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Based on the lattice Boltzmann (LB) method, pore-scale simulations are performed
to investigate the differential diffusion effects on the density-driven instability (DI) with
chemical reaction A+ B — C in porous media. A partially miscible stratification is
considered, and thus only solutes from the top fluid can diffuse down into the host
fluid in pore spaces. Tests with different values of the Rayleigh number Ra, and the
diffusion coefficient D, of species r (r = A, B, C) are considered. The results demonstrate
eight distinct scenarios of DI, and four of them are not observed in equal diffusivity
simulations. Two differential diffusion effects, namely, the double-diffusive (DD) and the
diffusive-layer convection (DLC) mechanisms, can act upon the gravity field and give rise
to new fingering phenomena. The DD mechanism comes into play and results in a local
minimum density layer if Rag/Rac is small and Dp > Dc; and DLC becomes significant
and brings in a local maximum density layer if Rag/Rac is large and Dy < D¢. On one
hand, when fluid density increases with dissolved A, the DD-induced minimum can act
as an inhibiting barrier to suppress fingering propagation, although it can be eventually
penetrated by fingering tips; and the DLC-induced maximum can introduce the second DI
below the first one. On the other hand, when the dissolution of A contributes to decreasing
fluid density, both the DD-induced minimum and the DLC-induced maximum can help
trigger the development of DI. Finally, quantitative results are provided to indicate that
fingering propagates into the host fluid more deeply with larger Dy /D, and the dissolution
of A decreases with the increasing difference between Dy and Dc.
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I. INTRODUCTION

A partially miscible stratification is typically composed of two miscible solutions (labeled as 1
and 2), and a solute A from the top fluid 1 diffuses into the fluid 2 below, but no mass transfers
in the reverse direction. In a porous medium, such a stratification develops when the top boundary
is partially miscible, and species A from the above fluid 1 can diffuse down into the host fluid 2,
filling the pore spaces. Dissolved A can react with another solute B in the host fluid following the
A + B — C scheme, and all three chemical species A, B, and C usually diffuse at different rates. The
coupling effects of diffusion and reaction can moderate species concentrations and thus distributions
of viscosity [1,2], salinity [3], and density [4] in the host fluid. Subsequently, different types of
density-driven instability (DI) dynamics may be introduced by unstable density distributions; even
no injection velocity is involved in this partially miscible stratification [4]. Such an instability
accompanied by convection can drive efficient mass and heat transport, leading to the improved
storage efficiency and security of species A in the host fluid. It is thus at the heart of carbon dioxide
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(CO») sequestration and has also gained considerable interest in groundwater management [5,6] and
enhanced oil recovery [7]. In this regard, fundamental understanding of how reaction and differential
diffusion affect DI dynamics in a porous medium with a partially miscible top boundary is crucial
to helping predict and design relevant applications.

During the past several years, investigations have been carried out to explore the effects of
reaction A + B — C on the development of DI in a porous medium with a partially miscible top
boundary. For instance, some experiments have been performed to observe the characteristics of
DI in ester-alkaline and CO,-alkaline solutions separately [8—11]. Captured experimental data have
showed that different reactions can either inhibit or accelerate the development of DI with respect
to the chemicals containing in the host fluid. Considering that the whole extent of DI may not
be captured in the above experiments [10,12], theoretical studies were performed simultaneously
to analyze DI with reaction A 4+ B — C [13-16]. Loodts et al. [16] theoretically provided a
classification of four types of density profiles, with each one potentially representing a kind of DI
dynamics. But these theoretical works focused on the early-stage development of DI and completely
ignored the nonlinear fingering growth during the late period. More recently, numerical simulations
have been conducted under the guidance of existing theoretical predictions. Budroni et al. [11]
numerically modeled both the stabilized and destabilized fingering phenomena with reaction,
and their results qualitatively verified both experimental observations and theoretical predictions.
Simulation results of Loodts et al. [4] provided the spatial-temporal properties of four types of DI
with reaction A + B — C, which matched well with their theoretical predictions.

