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Simultaneous liquid flow and drying on rotating cylinders
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The coating and drying of nonflat discrete objects is a key manufacturing step for a
wide variety of products. Flow of a thin nonvolatile liquid film on the outside of a rotating
cylinder is commonly used as a model problem to study the coating of discrete objects.
However, the behavior of a volatile particle-laden coating remains an important open
problem. In this work we use lubrication theory to study the evolution of a liquid film
laden with colloidal particles in the presence of solvent evaporation. Two coupled evolution
equations describing variations in coating thickness and composition as a function of
time and the angular coordinate are solved numerically. In the limit of a rapidly rotating
cylinder, gravitational effects are negligible and linear stability analysis and nonlinear
simulations demonstrate that nonuniform drying at higher drying rates may cause thickness
and composition disturbances to regrow after initially decaying. When gravitational effects
are significant, poor liquid redistribution at lower rotation rates and higher drying rates
leads to less uniform coatings. Colloidal particles hinder liquid redistribution at high
concentrations by increasing the viscosity, but help prevent rupture of the coating at more
moderate concentrations. A parametric study reveals that both thickness and composition
variations are minimized at high rotation rate, low drying rate, and moderate initial particle
concentration.
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I. INTRODUCTION

The coating and drying of nonflat discrete objects is an essential step in manufacturing a
wide variety of products such as medical devices and endoprostheses [1–4], dip-molded food and
polymer products [5–7], and rotationally molded hollow plastic objects [8,9]. Drug-eluting and
friction-reducing coatings may be applied to medical devices, such as stents and catheters, to prevent
rejection by the body or increase the ease of use [1–4]. Molding processes bear many similarities to
these coating processes; a coating is applied to a rotating mold, solidified, and then stripped from
the mold to yield the final product, e.g., fuel tanks and bins [5–9].

Gravity can drive flows that cause liquid to collect into droplets and fingers, resulting in coating
nonuniformities. Uniform coatings are often desired, and coating defects such as thickness and
composition variations may negatively impact coating functions [10]. After a liquid coating is
applied, the solvent must be removed, and this drying step can affect liquid distribution on the object
to be coated. The effect of drying on the coating of nonflat discrete objects remains an important
open problem.

An extensive body of work has examined the flow of nonvolatile liquids on rotating discrete
objects, as summarized by Evans et al. [11,12]. Rotation of liquid-coated nonflat objects is often
used to control distribution of liquid on a substrate. Moderate rotation rates may be used to prevent
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the formation of droplets on the underside of the objects, while higher rotation rates may be used to
shed excess liquid [2]. Liquid flows on the outside of rotating cylinders are the simplest and most
extensively investigated example of flows on the outside of nonflat rotating objects.

Moffatt [13] investigated flows of thin liquid films on rotating cylinders in the absence of surface
tension by invoking the lubrication approximation and neglecting liquid flow along the cylinder
axis. By examining the balance between viscous and gravitational forces, Moffatt [13] determined
that a coating of mean thickness H may be supported on a cylinder by a minimum rotation rate

�c =
(

2π

4.443

)2(H

R

)2
ρgR

μ
, (1.1)

where R is the cylinder radius, ρ is the liquid density, μ is the liquid viscosity, g is the gravitational
acceleration, and �c is the critical rotation rate. Above the critical rotation rate �c, the mass flux
Q around the cylinder is constant, and a steady-state coating may be obtained that is thicker on the
upward-moving side of the cylinder and thinner on the downward-moving side. Good agreement
between the observed critical rotation rate and that predicted from Eq. (1.1) has been demonstrated
through flow-visualization experiments [14,15].

Experimental observations by Moffatt [13] revealed the formation of a rotating lobe of liquid
that revolved around the cylinder for � > �c. Subsequent numerical analyses [11,16] captured
the behavior of the rotating lobe by incorporating surface tension into the model of Moffatt
[13]. Pukhnachev [17] reasoned that the addition of surface tension may smooth out shocks and
discontinuities. Hinch and Kelmanson [16] demonstrated that the decay rate of the rotating lobe is
strongly proportional to the film thickness and inversely proportional to the viscosity.

Hynes [18], Evans et al. [11], and Karabut [19] showed that steady states for � < �c may be
obtained by including the effects of surface tension and also explored the effects of centrifugal
forces on the coating. Additionally, Hynes examined the stability of these steady states to angular
and axial perturbations. The nonaxisymmetric shape of the coating in the presence of gravity imparts
additional surface-tension and centrifugal forces that stabilize the free surface [18,20]. Lopes et al.
[21] added to this body of work by exploring the formation of unstable steady states where liquid
will likely be shed from the cylinder. Kelmanson [22] examined the effects of centrifugal forces
on the evolution of the coating, showing the existence of unstable oscillatory solutions at higher
rotation rates.

Investigations of the effects of drying on coating flows on nonflat rotating discrete objects
are lacking. An extensive set of investigations has examined the evolution of volatile single- and
multicomponent coatings on flat and patterned planar substrates, as reviewed in Refs. [23,24]. These
investigations have shed light on the dynamics of volatile thin liquid films subjected to a variety
of forces, including thermal- and surfactant-induced Marangoni forces [25–31] and intermolecular
forces between the coating and substrate that may lead to film rupture [32]. Of these studies, flows
of volatile and nonvolatile liquids on planar inclined substrates [26,33–35] are the closest analog to
the rotating-cylinder problem, as the effects of gravity on the evolution of the coating are taken into
account.

The present work extends the model of Evans et al. [11] to study the flow of a volatile coating
laden with colloidal particles on a rotating cylinder. Colloidal suspensions are often used as coating
liquids and are an important model system to explore. We consider cases where gravitational effects
are negligible and significant, as we are interested in developing fundamental understanding and
both cases are relevant for practical applications. In the absence of gravity, drying is incorporated
into the linear analyses of Refs. [11,18] to understand its effects on the evolution of thickness and
composition variations. In the presence of gravity, we study the evolution of a drying coating under
conditions initially below the critical load criterion [Eq. (1.1)] where a hanging droplet should form
on the underside of the cylinder. We observe a transition from a hanging droplet to a rotating lobe as
a result of mass losses and viscosity increases during drying and we characterize how this transition
influences coating uniformity.
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FIG. 1. Model geometry.

In Sec. II we present a lubrication-theory-based model to describe the evolution of a volatile
particle-laden coating on a two-dimensional cross section of a rotating cylinder, where flows and
variations in the axial direction have been neglected. We start with the limiting case of a volatile
coating in the absence of gravity in Sec. III and then move on to the case including gravity in Sec. IV.
A summary and conclusions are provided in Sec. V.

II. MATHEMATICAL MODEL

We consider the behavior of a drying particle-laden liquid film that fully wets a circular cylinder
of radius R rotating counterclockwise at angular speed �. The liquid film consists of a stable
suspension of colloidal particles within a volatile Newtonian solvent. Mass concentrations of the
particles and solvent are defined as cp and cs, respectively. The densities of the colloidal particles are
considered identical to the solvent density so that the mixture density is constant and the influence
of particle adsorption to the cylinder surface or liquid-air interface is neglected. A description of the
mixture viscosity is provided in Sec. II A.

The problem is defined in a cylindrical coordinate system (r, θ, z) (Fig. 1), where h(θ, z, t )
represents the thickness of the liquid film with respect to the cylinder radius. For convenience, a new
radial coordinate y = r − R is defined on the interval 0 � y � h. Within this region, we describe the
liquid velocity as

u = urer + (�R + uθ )eθ + uzez, (2.1)

where the angular component of the velocity has been decomposed into two parts: solid-body
rotation and the deviation therefrom [36]. At the cylinder surface, the liquid temperature is identical
to the cylinder temperature Tc, which is above the saturation temperature of the solvent. At the
liquid-air interface, the film is in contact with a saturated vapor of the solvent, held at its saturation
temperature Tsat. Drying of the liquid film will be described using the one-sided model of Ref. [32],
with more details provided in Sec. II A.

