns around the defect
and validates the role of a homoclinic orbit in the transition scenario proposed by Afraimovich and
Bunimovich [40].
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FIG. 22. Inverse of the averaged separation time in function of the mean number of defects.
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FIG. 23. Histogram of the separation time between two consecutive defects fitted by exponential law for
Re = 2867; Qg = 99.2 ml/min; α(%) = 0.0054; mixture 65% of glycerol.

The covariance of the separation time between two consecutive defects can be calculated using
the following definition:

CoTsep = 1

Ndef − 1

Ndef−1∑
i=1

(
T i

sep − 〈Tsep〉
)(

T i+1
sep − 〈Tsep〉

)
. (20)

The covariance [Eq. (20)] gives an information about the independency of the defects occurrence.
For α � αIDC = 0.005%, the covariance (Fig. 24) is almost equal to zero (CoTsep ≈ 0), the defects

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

(%)

-5000

0

5000

10000

15000

20000

C
ov

ar
ia

nc
e

65%  of glycerol

IDC
(%)

FIG. 24. Covariance of the consecutive separation times between defects as a function of α(%) for the
mixture of 65% glycerol.
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FIG. 25. Ratio of the correlation length to the averaged axial defect separation length according to α for
the mixture of 65% glycerol.

occurrences are independent events. This is in agreement with the exponential distribution law of
separation times where σTsep is of the same order as the averaged value of the separation time 〈Tsep〉.
This critical value of αIDC is in agreement with that obtained by the evolution of the correlation time
and length when they are smaller than the spatiotemporal period.

The axial separation length between two consecutive defects Hsep is also determined based on
the cartographies of binarized module of the complex demodulation [Fig. 18(e)] and the averaged
value 〈Hsep〉 is calculated by arithmetic mean among all defects of the space-time diagram. In
the theoretical work of Coullet et al. [18], the transition to developed turbulence occurs when
the correlation length of the system becomes of the same order as the averaged distance between
defects [18]. By the same idea, we have plotted the ratio of correlation length to the mean axial
separation length between two defects (Fig. 25). The ratio ξ/〈Hsep〉 decreases from 2.5 to 1 at
α = αDDC = 0.01% which corresponds to the transition to the developed defects chaos regime
(DDC) in our study.

IV. CONCLUSION

The modification of the flow patterns and the occurrence of the defects induced by bubbles
injection in a Taylor-Couette flow with rotation of the inner cylinder has been experimentally
studied. It is the first time that the problematic of the dynamics of spatiotemporal defects in a
Taylor-Couette flow is addressed for a bubbly mixture. For the Reynolds number range of the study,
the basic flow (single-phase flow) is a turbulent Taylor vortex flow, for which the Taylor vortices are
arranged as a steady toroidal pattern, axially periodic, without waviness in the azimuthal direction.
For the bubble size of the study, bubbles are captured by the Taylor vortices and in the outflow
region between the vortices. Thus, the Taylor vortices arrangement has been characterized based
on visualizations of the bubbles arrangement. Using the statistical tools applied to the space-time
diagrams of the bubbles patterns in the axial direction, we have evidenced that bubbles can modify
the arrangement of the Taylor vortices: (a) bubbles entrapment modify the axial wavelength,
(b) bubbles entrapment in the vortices can bring about the occurrence of an azimuthal wave, (c) for
particular conditions of the Reynolds number and volumetric fraction, under gravity effect, bubbles
entrapment can connect the Taylor vortices (spiral pattern), (d) bubbles are responsible for the
nucleation of spatiotemporal defects (merging or splitting of the Taylor vortices) which results from
a switching between basic patterns such as toroidal and spiral patterns (composite patterns flow).
We have shown that the composite patterns flow can be classified as three regimes: (i) the structured
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composite patterns regime SCP characterized by punctual periodic defects, (ii) the intermittency
defect chaos regime IDC for which intermittent defects spots alternate with the basic patterns in
time and space, and (iii) the developed defects chaos regime DDC characterized by a large defects
density and destructured patterns. To our knowledge, it is the first time that unstructured composite
bubbly flows IDC and DDC are evidenced. Using the complex demodulation of the space-time
diagrams, the defects have been characterized in the transition from SCP to DDC. It is shown that
the development of the defects in the transition obeys the DMT theory (defect mediated turbulence
theory), as for viscoelastic fluids [29]. It has been evidenced that the available air volumetric fraction
α is the adequate control parameter to describe the transition scenario of the DMT in the framework
theory of Ginzburg-Landau equation. α results from a combination of the Reynolds number and
the air injection rate. This is different from viscoelastic fluids for which the control parameter of
the DMT is the Reynolds number [29]. The evolution of the number of defects with α fitted by the
equation of Egolf-Greenside has been used to determine the threshold value of α that characterizes
the occurrence of the DMT (αdef = 0.0016%). The evolution with α of the correlation length and
time of the DMT patterns has been used to determine the threshold value of α for the transition
between the SCP and IDC regimes (αIDC = 0.005%). This transition value was confirmed by the
covariance of the separation time between two consecutives defects. The transition from IDC to
the DDC has been evidenced at αDDC = 0.01%. This transition is characterized by: (i) a correlation
length ξ of the patterns of the same order as the mean distance Hsep between defects (ξ = Hsep),
(ii) a mean separation time between two consecutive defects of the same order as the lifetime of
defects, (iii) an axial diffusion velocity of the bubbles patterns of the same order as the bubbles
rising velocity. In the DDC regime, due to our finite geometry, at high air volumetric fractions
(α > 0.02%), we observe a saturation of the number of defects, as well as a saturation of the diffu-
sion rate, correlation time and length. At saturation, bubbles upward jumping control the dynamics
of the defects. The parameters of influence are the bubbles terminal rising velocity and the bubbles
equilibrium positions in the vortices, under gravity effect. Generally speaking, we have shown
that by introducing defects, bubbles can modify the mixing properties of the Taylor-Couette flow.
Nevertheless, for same range of the Reynolds numbers, same range of the air volumetric fraction,
same viscosity and same bubble size, a change in the geometry of the device (small or large gap), by
changing the circulation of the Taylor vortices, can result in different equilibrium positions of the
bubbles capture, which is expected to change the axial wavelength and the dynamics of the defects.
Also we have shown that gravity effect induced by the bubbles terminal rising velocity plays a role
in the DMT transitions. Thus, we can expect different critical values of the air volumetric fraction
that characterize the transitions of the DMT in a Taylor bubbly flow, when changing the viscosity,
bubble size or the geometry of the gap. These aspects should be investigated in future studies.
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