Seen from the above experimental, theoretical, and numerical results, chemical reaction can
modify fluid density, and subsequently stabilize, destabilize, or even trigger the development of
DI in porous media. These findings are useful, but they are all based on the assumption that the
three species diffuse equally. It has been reported that differential diffusion effects need to be taken
into account to interpret experimental results [17,18]. Besides, in the context of CO, sequestration,
solutes in the host fluid are likely to have different diffusion coefficients [19]. Thus, it is necessary to
consider a more general case with the three chemical species diffusing at different rates. Until now,
two types of DI introduced by differential diffusion have been reported under nonreactive conditions
[20,21]. Explicitly, if a less dense solution of a slow diffusing species overlies a denser one of a
fast-diffusing solute, an accumulation zone can be created in the top layer with a depletion area
forming below, which is known as a double-diffusive (DD) mechanism. These two areas feature
a locally unstable stratification and subsequently trigger the development of DI. In parallel, the
diffusive-layer convection (DLC) mechanism occurs when the upper component diffuses faster than
the lower one, and a depletion zone followed by an accumulation one can be built up, leading to
the appearance of DI. Indeed, research has also been conducted to investigate the effects of these
two differential diffusion mechanisms on the development of DI in porous media, with reaction
A + B — C being considered. For example, Trevelyan ef al. [22] theoretically predicted that, for a
miscible interface between two reactive solutions, the inclusion of differential diffusion could give
up to 62 types of density profiles. Similarly, by varying the Rayleigh numbers and diffusion rates of
three chemical species, Loodts et al. [23] theoretically identified eight different density profiles for
a partially miscible stratification in a porous media. After that, they assumed that dissolved A can
only increase the density of the host fluid and numerically verified four types of theoretical density
profiles [19].

In summary, existing results have improved our understanding of the effects of differential
diffusion on DI with the reaction A + B — C, but two limitations should be noted. First, a
comprehensive numerical study on such a problem is needed. Although theoretical analyses by
Loodsts ef al. [23] help to predict potential fingering scenarios, numerical simulations are necessary
to illustrate the nonlinear fingering properties during the late stage. In addition, existing simulations
in Ref. [19] are performed under the assumption that fluid density increases with the dissolution
of A, and a large part of the parameter space remains unexplored. Second, pore-scale simulations
are missing. Owing to the complex geometries of porous media, previous numerical studies were
conducted on a representative elementary volume scale where a number of assumptions are required
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FIG. 1. The computational configuration.

[24]. During the past three decades, the lattice Boltzmann (LB) method has become an attractive
alternative to conventional solvers for studying various fluid flow problems at pore scale [25,26].
This is due to its simple implementation, high parallelism, and ability to handle complex boundary
conditions. Actually, in our recent work [27], an LB model has been developed to successfully
reproduce four types of DI dynamics with the reaction A + B — C at pore scale, but different
diffusion rates of the three species are not involved. Therefore, to fill these gaps, the LB method
is further applied to simulate the development of DI coupled with reaction A + B — C in a porous
medium with a partially miscible top boundary at pore scale, and the effects of differential diffusion
are mainly discussed.

II. MATHEMATICAL MODEL

In this study, DI between two reactive solutions (labeled 1 and 2) is investigated in a two-
dimensional (2D) homogeneous porous medium with porosity ¢ = 0.69. As displayed in Fig. 1, the
computational domainis 0 <x </, =1and 0 <y </, = 2/3, and the porous network contains
a staggered array of circular grains with a uniform diameter d. Every grain center obeys a regular
staggered distribution, and the closest center-to-center distances between two cylinders in x and y
directions are 7, and ry, respectively. The single pore size can be then calculated as [, = r, — d. In
this medium, fluid 1 of species A is initially placed in contact with the host fluid 2 in pore spaces
along a horizontal interface at y = 0, with y pointing along the gravity field. These two solutions are
considered miscible and incompressible, and the host fluid contains a dissolved reactant B in initial
concentration Cpy. During the course of time, A diffuses into the host fluid 2 and reacts with B to
yield a product C following the A + B — C scheme. The reaction rate R is calculated as [4]

R = kCyCs, (D

with k being the kinetic reaction constant and C, being the concentration of species r. All three
chemical species can contribute to changes in fluid density p. With the well-known Boussinesq
approximation, p is considered to be constant py = 1 except in the body force term, where it is
taken as [4]

p = po + po(BaCa + BsCs + BcCo), 2

and g, is the concentration expansion coefficient of species r.