A. Governing equations

The equations governing mass and momentum conservation for a constant density, variable
viscosity liquid are

∇ · u = 0, (2.2)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ + ρg, (2.3)
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where g = −g sin θer − cos θeθ is the gravitational acceleration in a fixed reference frame, p is the
liquid pressure, and τ = μ(φ)[∇u + (∇u)T ] is the viscous stress tensor. We model the viscosity
μ(φ) using the relationship derived in Refs. [37,38] in the absence of shear thinning,

μ(φ) = μs

(
1 − φ

0.64

)−2

. (2.4)

Here μs is the viscosity of the coating liquid in the absence of colloidal particles and φ is the
particle volume fraction given by cp/ρ. In Eq. (2.4) it is assumed that the colloidal particles are
rigid spheres whose maximum random packing fraction is φm = 0.64. Note that as φ approaches
φm, the viscosity rapidly diverges and the coating effectively solidifies. For simplicity, we neglect
thermoviscous effects [39,40].

Evolution of the liquid temperature and composition is described by a set of convection-diffusion
equations

∂T

∂t
+ u · ∇T = α∇2T, (2.5)

∂φ

∂t
+ u · ∇φ = D∇2φ, (2.6)

where α, the liquid thermal diffusivity, and D, the diffusivity of colloidal particles, are taken to be
constants. Although other authors have included the dependence of the particle diffusivity D on
the concentration, this dependence was not found to substantially alter the key results in related
problems [33]. In the course of the present work we briefly examined the evolution of a coating
where particle diffusivity depends on composition. Compared to the case of a constant diffusivity,
only minor quantitative changes in the results are observed. Since no qualitative changes occur, we
choose to neglect the dependence of D on φ in this paper.

On the cylinder surface, we fix the liquid temperature, apply a no-flux boundary condition for
colloidal particle transport, and apply no-slip and no-penetration boundary conditions for the liquid
velocities,

T = Tc, (2.7)

1

r

∂

∂y

(
r
∂φ

∂y

)
= 0, (2.8)

ur = uθ = uz = 0. (2.9)

At the liquid-air interface y = h, we apply interfacial balances for total mass, normal stress,
tangential stress, particle mass, and energy, respectively [32,41,42],

(ul − uI ) · n = (uv − uI ) · n = J, (2.10)

J

ρ l
(ul − uv ) · n + pl − [n · τ · n]l − pv + [n · τ · n]v = σ∇ · n, (2.11)

−[n · τ · t i]
l + [n · τ · t i]

v = −∇sσ · t i (i = θ, z), (2.12)

φJ

ρ l
− D ∇φ · n = 0, (2.13)

J

[

Hv + 1

2

(
J

ρ l

)2

−
(

J

ρv

)2]
= −kl

thn · ∇T l + kv
thn · ∇T v, (2.14)

where the superscripts l , v, and I denote, respectively, liquid, vapor, and interface quantities. The
scalars kth, σ , J , and 
Hv are the thermal conductivity, surface tension, evaporative mass flux, and
latent heat of evaporation, respectively. The vectors n and t i are the outward unit normal vector and
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the tangent vectors in the i direction, defined as

n = ∇F

|∇F | , (2.15)

tθ =
[

1

r

∂h

∂θ
er + eθ

][
1 +

(
1

r

∂h

∂θ

)2]−1/2

, (2.16)

t z =
[
∂h

∂z
er + ez

][
1 +

(
∂h

∂z

)2]−1/2

, (2.17)

where F (r, θ, z, t )=z − h(θ, z, t )=0 is the function defining the free surface. In Eqs. (2.10)–(2.14),
the evaporative mass flux J appears.

We model the evaporative mass flux by assuming that exchange of solvent from liquid to vapor
is slower than diffusion of solvent vapor away from the interface, an important component of the
one-sided model [32],

KJ = T I − Tsat = T l (y = h, θ, z, t ) − Tsat, (2.18)

K =
(

T 3/2
sat

αρv
Hv

)(
2πRgas

Mw

)1/2

. (2.19)

It is assumed that the coating liquid, with interfacial temperature T I = T l (y = h, θ, z, t ), is in
contact with its corresponding saturated vapor, with temperature Tsat. The interfacial temperature
has been elevated above Tsat by heating the cylinder surface, driving evaporation. Equation (2.18) is
effectively a mass-transfer-coefficient model for the mass flux, where the mass transfer coefficient
K−1 is dependent on the saturation temperature Tsat, the ideal gas constant Rgas, the liquid molecular
weight Mw, and the accommodation coefficient α. The latter quantity represents the fraction of
molecules that are exchanged between phases upon collision with the liquid-air interface.

The one-sided model applies to experimental conditions where a superheated liquid is in contact
with its corresponding saturated vapor [32,43] and where transport of mass across the liquid-vapor
interface is the rate-limiting step. Predictions of the one-sided model for evaporating water droplets
agree well with experiments performed under these conditions [43]. An alternative approach to
describe drying is the diffusion-limited model [44]. In this model, the rate-limiting step is taken to
be diffusion of the volatile species through an unsaturated vapor, which drives a flux of the volatile
species from the liquid to the vapor phase. Although a diffusion-limited model of evaporation may
also be applied, it becomes necessary to model diffusion in the vapor phase.

B. Scaling and evolution equations

In many applications of interest, the characteristic thicknesses H of the liquid film is much
smaller than the cylinder radius R. As a result, a small parameter ε = H/R � 1 may be defined
and the lubrication approximation may be invoked to simplify the governing equations. Following
prior work [11,12,20,45], we introduce the dimensionless quantities (denoted by tildes)

(y, h) = H (ỹ, h̃), (r, z) = R(r̃, z̃), t = ϒ t̃,

ur = εUũ, uθ = U ṽ, uz = U w̃, (2.20)

p = Pp̃, T = T̃ 
T + Tc, μ = μsμ̃.

The characteristic speed U = ρgH2/μs, characteristic pressure P = μsU/H , and characteristic time
ϒ = R/U are representative of the gravitational drainage process. Additionally, the temperature
difference 
T = Tc − Tsat is a positive constant and provides the driving force for drying. We
assume a constant surface tension in the present work to isolate the influence of solvent removal.
Additional calculations we have performed that account for the variation of surface tension with
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TABLE I. Dimensional values for various coating properties.

Constants Order of magnitude

Viscosity μs (P) 0.1
Density ρ (g cm−3) 1
Surface tension σ (dyn cm−1) 72
Film thickness H (cm) 10−2

Cylinder radius R (cm) 1–10
Particle diffusivity D (cm2 s−1) 10−12–10−11

Drying rate (μm s−1) 10–100
Cylinder rotation rate � (rad s−1) 10
Latent heat of vaporization 
Hv (J/g) 100–2000
Vapor density ρv (g cm−3) 10−3

Saturation temperature Tsat (K) 323–373
Molecular weight Mw (g mol−1) 20–100
Accommodation coefficient α (unitless) 10−3–1
Cylinder temperature Tc (K) 323–373
Liquid thermal conductivity kth (W m−1 K−1) 0.1–1

temperature show that thermal Marangoni forces lead to only minor quantitative changes in the
results. Order-of-magnitude estimates for select dimensional quantities in Eq. (2.20) are listed in
Table I. Hereafter, we drop the tilde from dimensionless variables to simplify our notation.

Using the scaled parameters in Eq. (2.20), we simplify Eqs. (2.2)–(2.6) and the corresponding
boundary conditions in Sec. II A according to the lubrication approximation [11,12,20,45], the one-
sided model [32], and the rapid-vertical-diffusion approximation [46]. In the rapid-vertical-diffusion
approximation, the particle concentration φ is defined as

φ(y, θ, t ) = φ̄(θ, t ) + ε2Pe φ̃(y, θ, t ), (2.21)

where φ̄ is the depth-average concentration, Pe is a Péclet number defined in Table II, and φ̃ is
the vertical fluctuation in particle concentration. The integral of the vertical fluctuation through
the coating depth y is assumed to be zero and its magnitude ε2Pe is assumed to be small. These
simplifications result in a set of coupled evolution equations for the film thickness and depth-average
particle volume fraction, and one quasisteady expression for the interfacial temperature.

TABLE II. Dimensionless parameters and typical values.

Parameter Definition Physical meaning Typical value

M μs/ρ
√

gR3
viscous forces

gravitational forces
O(10−3)

W �/
√

g/R
rotational forces

gravitational forces
O(10−3–10−2)

Bo ρgR2/σ
gravitational forces

surface-tension forces
O(10–100)

E 
T ν/KρgR2 drying velocity

gravitational velocity
O(10−6–10−5)

Bi 
HvR/Kkth
evaporative heat transfer rate

conduction rate
O(105–106)

Pe ρgR3/μsD
convective mass transfer rate

diffusive mass transfer rate
O(106–107)
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In the present work we neglect any axial flows and variations to focus on how drying affects
coating behavior around the cylinder circumference. We note that curvature of the coating in the
axial direction will generate flows that affect coating curvature in the angular direction and this may
lead to qualitatively different results. We rescale h and U in terms of R (U = ρgR2/μs) as was done
in Refs. [11,12] to obtain the leading-order evolution equations

(1 + h)
∂h

∂t
= −E (1 + h)T (h) − MW

∂

∂θ

(
h + h2

2

)
+ ∂

∂θ

[
cos θ

μ

(
h3

3
+ h4

2

)]

− ∂

∂θ

{
h3

3μ

[
(W 2 − sin θ )

∂h

∂θ
+ 1

Bo

∂

∂θ

(
h + ∂2h

∂2θ

)]}
, (2.22)

(
h + h2

2

)(
∂φ

∂t
+ MW

∂φ

∂θ

)
+ hṽ

∂φ

∂θ
= 1

Pe

∂

∂θ

(
h
∂φ

∂θ

)
+ E (1 + h)φT (h), (2.23)

T = 1

1 + Bi(1 + h) ln(1 + h)
, (2.24)

where h is the rescaled thickness and φ is the depth-average particle concentration. For simplicity,
the line over φ has been dropped. We note that while our original scaling allows for a systematic
derivation using lubrication theory, rescaling using R allows all lengths to be measured in terms of
a common scale. This is more convenient for presenting results and causes ε to appear only in the
initial film thickness [11,12]. Table II provides definitions, physical meanings, and typical values
of dimensionless parameters in Eqs. (2.22)–(2.24). The depth-average angular component of the
velocity is given by

hṽ = −cos θ

μ

(
h3

3
+ h4

2

)
+ h3

3μ

[
∂h

∂θ
(W 2 − sin θ ) + 1

Bo

∂

∂θ

(
h + ∂2h

∂2θ

)]
. (2.25)

For a nonvolatile particle-free liquid (E = 0 and φ = 0), Eq. (2.22) reduces to the evolution
equation obtained in Ref. [11]. In the limit of Bi = 0, heat transfer effects may be neglected and
the coating temperature at the liquid-air interface is uniformly the cylinder temperature. In the
limit of Bi → ∞, the coating temperature depends strongly on the film thickness as h → 0. For
all simulations presented here, we use one Biot number (Bi = 1.8×106) and one Bond number
(Bo = 100), which are representative of typical values. In Sec. IV we comment briefly on the effects
of these parameters.

Given a fixed set of dimensionless parameters (Table II) and initial conditions, Eqs. (2.22)
and (2.23) are solved using a partially implicit finite-difference scheme following Refs. [11,45].
The θ domain is discretized using a set of nθ � 600 evenly spaced nodes, with spacing given by

θ = 2π/nθ . The time domain is discretized using a fixed nondimensional time step 
t � 50,
with the current time step being t k and the next time step being t k+1. The convective terms and
drying terms, with respective coefficients MW and E , in Eqs. (2.22) and (2.23) are discretized in
time using a trapezoid rule, where the average values at t k and t k+1 are used to approximate their
contribution to ∂h/∂t . All other terms are discretized in the same manner as in Refs. [11,45].

Unless otherwise stated, uniform initial conditions for the film thickness h(θ, t = 0) = ε and par-
ticle volume fraction φ(θ, t = 0) = φ0 are applied. We use a value of ε = 0.007 in all simulations.
Note that if the initial film thickness is too small, the film will evaporate away before significant flow
occurs. If the initial film thickness is too large, disturbances to the film thickness will grow rapidly
under the action of centrifugal forces or gravity, making it difficult to resolve the free-surface shape.

Simulations are ended when either of the following criteria is satisfied:

min[h(θ, t k+1)] � ε/1000,

max[φ(θ, t k+1)] � 0.635. (2.26)
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The time step at which the simulations are halted is henceforth called the dryout time, denoted by td .
In simulations without particles (φ0 = 0), the minimum thickness criterion must be met. We refer
to this mechanism as film rupture. If the maximum concentration is reached [cf. Eq. (2.4)], we refer
to this dryout mechanism as solidification.

III. RAPIDLY ROTATING CYLINDER

Though our main interest is the behavior of a volatile coating in the presence of gravity, it is
instructive to consider flow on a cylinder rotating so rapidly that gravitational effects are negligible.
In this regime, different scales must be chosen for the governing equations. To do this, we neglect
the gravitational terms in Eqs. (2.22) and (2.23) and rescale time and velocity using ϒ = μsR/σ

and U = σ/μs [11,12,20,45], yielding the equations

(1 + h)
∂h

∂t
= −Cae(1 + h)T (h) − Car

∂

∂θ

(
h + h2

2

)
− ∂

∂θ

{
h3

3μ

[
We

∂h

∂θ
+ ∂

∂θ

(
h + ∂2h

∂2θ

)]}
,

(3.1)(
h + h2

2

)(
∂φ

∂t
+ Car

∂φ

∂θ

)
+ hṽ

∂φ

∂θ
= 1

Pes

∂

∂θ

(
h
∂φ

∂θ

)
+ Cae(1 + h)φT (h), (3.2)

T = 1

1 + Bi(1 + h) ln(1 + h)
, (3.3)

where

hṽ = h3

3μ

[
We

∂h

∂θ
+ ∂

∂θ

(
h + ∂2h

∂2θ

)]
(3.4)

and

Car = μs�R

σ
, Cae = μs
T

σρK
, We = ρ�2R3

σ
, Pes = σR

μsD
. (3.5)

The parameters listed in Eq. (3.5) are a rotational capillary number Car , a drying capillary number
Cae, a Weber number We, and a Péclet number Pes, respectively. These dimensionless quantities set
the timescales of solid-body rotation, drying, centrifugation, and particle diffusion relative to the
capillary timescale.

A linear analysis will be conducted for Eqs. (3.1)–(3.4) in Sec. III A and compared to numerical
solutions of Eqs. (3.1) and (3.2) in Sec. III B (particle-free liquid) and Sec. III C (particle-laden
liquid).

A. Linear analysis

In the absence of gravitational forces, we study the fate of a spatially uniform coating whose
thickness and composition have been perturbed by small-amplitude nonuniformities. Instead of
making the frozen-base-state approximation [47], where the base state is assumed to evolve slowly
compared to perturbations, we use a time-dependent base state to account for a base state that
evolves on a similar timescale as the perturbations [30,48]. A linear stability analysis (LSA) is
used to quantitatively examine the fate of these small perturbations for a given set of dimensionless
parameters and initial conditions. Details of the LSA may be found in the Appendix.

The time-dependent base state consists of the solution to Eqs. (3.1) and (3.2) in the absence of
spatial variations,

hb(t ) = ε +

√
2T (ε)Thh − T 2

h tan
[
− t Cae

2

√
2T (ε)Thh − T 2

h − cos−1
(−

√
2T (ε)Thh−T 2

h√
2T (ε)Thh

)]
− Th

T (ε)
, (3.6)

φb(t ) =
(

ε + ε2

2

)
φ0

(
hb + h2

b

2

)−1

. (3.7)
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Note that to obtain Eq. (3.6), a second-order Taylor-series expansion about hb(0) = ε is applied.
The initial conditions used are hb(0) = ε and φb(0) = φ0. The quantities Th and Thh are the first and
second derivatives of T (h) evaluated at the initial condition hb(0) = ε. The base state is perturbed
by

h(θ, t ) = hb(t ) + αh′(θ, t ),

φ(θ, t ) = φb(t ) + βφ′(θ, t ), (3.8)

with small amplitudes α and β.
Equations (3.1) and (3.2) are linearized to yield

∂h′

∂t
= −h′[Th + (hb − ε)Thh] − Car

∂h′

∂θ
− h3

b

3μb(t )(1 + hb)

(
(1 + We)

∂2h′

∂2θ
+ ∂4h′

∂4θ

)
, (3.9)