In this work, the top boundary (y = 0) is assumed to be partially miscible [4]. Solute A can
dissolve from fluid 1 into the host fluid 2, but no mass transfer takes place in the reverse direction.
Thus, this work focuses on the fluid motion and concentration evolutions in the host fluid, which
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can be described by the incompressible Navier-Stokes (NS) and the convection-diffusion-reaction
(CDR) equations:

V.-u=0, 3)
Jou
p0<5+uvl¢> =—Vp+V(v,00Vu)+F, (4)
0Cy 2
?—}-u-VCA:DAVCA_Rv ®)
aC,
8_tB —|- u- VCB = DBVZCB — R, (6)
aC,
B_IC +u-VCe = DcV3Ce + R, 7

where u = (u, v) and p are the fluid velocity and pressure, respectively, ¢ is the time, and v is the
kinematic viscosity. With the constant force term ppg being absorbed into the pressure term Vp
[28], the buoyancy force is expressed as

F = pog(BsCs + BCp + BcCc), ®)

where g is the acceleration vector of gravity. To solve the present governing equations (3)—(7), initial
and boundary conditions are given as

Calx, 0y <9, 0)=Cao=1, G, y>79, 0)=0,
CB(X, Y, O) = CBOv CC(X, Y, 0) :07 (9)

and

G0, y, 1) =Ci(ly, y, 1), u(, y, 1) =ull, y, 1),
VCr(-x9 l'7 t) = (O’ 0)1 u(xv ly7 t) = (07 0)7
Ca(x, 0, 1) = Cao, VCpe(x, 0,1)=1(0, 0), ulx, 0, ) =0, 0),
vcr(xss Vs t) = (O’ O), u(XSs Vs, t) = (07 0)’ (10)
with x = (x;, ys) representing the solid matrix interface. Note that following the local chemical
equilibrium assumption, C4 at the top boundary (y = 0) is considered to be constant and equal to
the solubility of species A in the host fluid [4]. In addition, a small perturbation ¢ is added to the
initial distribution of A, and the amplitude of this parameter randomly varies along the x direction
within the range [0, 0.0067/,].

Equations (3)—(7) can be expressed in a dimensionless form by introducing the characteristic
length L, velocity U, time T, and concentration C; as

L=1, U=+gBilCa, T =LJU, Cy=Cpo. (11)

In terms of the following nondimensional variables,

v’ poU?" " Cao’ 1 Cao’ Dy’ €7 Dy
B Al I S
L’ L’ T’ p0BsCa0’ poU?/L’
CaoL? v kCaoL
R = DaCZC;, Rar — M’ Sc = — Da = AO , (12)
UDA DA U
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where the asterisked variables are the corresponding dimensionless ones, the dimensionless
equations (3)—(7) read

V.u*=0, (13)
W Vi = -V 4[5V V) + F (14)
u” - u = — _— -(vvu )
or* p Ray
9C; +u*-VC: ! V2Ci — R (15)
u - = — — R,
ar* A RaySc A
dCs Dy,
—B 4w .ver = —E_V2C; — R, 16
ar* B JRaSc B (16)
9Cc +u* - VC} De V2Ci 4+ R (17)
u - = — .
ar* €7 JRaSc €

As can be seen, the behaviors of DI with reaction A + B — C and differential diffusion are related
to the Rayleigh numbers Ra,, the diffusion coefficients D}, the Schmidt number Sc, the Damkéhler
number Da, and the initial concentration ratio 7.

In this work, the above governing equations (3)—(7) are solved by a two-dimensional nine-
velocity multiple-relaxation time (MRT) LB model, which can avoid the unphysical dependence
of permeability on viscosity for pore-scale simulations [29-32]. An MRT LB model has been
proposed to handle the development of DI with reaction A + B — C in our recent work [27], and it
is further extended here for pore-scale simulations of DI coupled with both reaction and differential
diffusion effects. More details about this model are introduced in Sec. III A. During LB simulations,
the boundary conditions in Eq. (10) are treated as follows. The no-slip velocity and impermeable
concentration conditions at the bottom solid wall and the porous matrix interface are realized by the
halfway bounce-back scheme [33,34], and the partially miscible condition at the top boundary is
treated with the nonequilibrium extrapolation scheme [24].