(
hb + h2

b

2

)
∂φ′

∂t
= −φ′ ∂

∂t

(
hb + h2

b

2

)
− Car

(
hb + h2

b

2

)
∂φ′

∂θ
+ hb

Pes

∂2φ′

∂2θ

+ α

β
h′

[
Cae(1 + hb)(φb)[Th + Thh(hb − ε)] − ∂

∂t
[φb(1 + hb)]

]
, (3.10)

where μb is the time-dependent base-state viscosity

μb(t ) =
(

1 − φb(t )

0.64

)−2

. (3.11)

We simplify Eq. (3.10) by dividing both sides of the equation by
(
hb + h2

b
2

)
,

∂φ′

∂t
= −p(t )φ′ − Car

∂φ′

∂θ
+ q(t )

Pes

∂2φ′

∂2θ
+ α

β
r(t )h′, (3.12)

where p(t ), q(t ), and r(t ) are

p(t ) = ∂

∂t

[
ln

(
hb + h2

b

2

)]
, (3.13)

q(t ) = hb

(
hb + h2

b

2

)−1

, (3.14)

r(t ) =
(

hb + h2
b

2

)−1[
Cae(1 + hb)(φb)[Th + Thh(hb − ε)] − ∂

∂t
[φb(1 + hb)]

]
. (3.15)

Solutions for h′ and φ′ may be obtained by separating each into

h′(θ, t ) = h̄(t )eikθ , (3.16)

φ′(θ, t ) = φ̄(t )eikθ , (3.17)

where h̄(t ) and φ̄(t ) are the time-dependent amplitudes of each perturbation, with initial conditions
h̄(0) = φ̄(0) = 1. The wave number k must be an integer due to periodicity of h(θ, t ) and φ(θ, t )
in the θ direction. Substitution of Eqs. (3.16) and (3.17) into Eqs. (3.9) and (3.12) yields a
nonautonomous system of differential equations

1

h̄(t )

dh̄(t )

dt
= −Cae{Th + Thh[hb(t ) − ε]} − ik Car + h3

b

3μb(t )(1 + hb)
[(1 + We)k2 − k4],(3.18)

dφ̄(t )

dt
= −φ̄(t )

(
p(t ) + ik Car − k2q(t )

Pes

)
+ α

β
r(t )h̄(t ). (3.19)
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From Eqs. (3.18) and (3.19), we expect that h̄(t ) will evolve independently of φ̄(t ) at early times
when linearization of Eqs. (3.1)–(3.4) is valid. However, evolution of φ̄(t ) is clearly coupled to
h̄(t ), and the effects of this coupling will be explored in Sec. III C. Solutions for h̄(t ) and φ̄(t ) are
obtained using the integrating-factor method (the Appendix) to yield

h̄(t ) = eωh (t ), (3.20)

φ̄(t ) = e−ωφ (t )

(
1 + α

β

∫ t

0
r(ζ )eωφ (ζ )+ωh (ζ )dζ

)
, (3.21)

where

ωh(t ) = −
∫ t

0

[
Cae{Th + Thh[hb(ζ )−ε]} + ik Car − h3

b

3(1 + hb)

(
1− φb

0.64

)2

[(1+We)k2−k4]

]
dζ ,

(3.22)

ωφ (t ) =
∫ t

0

(
p(ζ ) + k2q(ζ )

Pes
+ ik Car

)
dζ . (3.23)

The real components of Eqs. (3.22) and (3.23) dictate the growth and decay of perturbations
with respect to the time-varying base states hb and φb. It is important to point out that the
functions ωh(t ) and ωφ (t ) are not perturbation growth rates, which have units of inverse time when
dimensionalized. Instead, ωh(t ) and ωφ (t ) represent unitless functions that dictate the growth and
decay of perturbations. Because the amplification h̄(t ) [Eq. (3.20)] is an exponential function of
time, the eigenvalue

λh(t ) = d Re[ωh(t )]

dt
= −Cae{Th + Thh[hb(t ) − ε]} + h3

b

3(1 + hb)

(
1 − φb

0.64

)2

[(1 + We)k2 − k4]

(3.24)

is a measure of the instantaneous growth rate of thickness perturbations, with dimensions of inverse
time when redimensionalized.

It is difficult to obtain simple analytical expressions for Eqs. (3.20) and (3.21) due to the
complicated time integrals that appear. Instead, Chebyshev approximations of Eqs. (3.20) and (3.21)
are evaluated numerically using CHEBFUN [49]. Equations (3.20) and (3.21) can be evaluated for
multiple sets of parameters in minutes, while simulations of Eqs. (3.1) and (3.2) may take minutes
to an hour for a single set of parameters.

B. Particle-free liquid

Comparison of the LSA to numerical solutions of Eq. (3.1) in the absence of particles is done
for validation and to highlight the effects of drying on the evolution of film-thickness perturbations.
Simulations of Eq. (3.1) have been performed in a reference frame that rotates at angular speed Car ,
which is accomplished by neglecting the solid-body rotation term (set Car = 0). We solve Eq. (3.1)
with the initial condition

h(θ, t = 0) = ε[1 + α sin(kθ )], (3.25)

where k is the wave number of the perturbation.
The eigenvalue λh(t ) is a convenient way to compare numerical results to the LSA,

∂

∂t
[ln(hmax − hmin)] = λh(t ) = −Cae{Th + Thh[hb(t ) − ε]} + h3

b(t )

3[1 + hb(t )]
[(1 + We)k2 − k4],

(3.26)
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FIG. 2. Instantaneous growth rate of perturbations λh(t ) for a particle-free film at We = 50 for a range of
wave numbers k and two drying rates: (a) Cae = 5.00×10−5 and (b) Cae = 5.00×10−2. Solid lines are LSA
predictions and closed symbols are simulation results at times shown in the legends.

where hmax and hmin are the maximum and minimum thickness obtained from numerical results at
a given time. The leftmost term in Eq. (3.26) is used to extract λh(t ) from the simulations. The
rightmost term in Eq. (3.26) is Eq. (3.24) with φb = 0.

The first contribution to the rightmost term in Eq. (3.26) is associated with drying and is
anticipated to be destabilizing since Th < 0 [cf. Eq. (3.3)]. If the film becomes thinner in places,
the interfacial temperature increases, which in turn increases the evaporation rate and further thins
the film. The second contribution to the rightmost term in Eq. (3.26) is identical to what would be
obtained in the absence of drying. It reflects a competition between centrifugal forces, which are
destabilizing, and surface-tension forces, which are stabilizing. Note that since the viscous forces
are ∼h3

b, lower instability growth rates would be expected as the film gets thinner.
In Fig. 2 we compare numerical results to the LSA for two representative cases. Excellent

agreement is observed for both cases. In Fig. 2(a), where the drying rate is relatively low, the
instantaneous growth rate decreases as time progresses, reflecting the increasing importance of
viscous forces as the film gets thinner. In Fig. 2(b), where the drying rate is considerably higher,
the instantaneous growth rate increases as time progresses, reflecting the destabilizing effect of the
drying term in Eq. (3.26).

In Figs. 2(a) and 2(b) the fastest growing or most dangerous wave number remains fixed at k = 5
for both drying rates and for all times shown. As the wave number k must be an integer given the
cylindrical geometry, the most dangerous wave number kcrit is expected to be the greatest integer
less than k̃,

k̃ =
√

1 + We

2
, (3.27)

where k̃ is obtained by solving ∂λh(t )/∂k = 0. Note that Eq. (3.27) predicts that the most dangerous
wave number is independent of drying rate (Cae), consistent with the results shown in Fig. 2.

To validate Eq. (3.27), additional simulations of Eq. (3.1) have been conducted using initial
conditions consisting of a spatially uniform thickness perturbed by random noise of amplitude αε,

h(θ, t = 0) = ε{1 + α[R(θ ) − 0.5]}, (3.28)
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FIG. 3. Profiles of the liquid film obtained from simulation results, shown after droplet formation for
Cae = 0 and at t = td for Cae 	= 0. Drying rates and Weber numbers used in each simulation are shown in
the same panel as the simulation results. Drying rates increase from left to right and Weber numbers increase
from top to bottom. For We = 50 and We = 75, the expected number of droplets is kcrit = 5 and kcrit = 6,
respectively.

where R(θ ) is a set of pseudorandom numbers between 0 and 1. We set α = 1×10−4 for all
simulations in this paper. For Cae 	= 0, simulations are carried out until td , the time at which
min[h(θ, t )] � ε/1000. For Cae = 0, simulations are carried out until droplets have ceased growing.