III. RESULTS AND DISCUSSION

In this section, the development of DI with reaction A + B — C and differential diffusion is
simulated in a homogeneous medium based on the MRT LB method. As theoretically predicted
in Ref. [23], such a problem can be characterized by two numbers: the buoyancy ratio Rag/Rac
quantifying the relative contributions of B and C to fluid density, and the diffusion coefficient ratio
Dg /D¢ of these two species. Thus, in the following simulations, the Schmidt number, Damkohler
number, and initial concentration ratio are fixed as Sc = 100, Da =5, and n = 1, respectively,
and different values of Ra, and D, are selected to change test conditions. In addition, grid
convergence tests are carried out, and a mesh of size N, x N, = 1500 x 1000 is chosen to cover the
computational domain in Fig. 1. Other geometrical parameters are set as d = 126, r, = r, = 276,,
and /, = 154,, respectively, with the lattice spacing being 6, = I,;/N..

A. General phenomena

The general phenomena of DI coupled with impact of chemistry and differential diffusion
are first investigated. To gain a comprehensive understanding, two Rayleigh numbers of species
A (Ray = £10°) are considered, and thus fluid density can increase (Ray = 10°) or decrease
(Ray = —10°) with the dissolution of A. These two tests are both simulated at different values
of diffusion ratio Dp/D¢, and a subsection of Rag/Rac¢ is modeled for each given Dg/Dc¢. After a
series of simulations and comparisons, the development of DI can be delineated into four regimes for
Ray > 0 as: Dg/D¢ < 1 with Rag/Rac < Rag/Rac, (case P1) or Rag/Rac > Rag/Rac, (case P2);
Dg/Dc > 1 with Rag/Rac < Rag/Rac, (case P3) or Rag/Rac > Rag/Rac, (case P4). Similarly,
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TABLE 1. Parameters for cases P2-P3 and P6-P7.

Cases Parameters

P2 Ray = 10°; Dg/Dc =0.1; Rag/Rac = 1.0;
P3 Ray = 10°; Dy/Dc =5.0; Rag/Rac = 1.0;
P6 Ra, = —10°%; Dg/Dc =0.1; Rag/Rac =1.0;
P7 Ray, = —10°; Dg/Dc =5.0; Rag/Rac = 1.0;

four cases P5-P6 can also be identified for Ray < 0, depending on the vales of Dg/D¢ and Rag/Rac.
Note that Rag/Rac; is the switch threshold between two cases for a given Dp/Dc and Ray,
and it increases with Dg/Dc. The present classification containing eight types of DI is generally
similar to the theoretical prediction in Ref. [23]. It should be emphasized that the general fingering
characteristics of cases P1, P4, PS5, and P8 are consistent with those of cases R1-R4 in our recent
equal diffusivity simulations in Ref. [27], and they are mainly determined by chemical reaction.
Even though these four cases may be slightly influenced by differential diffusion, they are not
introduced here for brevity, and more descriptions can be found in Ref. [27]. Therefore, the effects of
differential diffusion on fingering phenomena are discussed for cases P2, P3, P6, and P7 as follows,
and a few specific test conditions are provided in Table I.

CaseP2. Simulations are first performed for case P2, and the development of DI is clearly
observed in each test. As an example, density evolutions at Dp/D¢ = 0.1, Ray = 10°, and
Rag/Rac =1 are shown in Fig. 2. The early diffusion can introduce a density stratification
containing four layers: a denser fluid layer L1 near the top boundary overlies a local minimum
density layer L2, and the following denser layer L3 is on top of a less dense one L4 [Fig. 2(a)].
Layers L2 and L3 are introduced by the difference between the diffusion rates of B and C, which
is referred to as a DLC mechanism [20]. To be specific, species A reacts with B to yield C mainly
at the reaction front (RF), where the largest reaction rate takes place and two reactants are almost
consumed. Then, C diffuses downwards from RF without being fully replaced by B (Dg/D¢ < 1),
and a local species-depleted (SD) and local species-rich (SR) areas are subsequently generated at
and below RF, respectively [Fig. 3(b)]. In this case with Rag/Rac = 1, the contribution of species
C to fluid density is not large enough to change the density distribution, and thus a local minimum
(L2) and a local maximum (L3) develop at the local SD and SR zones, respectively [Fig. 3(b)].

These initial fluid layers can form two buoyantly unstable stratifications: L1-L2 and L3-L4. After
the short diffusion, the first DI develops from L1 near the top boundary [Fig. 2(b)] and corresponds
to the stratification L1-L.2. This DI then experiences three classical fingering development stages:
fingering growth, merge, and new fingering growth, but without penetrating the minimum density
layer L2 [Figs. 2(c)-2(e)]. During the late period, the second DI becomes visible from L3 [Fig. 2(d)],
and it is induced by the stratification L3-L4. In contrast to the main fingers of the first DI, the
secondary fingers tend to grow individually or divide into antenna-shaped forms [Fig. 2(e)], which
can be explained by the fast-diffusing C in L3 [21]. The concentration fields in Figs. 2(f)-2(h)
corresponding to the density field in Fig. 2(e) display that species C contributes to the second DI
and the division of secondary fingers, while the first DI is caused by fingers of A. Two fingering
areas are separated by L2, and the propagation of the first DI is slowed down by the locally stable
stratification L2-L.3. In addition, horizontally averaged density profiles are calculated and provided
in Fig. 3(a). It is found that, in the early period, the density curve shows a nonmonotonic pattern with
a local minimum followed by a local maximum, which is consistent with the initial density field in
Fig. 2. During the late stage, the averaged density line transfers into a monotonically decreasing one,
although the local minimum and maximum layers still exist in Fig. 2. The most likely explanation
for this change is that the development of the first DI can bring in large nonlinearities to deform the
local minimum and maximum layers.
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FIG. 2. Density (a)—(e) and concentration (f)—(h) distributions in homogeneous media for case P2 with
Ray = 10°, Dg/D¢ = 0.1, and Raz/Rac = 1.0 at different time instants *. The density scale p* varies within
the range 1-2; the concentrations C; scale between 0 and 1; and the reaction rate R* scales between 0 and 0.05.
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FIG. 3. Horizontally averaged density and species profiles in homogeneous media for case P2 with Ray =
10°, Dg/D¢ = 0.1, and Rag/Rac = 1.0 at five different time instants (a) and time instant * = 24 (b).
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FIG. 4. Density (a)—(e) and concentration (f)—(h) distribution in homogeneous media for case P3 with
Ra, = 10°, Dp/D¢ = 5.0, and Rag/Rac = 1.0 at different time instants #*. The density scale p* varies within
the range 1-2; the concentrations C; scale between 0 and 1; and the reaction rate R* scales between 0 and 0.15.

CaseP3. Fingering phenomena in case P3 are then simulated, and part of the results are provided
in Fig. 4. A density stratification develops during the initial diffusion stage as a denser fluid layer
L1 lies above a local minimum density layer L2 on top of a layer L3, and L2 locates below RF
[Fig. 4(a)]. The formation of this initial stratification can be explained by another differential
diffusion effect, namely, the DD mechanism [20]. Explicitly, the fast upward diffusion of B and
the slowly downward diffusion of C contribute to the generation of a local SD area below RF
[Fig. 5(b)]. Note that although the fast-diffusing B can promote the accumulation of C by the
reaction A + B — C above RF, no local SR region exists. This is because the dissolution of A makes
the SR layer locate at the top boundary. The contributions of three chemical species to fluid density
are the same, and thus L2 with local minimum density develops below RF and, more specifically,
at SD. After the initial diffusion, dense fingers sink from L1 towards the host fluid, and three
classical stages of fingering development are observed [Figs. 4(b)—4(e)]. Note that fingering tips can
penetrate L2 and become narrow below L2 but wide above [Figs. 4(c)—4(e)]. Actually, L2 can form
a buoyantly stable stratification with L3 to hinder fingering progression. In this case, however, the
fast diffusion of B can lead to the accumulation of C and thus the increase of fluid density above RF,
and the amplitude of the barrier L2 is therefore too weak to counteract the fingering development.
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FIG. 5. Horizontally averaged density and species profiles in homogeneous media for case P3 with Ray =
10°, Dg/D¢ = 5.0, and Rag/Rac = 1.0 at five different time instants (a) and time instant t* = 6 (b).