Profiles of the liquid thickness are plotted at various times for two Weber numbers We and
three drying rates Cae in Fig. 3. For Cae = 0, thickness profiles are shown after droplet formation;
for Cae 	= 0, thickness profiles are shown at the dryout time t = td . At Weber numbers We = 50
[Figs. 3(a)–3(c)] and We = 75 [Figs. 3(d)–3(f)], five and six droplets form, respectively. These
results are in good agreement with the values of kcrit calculated using Eq. (3.27) and the results
shown in Fig. 2.

Another important feature of λh(t ) is the cutoff wave number kc, where λh(t ) changes sign to
signify a shift from growth to decay. In Fig. 2(a) the cutoff wave number is nearly constant and
approximately equal to 7. In Fig. 2(b) an increase in the growth rates for all wave numbers occurs as
time progresses. This increase in λh(t ) over time causes a change in the cutoff wave number, where
kc progresses from k = 10 toward k = 11.

An expression for the cutoff wave number may be obtained by solving λh(t ) = 0,

kc(t ) =
⎛
⎝ (1 + We) +

√
(1 + We)2 − 12 Cae[Th + Thh(hb − ε)](1 + hb)h−3

b

2

⎞
⎠

1/2

, (3.29)

where Th and Thh are the first and second derivatives of the temperature with respect to the film
thickness, evaluated at h = ε. Here kc is not restricted to integer values. Changes in kc over time
result from the time dependence of the base state hb(t ). When the coating liquid is nonvolatile
(Cae = 0) or when the coating dries uniformly [Bi = 0 in Eq. (3.3)], Eq. (3.29) reduces to the
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FIG. 4. Amplification magnitude |h̄(t )| at k = 8 above kc(t = 0) = 7.15, 7.24, and 7.33 (in order of
increasing drying rate) for We = 50. Colored solid lines are simulation results and black dashed lines are
LSA predictions from Eq. (3.20).

expression obtained in Ref. [11]. Even for a volatile liquid (Cae 	= 0), Eq. (3.29) still reduces to the
expression in Ref. [11] if the coating dries uniformly, indicating that nonuniform drying [Bi 	= 0 in
Eq. (3.3)] is necessary to shift kc. In Fig. 2(a) the drying rate is relatively low, so kc is approximately
constant. In Fig. 2(b) the higher drying rate produces an increase in kc as time progresses. Both of
these observations are consistent with Eq. (3.29).

To further illustrate how the change in the cutoff wave number can influence film evolution,
simulations of Eq. (3.1) have been carried out for a particle-free liquid for We = 50 and several
drying rates. The initial coating is a uniform base state perturbed by a sinusoidal disturbance
[Eq. (3.25)] of wave number k = 8, which is greater than the initial cutoff wave numbers of
kc(t = 0) = 7.15, 7.24, and 7.33 (in order of increasing drying rate). Initially, λh(t ) is negative
and the amplitude of the disturbance will shrink. However, as noted above, the cutoff wave number
may increase over time at elevated drying rate. Consequently, kc is expected to surpass k = 8 and
a local minimum in the amplification magnitude |h̄(t )| should be observed when the perturbation
shifts from decay to growth.

To demonstrate the change in the cutoff wave number over time, the amplification magnitude
|h̄(t )| has been determined from these simulation results as (hmax − hmin)/2εα (solid lines) and
compared to the LSA (dashed lines) in Fig. 4. At a low drying rate (Cae = 5.00×10−5), the
amplitude of the perturbation decreases monotonically, showing that kc remains below k = 8. At
elevated drying rates, local minima in |h̄(t )| are observed, indicating that the disturbance has shifted
from decay to growth. From this we may infer that kc has shifted over time and has surpassed k = 8.
Practically, this increase in the cutoff wave number exposes the drying process to a wider range of
instabilities. The LSA predictions agree well with the simulation results when the disturbance is
decaying, but deviations appear as the disturbances begin to grow.

C. Particle-laden liquid

During drying, the colloidal particle concentration will increase as solvent is removed from the
film, leading to an increase in the viscosity as described by Eq. (2.4). Additionally, increases in the
initial particle concentration will raise the initial viscosity of the coating. These viscosity increases
will affect the growth and decay of film-thickness perturbations. We are also interested in the fate
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FIG. 5. Amplification magnitude |h̄(t )| over time at the most dangerous wave number kcrit = 5 for
We = 50. Colored solid lines are simulation results and black dashed lines are LSA predictions from Eq. (3.22).

of compositional perturbations, which may impact the final quality of a coating [10]. Results of the
LSA are compared to simulation results to explore these phenomena.

Simulations of Eqs. (3.1) and (3.2) have been performed in a rotating reference frame, as was
done in Sec. III B. The initial conditions

h(θ, t = 0) = ε[1 + α sin(kθ )],

φ(θ, t = 0) = φ0[1 + α sin(kθ )] (3.30)

are used, where k is the wave number of sinusoidal perturbations to the film thickness and particle
volume fraction.

The instantaneous growth rate is given by Eq. (3.24). An increase in the particle concentration
raises the viscosity, weakening the influence of surface tension and centrifugal forces. For a slowly
drying film, this decrease should slow the growth or decay of the amplification magnitude |h̄(t )|
according to Eq. (3.20).

We now explore the effects of initial particle concentration on thickness perturbations. In Fig. 5,
|h̄(t )| has been obtained from simulations (solid lines) and the LSA (3.20) (dashed lines) at the most
dangerous wave number kcrit = 5 (corresponding to We = 50) when We = 50 and Cae = 1×10−6.
In contrast to the amplifications shown in Fig. 4, those shown in Fig. 5 correspond to λh(t ) > 0, so
|h̄(t )| increases monotonically over time.

As the initial particle concentration increases, the growth of perturbations is hindered by viscosity
increases. For the particle-free case (φ0 = 0), the LSA results deviate from simulation results at later
times as nonlinear effects are more prominent due to the faster growth. Note that although viscosity
increases may be beneficial for hindering the growth of disturbances caused by centrifugal forces or
evaporation, they can also hinder the leveling of disturbances by surface tension. This hindrance is
undesired, as it preserves thickness variations.

We next vary the Péclet number (Pes) and drying rate (Cae) to explore the evolution of com-
position perturbations. In Fig. 6 the amplification magnitude |φ̄(t )| from simulations (solid lines)
and LSA (3.21) (dashed lines) is shown at We = 50 for two different drying rates and several values
of Pes. The amplification magnitude is obtained from the simulations as (φmax − φmin)/2φ0α, where
φmax and φmin are the maximum and minimum values of the particle volume fraction at a given time.
The wave number chosen for these simulations is k = 5, the most dangerous wave number for the
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FIG. 6. Amplification magnitude |φ̄(t )| over time at the most dangerous wave number kcrit = 5 for
We = 50 and φ0 = 0.10 at (a) Cae = 1.00×10−6 and (b) Cae = 1.00×10−5. Colored solid lines are simulation
results and black dashed lines are the LSA predictions from Eq. (3.21).

film thickness perturbation at We = 50. Thickness perturbations grow monotonically for this pair of
We and k, as shown in Fig. 5. In contrast, composition perturbations as measured by |φ̄(t )| evolve
nonmonotonically. As can be seen in Fig. 6, there is excellent agreement between the simulation
results and the LSA predictions.

At early times (t < 5×104) in Figs. 6(a) and 6(b), diffusion of the particles causes the
composition disturbance to decay quickly. For both drying rates, decay of |φ̄(t )| is slowed by
increasing the Péclet number, which weakens particle diffusion. Near t = 5×104, diffusion has led
to nearly complete decay of |φ̄(t )| at all Péclet numbers. At later times (t > 5×104), the composition
disturbance reemerges due to growth of the thickness variations (Fig. 5, φ0 = 0.10) through the
dependence of dφ̄/dt on h̄(t ) [Eq. (3.19)].