Concentration distributions in Figs. 4(f)—4(h) corresponding to the density field in Fig. 4(e) also
express that a small part of C can penetrate L2 to form narrow fingers below L2, and fingers of A
play a vital role in wide fingers above. In addition, as seen from Fig. 5(a), the horizontally averaged
density curve has a minimum at first but changes into a monotonically decreasing one during the
late period. This is caused by the fact that the penetration of fingering tips can disorder the local
minimum density layer L2.

CaseP6. After some simulations, density evolutions at Dp/D¢ = 0.1, Ray = — 10°, and
Rag/Rac = 1 are provided in Fig. 6 to illustrate the fingering features in this case. During the initial
diffusion, a density stratification is generated as a less dense fluid layer L1 lies above a layer L2 with
local maximum density, and L2 locating below RF is followed by a layer L3 [Figs. 6(a)]. Similar
to case P2, a DLC mechanism comes into play, resulting in a species distribution with a local SD
area at RF and a local SR region below [Fig. 7(b)]. Considering that fluid density decreases with
the dissolution of A but increases with the production of C, a local maximum layer develops below
RF and specifically at SR, where all of A is consumed by reaction [Fig. 7(b)]. Note that the initial
density distribution is different from that in case P2, and no local minimum density layer appears
corresponding to the local SD area. This is because dissolved species A decreases fluid density and
introduces a minimum at the top boundary.

Fingering then appears from L2 and experiences three fingering development stages
[Figs. 6(b)-6(e)]. It is emphasized that fingering develops slowly in this case and generally becomes
weak. This is related to the fact that the density difference between L2 and L3 is too weak to deform
the unstable fluid layer quickly, and species A and B tend to diffuse to meet and react with each other.
This can be verified by the relative flat interfaces in concentration fields of A and B [Figs. 6(f)-6(g)].
With the chemical consumption of B and the slight deformation of the interface between A and B,
the concentration of B in the host fluid is diluted generally, and its concentration gradient also
decreases. As a consequence, the upward diffusion of B and the production of C by reaction are
slowed down. Seen from concentration fields in Figs. 6(f)-6(h), fingers of C are responsible for
density fingering, and thus less C results in weaker DI. In addition, it is important to stress the
characteristic base shape not observed in other cases with Ray > 0: a stagnant liquid layer (SLL)
near the top boundary [Fig. 6(d)]. As displayed in Fig. 6(f), the remaining A after reaction in the top
layer decreases fluid density and contributes to this specific fingering base. Besides, SLL is observed
to be pretty thick and spans the entire width of the domain. This also verifies the above explanation
that reaction between A and B mainly depends on diffusion, and dissolving A cannot be consumed
efficiently and tends to accumulate near the top boundary. In terms of the horizontally averaged
density profiles in Fig. 7(a), they illustrate a nonmonotonic fashion with a local maximum, but the
amplitude of the maximum decreases with time owing to the dilution of species B in the host fluid.
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FIG. 6. Density (a)—(e) and concentration (f)—(h) distributions in homogeneous media for case P6 with
Ray, = —10°, Dg/D¢ = 0.1, and Rag/Rac = 1.0 at different time instants #*. The density scale p* varies within
the range —0.4-1.5; the concentrations C* scale between 0 and 1; and the reaction rate R* scales between 0
and 0.12.
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FIG. 7. Horizontally averaged density and species profiles in homogeneous media for case P6 with Ray =
—10°%, Dg/D¢ = 0.1, and Rag/Rac = 1.0 at five different time instants (a) and time instant t* = 6 (b).
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(d) t* = 240 (e) t* = 400
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FIG. 8. Density (a)—(e) and concentration (f)—(h) distributions in homogeneous media for case P7 with
Ra, = —10°, Dg/D¢ = 5.0, and Rag/Rac = 1.0 at different time instants #*. The density scale p* varies within

the range —0.3 to 1.3; the concentrations C;* scale between 0 and 1; and the reaction rate R* scales between 0
and 0.08.