While an increase in Cae is expected to amplify these thickness-induced composition variations,
diffusion of the particles will compete to smooth out composition variations. At t = 1×105 in
Fig. 6(b), the disturbance magnitude |φ̄(t )| nearly doubles for an order-of-magnitude increase in the
Péclet number. By lowering the drying rate to 1.00×10−6 in Fig. 6(a), drying is slowed with respect
to particle diffusion, and changes in |φ̄(t )| at t = 1×105 with Péclet number become significantly
smaller. The results of Fig. 6 suggest that composition gradients that form prior to drying are quickly
smoothed out by diffusion, but may regrow during the later stages of drying due to film-thickness
variations. In practical applications, the drying rate would be chosen so that both composition and
thickness variations are within a desired tolerance.

IV. GRAVITY EFFECTS

To examine the effects of gravity, simulations of Eqs. (2.22) and (2.23) are conducted for a range
of rotation rates, drying rates, and initial particle concentrations. Due to computational limitations,
we set the Bond number (Bo = 100), Biot number (Bi = 1.8×106), solvent viscosity (M = 0.007),
and Péclet number (Pe = 1×106). Moderate changes in Bo may alter the shape of the coating and
affect the timescale of phenomena such as rotating-lobe decay [16], but we expect the qualitative
behavior of the drying coating to remain the same. Changes in the solvent viscosity M are expected
to alter the value of the critical rotation rate [Eq. (1.1)], as mentioned in Refs. [11,20]. The chosen
Péclet number is representative of convection-dominated particle transport, and increases in the
Péclet number are not expected to qualitatively alter the results.

For the magnitude of Bi used here, the film temperature is expected to sharply increase near
the cylinder surface (h = 0), and a change in Bi could alter the size of this temperature gradient.
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FIG. 7. Film thickness h(θ = 0, t ) for φ0 = 0, E = 1.0×10−6, and W = 0.012. Time has been normalized
by the dryout time for convenience. Note that during a short period near t/td = 0, h(θ = 0, t ) increases from
0.007 to approximately 0.009, but this change cannot be seen on the plot.

However, because the magnitude of the latent heat of vaporization is large for most liquids, large
variations in Bi do not occur for changes in the solvent. Small to moderate changes in Bi are not
expected to qualitatively influence the behavior of the coating.

Since the initial viscosity varies for each particle concentration, the initial magnitude of viscous
drag, controlled by μ(φ0)MW , will vary if the five rotation rates are identical for all initial particle
concentrations φ0 [50]. To ensure that this drag force is comparable for different φ0 at the beginning
of our simulations, we set five values (0.004–0.012) of the product μ(φ0)W = W0 and determine
the five rotation rates for each φ0 by calculating W = W0/μ(φ0). For each drying rate, a simulation
is performed for every combination of scaled rotation rates W0 and initial particle concentrations φ0.

A. Particle-free liquid

For a nonvolatile single-component liquid, a smooth asymmetric coating may be supported on a
rotating cylinder above a critical dimensionless rotation rate [13],

Wc = 2.001ε2

M
, (4.1)

obtained by balancing viscous and gravitational forces in the absence of surface tension. By
including surface tension, a ridge of liquid may be supported on the underside of the cylinder for
W < Wc. Above the critical rotation rate Wc, this ridge is dragged around the cylinder as a rotating
lobe that decays over time, yielding a smooth asymmetric coating after many revolutions [11]. To
be consistent with terminology used in prior work, we refer to the ridge of liquid supported on the
underside of the cylinder as a hanging droplet. As noted earlier, incorporating curvature in the axial
direction may lead to qualitatively different results.

Figure 7 displays the time evolution of the film thickness at θ = 0 for a volatile particle-free
liquid (φ0 = 0) and a typical set of parameters. The rotation rate W is initially below the critical
rotation rate (Wc ≈ 0.014), so a hanging droplet is expected to form on the underside of the cylinder
at early times. At early times in Fig. 7, a plateau in h(θ = 0, t ) occurs, followed by a peak in
h(θ = 0, t ). The peak corresponds to the movement of a hanging droplet past θ = 0 and the
transition of this hanging droplet to a rotating lobe [11]. The gray inset in the lower left corner
of Fig. 7 shows an enlargement of the main figure near the peak in thickness. Oscillations in the
thickness at θ = 0 (inset, Fig. 7) indicate that a liquid lobe is translating around the cylinder. The
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FIG. 8. Free-surface profiles of a particle-free coating at times and conditions shown in Fig. 7.

amplitude of these oscillations decreases over time, reflecting decay of the rotating lobe. For later
times in Fig. 7, the rotating lobe has decayed sufficiently that oscillations are not observed.

To better illustrate the evolution of the free surface during drying, the profile of the coating on
the cylinder is shown in Cartesian coordinates in Fig. 8 at time points labeled a– f from Fig. 7. At an
early time [Fig. 8(a)], a hanging droplet has formed on the underside of the cylinder and sits a short
distance up the side of the cylinder. As the coating dries, one might expect the thickness around the
whole cylinder to decrease. Instead, the thickness remains roughly constant outside of the droplet
while the droplet decreases in size [Figs. 8(b) and 8(c)], indicating that liquid is being dragged out
of the droplet to replenish the mass lost in other regions of the coating.

In Fig. 8(c) the free-surface profile is shown at the peak in the thickness observed at label c in
Fig. 7. This point divides the early hanging-droplet phase, where liquid is redistributed by dragging
liquid from the droplet, to a late rotating-lobe phase, where redistribution of liquid occurs via motion
of the droplet around the cylinder. Figures 8(d) and 8(e) show the coating profiles following decay
of the rotating lobe. The coatings are reminiscent of Moffatt-type steady coating profiles [Figs. 8(d)
and 8(e)], where the thickness is larger on the upward-moving side of the cylinder and smaller on
the downward-moving side of the cylinder [13]. In Fig. 8(f) the minimum thickness has decreased
below ε/1000 and the simulation is ended based on our dryout criterion [Eq. (2.26)].

To examine the behavior of the coating very close to the dryout time td , it is useful to plot
h(θ, t ) versus θ/π for several times near td (Fig. 9). At the earliest time shown, the coating is
smooth, although a slight dip in the coating thickness may be observed near θ/π = 1.0. Over time,
this trough translates toward θ/π = 1.75 due to cylinder rotation. Since the temperature in thinner
regions of the coating is higher according to Eq. (2.24), the drying rate in the trough is elevated
and the depth of the trough increases over time. By t = td , the difference between the maximum
and minimum thicknesses has nearly doubled as a result of this nonuniform drying, leading to
rupture of the coating [cf. Eq. (2.26)]. Note that inclusion of thermal Marangoni effects would
reduce the dryout time, as liquid would be driven from the thinner regions (which are warmer and
have lower surface tension) to the thicker regions (which are cooler and have higher surface tension)
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FIG. 9. Film thickness h(θ, t ) very close to td for the parameters used in Fig. 7. From top to bottom, times
are t = 0.9995td , 0.99975td , and 1.0000td , where td ≈ 4.4×107.

of the coating, as has been observed in studies of the thermocapillary effect for nonvolatile coatings
[26,29].

In Fig. 10, h(θ = 0, t ) versus time is shown for different rotation rates and drying rates. In
Fig. 10(a), plateaus in h(θ = 0, t ) may be observed at early times. During this early period, a thicker
film [larger h(θ = 0, t )] is supported on the upward-moving side of the cylinder at higher W due
to the stronger viscous drag. Over time, drying leads to redistribution of liquid from the hanging
droplet to thinner regions of the coating, causing the droplet to shrink and move closer to θ = 0
[see Figs. 8(a)–8(c)]. When viscous forces fully support the hanging droplet, peaks in h(θ = 0, t )
at t/td ≈ 0.40, 0.30, and 0.15 (in order of increasing W ) occur as the hanging droplet crosses θ = 0
and transitions to a rotating lobe.

Oscillations in h(θ = 0, t ) following the larger peaks indicate that a liquid lobe is translating
around the cylinder. The amplitude of these oscillations decays more slowly for lower W based

FIG. 10. Film thickness h(θ = 0, t ) for a particle-free coating when (a) E = 1.0×10−6 and W = 0.008,
0.010, and 0.012 and (b) W = 0.012 and E = 1.0×10−6, 5×10−6, and 1.0×10−5. In (b) the three curves
are offset by a = 0, a = 1.8×10−3, and a = 3.2×10−3 in order of descending drying rate to help distinguish
between the three data sets. The same plot without an offset is included as an inset in (b). For each curve, the
time has been normalized by the respective dryout time for convenience. Dryout times td are given in caption
of Fig. 11.
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FIG. 11. Film thickness h(θ, t ) versus θ/π at t = td for the parameters shown in Fig. 10. Dryout times td

are (a) td = 4.24×107, 4.35×107, and 4.4×107 in order of increasing rotation rate W and (b) td = 4.4×107,
8.7×106, and 4.3×106 in order of increasing drying rate E . Film rupture is exacerbated by higher drying rates
and lower rotation rates.

on the difference in oscillation amplitudes observed for varying W . The pronounced oscillations
at lower W may be ascribed to the phenomena investigated by Hinch and Kelmanson [16], who
showed that decay of the rotating lobe is proportional to large powers of the coating thickness (h3

and h7). This can be understood by recognizing that thinner films provide more viscous resistance
to flows that remove liquid from the lobe. The thickness near the transition from hanging droplet to
rotating lobe decreases as the rotation rate decreases, leading to the slower decay of the rotating lobe
in accordance with Ref. [16]. At later times following the peaks, larger thicknesses are observed for
lower W , as weaker viscous drag leads to poorer redistribution of liquid from the upward-moving
side to the downward-moving side of the cylinder. A combination of the slow lobe decay and the
weaker viscous drag at low W are expected to negatively impact coating uniformity near t = td .

In Fig. 10(b), h(θ = 0, t ) versus time is shown for W = 0.012 and three drying rates. Overlap
between the results, shown in the inset in Fig. 10(b), makes them difficult to distinguish from one
another, so the thicknesses have been offset by values shown in the figure caption. Evolution of
these coatings occurs in a manner similar to those in Figs. 7 and 10(a), where a early hanging-
droplet phase and a later rotating-lobe phase are separated by a peak in h(θ = 0, t ). We focus on
the oscillations in h(θ = 0, t ), which are of a larger amplitude at elevated drying rates. In addition,
fewer revolutions of the rotating lobe occur at higher drying rates, indicated by the spacing between
oscillations. These features are a consequence of higher drying rates, which cause the film to thin
faster, making it more difficult to redistribute liquid effectively before dryout occurs.

Slow decay of the rotating lobe at lower W and higher E causes coating nonuniformities to
be preserved until the end of drying. Film thicknesses at dryout h(θ, t = td ) versus the angular
coordinate θ are shown in Fig. 11(a) at fixed drying rate and several rotation rates and in Fig. 11(b) at
fixed rotation rate and several drying rates. Decreases in the rotation rate [Fig. 11(a)] and increases
in the drying rate [Fig. 11(b)] lead to less uniform coatings, indicated by increases in thickness
variations in Fig. 11. These increases occur since lower rotation rates and higher drying rates make
liquid redistribution around the cylinder more difficult. The large thickness variations indicate that
drying is highly nonuniform, since thinner regions dry more quickly.

B. Particle-laden liquid

In the absence of drying, Hinch and Kelmanson showed that the decay rate of the rotating lobe is
inversely proportional to the liquid viscosity [16]. Increases in the initial particle concentration φ0

will increase the viscosity according to Eq. (2.4) and will slow down the decay of the rotating lobe

034001-19



CHANCE PARRISH AND SATISH KUMAR

FIG. 12. Evolution of h(θ = 0, t ) for a scaled rotation rate μ(φ0)W = 0.012 and drying rate E = 1.0×10−6

with initial particle concentrations φ0 = 0.10, 0.20, and 0.30. Time has been normalized by the dryout times,
which are td = 4.3×107, 4.0×107, and 3.4×107 in order of increasing φ0. The results are offset by a = 0,
a = 1.8×10−3, and a = 3.6×10−3 in order of increasing concentration for easier comparison. The inset depicts
the simulation results without an offset.

[16]. In Fig. 12, h(θ = 0, t ) versus t/td is shown for several initial concentrations φ0 at fixed drying
(E ) and rotation [μ(φ0)W ] rates. The results for different concentrations are offset to facilitate
comparison of the data while the inset in Fig. 12 depicts the results without an offset.

An increase in the initial particle concentration from φ0 = 0.10 to φ0 = 0.30 clearly hinders
decay of the lobe, as expected. Oscillations in h(θ = 0, t ) are of a larger amplitude and are preserved
over longer times at higher concentrations where the coating viscosity is higher. Preservation of
these oscillations causes thickness variations to be maintained until dryout, at which point they are
expected to grow due to nonuniform drying (see Fig. 11). In addition, viscosity increases accompa-
nying increases in the initial particle concentration are expected to hinder liquid redistribution by
slowing the leveling of thickness variations, negatively impacting final coating uniformity.

When considering the evolution of a particle-laden liquid (φ0 	= 0), variations in the coating
composition will develop which are absent in a particle-free liquid (φ0 = 0). We now explore
the evolution of coating composition for a representative set of parameters and identify important
features of the results. In Fig. 13, the difference between the maximum and minimum concentrations

φ = φmax − φmin is shown versus time. The shaded inset in the center of Fig. 13 is an enlarged
version of the shaded region near t/td ≈ 0.60.

Oscillations in 
φ are a conspicuous feature in Fig. 13, as they appear, decay, and reemerge over
the course drying. To explain this behavior, h(θ, t ) and φ(θ, t ) are shown in Fig. 14 at the times
labeled a– f in Fig. 13. Thicknesses h(θ, t ) are shown by the solid, black lines and compositions
φ(θ, t ) are shown by the dashed red lines. Note that the values h(θ, t ) and φ(θ, t ) in the axes change
for each panel. By studying the evolution of the coating thickness and composition, we will explain
the evolution of 
φ.

Figures 14(a)–14(c) show the progression of thickness and composition at the points labeled a–c
in Fig. 13. A peak in the composition is observed near θ/π = 0.50 in Fig. 14(a). This concentration
peak translates through the thinnest region of the coating in Fig. 14(b) and begins translating into the
thicker portion of the coating in Fig. 14(c). As we progress from Figs. 14(a) to 14(c), 
φ transitions
from a minimum to a maximum, as shown in Fig. 13.

The oscillations observed in Fig. 13 result from convection of particle-rich coating liquid through
regions of varying drying rate. The interfacial temperature and drying rate are lower in thicker
regions of the coating in accordance with Eq. (2.24) and cause a slower increase in particle
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FIG. 13. Evolution of the composition variation 
φ = φmax − φmin over time for μ(φ0)W = 0.008,
E = 5×10−6, and φ0 = 0.20. Time has been normalized by the dryout time (td = 7.7×106). The inset is a
magnified image of the shaded region between t/td = 0.50 and 0.75.

concentration. As the composition peak enters the thin region of the coating, shown in Figs. 14(a)
and 14(b), the drying rate is higher over the peak concentration and 
φ grows. As the composition
peak enters the thick region of the coating, shown in Fig. 14(c), the drying rate is higher over the
minimum concentration and 
φ shrinks. Oscillations occur as this process repeats until interrupted
near td .

As t approaches td , 
φ grows quickly over time as shown in Fig. 13. In Figs. 14(d)–14(f), the
thickness and composition are shown at points labeled d– f in Fig. 13. A steep bump in the thickness
near θ/π = 1.0 is what remains of the rotating liquid lobe [Fig. 14(d)], and we refer to the thickness
peak as the location of the lobe for convenience. A peak in the particle concentration follows just

FIG. 14. Film thicknesses h(θ, t ) and particle concentrations φ(θ, t ) at the times and conditions shown in
Fig. 13.
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FIG. 15. Film thickness h(θ, t ) and particle concentrations φ(θ, t ) at t = td for μ(φ0)W = 0.008 and
E = 1×10−6. Initial particle concentrations and dryout times are (a) φ0 = 0.00 and td = 4.23×107, (b) φ0 =
0.05 and td = 4.22×107, and (c) φ0 = 0.15 and td = 4.04×107.

behind the rotating lobe in a thin region of the coating, where the drying rate is locally higher. The
minimum in particle concentration remains in the thicker region just in front of the rotating lobe,
where the drying rate is lower. This results in the rapid increase in 
φ observed in Fig. 13, as drying
is faster where the particles are already most highly concentrated [in the thinnest region [Figs. 14(d)
and 14(e)]. Eventually [Fig. 14(f)], the maximum particle concentration φmax reaches the maximum
allowed value and the simulation is ended.