It should be pointed out that fingering is not observed in the equal diffusivity counterpart, and the
local maximum density L2 (or DLC mechanism) is at the origin of density fingering.

CaseP7. Fingering phenomena in this case are finally simulated, and results at Dg/D¢ = 5,
Ray = —10°, and Rag/Rac = 1.0 are displayed in Fig. 8 for introduction. Initial diffusion can
introduce a density stratification of four layers: a less dense layer L1 lies on layer L2 with local
maximum density, and the following layer L3 with local minimum density overlies a denser one L4
[Fig. 8(a)]. This stratification is generated due to the DD-induced species distribution with a local
SD area below RF [Fig. 9(b)]. Specifically, under the condition that fluid density decreases with
dissolved A but increases with product C, a local maximum density layer L2 forms at RF where
less A but more C is present, and a local minimum layer L3 is built up at the local SD region where
no species C exists [Fig. 9(b)]. In this case, only one unstable stratification is formed by L2 and
L3, and DI develops from L2 after the initial diffusion [Figs. 8(b)-8(e)]. Even DD-caused L3 can
form a buoyantly stable stratification with L4, and fingering tips can penetrate this weak barrier,
owing to the accumulation of species C above RF. After this penetration, fingering becomes strong
below L3, because species A decreases fluid density obviously in the top layer. It is emphasized
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1073
(a) y* (b) t* =6 Yy

FIG. 9. Horizontally averaged density and species profiles in homogeneous media for case P7 with Ra, =
—10°%, Dg/D¢ = 5.0, and Rag/Rac = 1.0 at five different time instants (a) and time instant t* = 6 (b).

that, similar to case P6, fingering grows slowly with the decreases of solute B in the host fluid, and
SLL caused by remaining A near the top boundary is also observed. As for the calculated density
curves in Fig. 8(1f), they initially show a nonmonotonic pattern with a maximum followed by a
minimum, which is similar to the density field in Fig. 8(a). But generally, the density line changes
into a nonmonotonic fashion with a local maximum, and the value of local maximum decreases
with time. The disappearance of a local minimum can be explained by the penetration of fingering
tips as in case P3, and the decrease of a local maximum is due to the dilution of B as in case P6.
Considering that no fingering develops in the equal diffusivity counterpart, the DD-induced unstable
stratification of L2 and L3 (also DD mechanism) can introduce the development of DI.

To summarize, the development of DI can be delineated into eight cases depending on parameters
D, and Ra,. Fingering properties of cases P1, P4, P5, and P8 are consistent with those of cases
R1-R4 in our recent equal diffusivity simulations [27], and they are mainly determined by chemical
reaction. In the other four cases, however, the effects of differential diffusion become obvious,
and DD and DLC mechanisms can introduce new fingering features not observed in Ref. [27].
Specifically, a DLC-induced maximum can bring in the second DI in P2; a DD-induced minimum
can be penetrated by fingering tips in P3; and DD and DLC mechanisms can even trigger the
development of DI in cases P6 and P7. The present classification is generally consistent with
the theoretical one in Ref. [23], and calculated horizontally averaged density profiles agree well
with theoretical predictions in the early period: monotonically increasing (P1) or decreasing (P8),
with one minimum below (P3) or at (P4) RF, with one maximum at (P5) or below (P6) RF,
with a minimum followed by maximum (P2) or the opposite (P7). As fingering reaches the late
nonlinear stage, however, averaged density curves tend to increase monotonically (P2, P3) or
increase nonmonotonically with a local maximum (P6, P7). Besides, another difference between the
present result and the theoretical analysis in Ref. [23] is that species distributions can be obtained
in the present numerical simulations, and local SD and SR areas can be clearly captured to identify
the positions of local minimum and maximum density layers.

B. Quantitative effects

Having investigated the general phenomena of DI, a quantitative study is further carried out. To
focus on the impact of differential diffusion, all species are assumed to contribute equally to fluid
density, namely, Ray = Rag = Rac = 10°. Besides, the diffusion rate of B is fixed as Dz = Dy, and
different values of D¢ are selected to vary Dg/D¢ from 0.1 to 10.