As as result of nonuniform drying, rupture of the thinnest region of the coating occurred in the
particle-free case, as shown in Fig. 9. This film rupture may be affected by the presence of particles,
since solidification (φmax � 0.635) could occur prior to film rupture (hmin � ε/1000). In Fig. 15 the
thickness of three coatings with initial particle concentrations φ0 = 0, 0.05, and 0.15 is shown at
t = td to demonstrate the effect of particles on film rupture.

From Figs. 15(a) to 15(c), the difference hmax − hmin decreases from 0.35×10−3 to 0.25×10−3,
demonstrating that increases in φ0 hinder rupture of the coating. Instead, the particle concentration
in the thinnest region of the coating approaches the maximum allowed value before rupture occurs.
Additionally, an increase in φ0 leads to a more uniform coating composition, which is observed by
comparing Figs. 15(b) and 15(c). This is an unexpected consequence of hindering film rupture,
which caused 
φ to increase quickly in Fig. 13. By mitigating film rupture, increases in the
initial particle concentration will enhance coating thickness uniformity. Practically, this benefit will
compete with the particles’ negative impact on lobe decay (Fig. 12). In the following section we
explore the impact of this and other factors on coating uniformity.

C. Final coating uniformity

In Fig. 16 a contour plot of the composition variation 
φ is shown at t = td versus the scaled
rotation rate μ(φ0)W and initial particle volume percent φ0×100. Figures 16(a)–16(c) depict the

FIG. 16. Final composition variation 
φ = φmax − φmin for various scaled rotation rates μ(φ0)W and initial
particle volume percents φ0×100.
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FIG. 17. Final film thickness variation 
h = (hmax − hmin )/ε for various scaled rotation rates μ(φ0 )W and
initial particle volume percents φ0×100.

results for the three drying rates E = 1.0×10−6, 5.0×10−6, and 1.0×10−5. For all three drying
rates, variations in coating composition grow with a decrease in rotation rate at a fixed particle
concentration, as would be expected. Decreases in the rotation rate make liquid redistribution
more difficult and promote nonuniform drying near t = td [see Sec. IV A, Figs. 10(a) and 11(a)].
As demonstrated in Figs. 13 and 14, these thickness variations and nonuniform drying cause the
particle concentration to increase disproportionately in thinner regions of the coating, giving rise to
composition variations. The thickness variations and nonuniform drying observed at lower rotation
rates are exacerbated by increases in E , resulting in an increase in the composition variation from

φ ≈ 0.15 to 
φ ≈ 0.35 (color bars in Fig. 16).

Additionally, composition variations shrink with an increase in initial particle concentration
at a fixed rotation rate, as shown in Figs. 16(a)–16(c). It has been shown that at fixed rotation
rate, an increase in the initial particle concentration hinders film rupture near t = td by promoting
solidification in thin areas, preventing deep troughs from forming in the coating thickness (Fig. 15).
At the same time, solidification occurs before large variations in the particle concentration may
form, causing a decrease in final composition variation with increasing initial particle concentration
(Fig. 16). For higher E [Figs. 16(b) and 16(c)], viscosity increases occur more rapidly. This hinders
leveling of thickness variations and causes larger composition variations at moderate rotation rates
compared to what is seen at lower E [Fig. 16(a)].

In Fig. 17 a contour plot of the normalized thickness variation (hmax − hmin)/ε is shown at t = td
versus the scaled rotation rate μ(φ0)W and initial particle volume percent φ0×100. Figures 17(a)–
17(c) depict the results for the three drying rates E = 1.0×10−6, 5.0×10−6, and 1.0×10−5. In
general, lower drying rates E , moderate initial particle concentrations φ0, and higher rotation rates
μ(φ0)W lead to more uniform coating thicknesses. Higher rotation rates are preferable, as increases
in μ(φ0)W smooth thickness variations [Fig. 10(a)] and mitigate rupture in thin spots on the coating
[Fig. 11(a)]. Although lower drying rates tend to give more uniform thicknesses, higher drying
rates may be more desirable in practical applications since this corresponds to faster solidification.
In this case, Fig. 17 suggests that using higher initial particle concentrations may help minimize
variations in the coating thickness. However, if the initial particle concentration is too high, liquid
redistribution will be hindered by the higher viscosities and thickness variations will increase.

V. CONCLUSION

Liquid flow on the outside of a rotating cylinder serves as a model problem for studying the
coating of nonflat discrete objects. After a liquid coating is applied, drying is needed to create
a solidified film. The present work focuses on this drying step and thereby provides an important
extension to prior work on the rotating-cylinder problem. Our study also extends prior work
concerning volatile liquids on planar substrates to account for the effects of substrate curvature
and rotation.
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In the absence of solvent evaporation, it often useful to characterize the steady shape of a liquid
film on a rotating cylinder. However, when evaporation is present, the problem becomes inherently
transient. Our results show that while particle concentration gradients may initially dissipate due to
diffusion, they may regrow during the later stages of drying if the evaporation rate is high enough
due to nonuniform drying brought about by film-thickness variations.

When gravitational effects are significant, cylinder rotation tends to redistribute liquid around
the cylinder to compensate for liquid removal via solvent evaporation. Higher evaporation rates and
initial particle concentrations make this redistribution more difficult due to the increase in viscous
resistance. Lower rotation rates are undesirable as well as they correspond to weaker viscous drag.
However, higher particle concentrations also hinder film rupture. As a consequence of all these
factors, both film thickness and composition variations are minimized at high rotation rate, low
drying rate, and moderate initial particle concentration.

In practical applications, objects to be coated will be three dimensional and may have noncircular
cross sections [51–53]. Curvature of the coating in the axial direction or variations in object
curvature will alter the shape of the coating in the angular direction and may lead to significant
changes in the results. In addition, concentration variations may arise along the depth of the film
which could alter the behavior of the coating [54,55]. While lubrication-theory-based models may
be used to study such depthwise concentration variations, they may not capture key features of
the fluid flow such as recirculation regions, which could influence heat and mass transfer during
drying [52]. Finite-element methods, both custom and commercial, are capable of handling these
situations and providing insight into the limits of applicability of the lubrication approximation.
While accounting for these factors will greatly change the details of the results reported here,
our observations regarding liquid redistribution and the factors controlling coating uniformity are
expected to be rather general and to apply to these more complicated situations as well.
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APPENDIX: LINEAR STABILITY ANALYSIS

We begin by regrouping the terms in Eq. (3.18),

dωh(t )

dt
= −Cae{Th + Thh[hb(t ) − ε]} − ik Car + h3

b

3μb(t )(1 + hb)
[(1 + We)k2 − k4], (A1)

where ωh(t ) = ln h̄(t ). An expression for ωh(t ) can be obtained by integrating both sides of Eq. (A1)
with respect to time over the interval (0, t ) to yield Eq. (3.22). The amplitude h̄(t ) is obtained by
taking the exponential of ωh(t ) as shown in Eq. (3.20).

From here we apply the integrating-factor method to obtain an expression for Eq. (3.21).
Equation (3.19) is rewritten as

dφ̄(t )

dt
+ L(t )φ̄(t ) = G(t ), (A2)

where the expressions L(t ) and G(t ) are

L(t ) = p(t ) + ik Car − k2q(t )

Pe
, (A3)

G(t ) = α

β
r(t )eωh (t ). (A4)
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Both sides of Eq. (A2) are multiplied by an integrating factor to yield

d

dt

[
φ̄(t ) exp

(∫ t

0
L(ζ )dζ

)]
= G(t ) exp

(∫ t

0
L(ζ )dζ

)
. (A5)

Integration of both sides of Eq. (A5) over the interval (0, t ) yields

φ̄(t ) exp

(∫ t

0
L(ζ )dζ

)
− 1 =

∫ t

0
G(ζ ) exp

(∫ ζ

0
L(ξ )dξ

)
dζ . (A6)

The expression ωφ (t ) may be defined as

ωφ (t ) =
∫ t

0
L(ζ )dζ . (A7)

By substituting Eqs. (A3) and (A4) into Eqs. (A6) and (A7) and solving for φ̄(t ) in Eq. (A6), the
expressions shown in Eqs. (3.21) and (3.23) may be obtained.
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