Effects of differential diffusion on the progression of DI are first evaluated by calculating the
mixing length [,. This quantity /, is defined as the most advanced vertical position of fingering
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FIG. 10. Time evolutions of the mixing length in homogeneous media for tests with Ray = Raz = Rac =
10° and Dz/Dc = 0.1, 0.5, 1, 2, 5, 10.

tips in the host fluid. Temporal evolutions of /,, in Fig. 10 indicate that /,, increases with decreasing
Dp/Dc during the early diffusion stage. This is because the relative diffusion of C becomes larger
with smaller Dg/Dc, and the top fluid layer rich in species A and C can progress into the host
fluid faster, leading to larger [,. After this short period, /,, changes to increase with time rapidly
due to the appearance of fingering. It is found that in tests with larger Dg/Dc, [,, deviates from
the initial diffusive trend faster and grows to reach the bottom earlier. This is because the larger
Dg/Dc indicates the fast-diffusing B and the slow-diffusing C. First, slowly diffusing C tends to
accumulate in the top layer and increase fluid density. Second, fast-diffusing B can lead to intensive
reaction and more product C. The combination of these two factors contributes to intensifying the
unstable stratification and then promoting the appearance and the progression of DI.

Considering that the dissolution of species A into the host fluid is always desirable in related
applications, effects of differential diffusion on the storage efficiency of A are also quantitatively
investigated. As conducted in Ref. [27], two metrics are calculated. The first one is the horizontally
averaged mass flux of species A at the top boundary [27],

Jt) = — 0)dx*. (18)

1 l; * (%
s ), o
This parameter can be regarded as an indicator for the diffusion speed of A into the host fluid. The
second one is the amount of A stored in the host fluid, which is defined as the volume-averaged
concentration (C3 4+ Cf) [4]. As illustrated in Fig. 11, each J* evolves with time nonmonotonically
at first and finally fluctuates around a steady-state value, and each (C} 4+ C{) increases with time
monotonically.

Regardless of the similar development pattern, deficiencies introduced by differential diffusion
are obvious in Fig. 11. Every J* with differential diffusion is smaller than the equal diffusivity one,
and the difference amplifies when the value of Dg/D¢ departs from Dg/D¢c = 1 more obviously
[Fig. 11(a)]. This can be explained as follows. First, for tests with Dg/D¢ < 1, a local minimum
density layer develops at RF due to the DLC mechanism as in case P2 (Fig. 2), and this minimum can
suppress the development of DI as well as the accompanied convection. Thus, less B can be brought
up to react with A, and the chemical consumption of A slows down, leading to small J*. With
the increase of Dg/Dc, the intensity of DLC and the inhibition effects of local minimum become
weak, and subsequently, the value of J* increases. The influence of DLC finally disappears when
Dg/Dc increases to 1 and J* increases to reach its maximum value. As Dg/D¢ continues growing
to become larger than 1, the DD mechanism comes into play and introduces a local minimum layer
below RF (case P3 in Fig. 4). Similarly, this minimum layer can suppress the dissolution of A,
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FIG. 11. Time evolutions of the storage of species A in homogeneous media for tests with Ray = Rag =
Rac = 10° and Dg/D¢- = 0.1, 0.5, 1, 2, 5, 10.

and its intensity increases with increasing Dg/Dc. That is, with increasing Dg/D¢, J* increases if
Dp/Dc < 1butdecreases if Dg/D¢ > 1. Similar to results of J*, the obtained lines for (C} + CZ) in
Fig. 11(b) also show that the largest amount of A can be dissolved into the host fluid if Dg/D¢ = 1,
and the stored amount decreases with increasing Dg/D¢ if Dg/D¢ > 1 or with decreasing Dg /D¢
if Dp/Dc < 1. Thus, calculated J* and (C; + Cf) suggest that differential diffusion can suppress
the storage of species A in the host fluid, and the inhibition extent increases with the increasing
difference between the diffusion rates of B and C. In addition, this conclusion has been checked for
other values of Rag/Rac.

IV. CONCLUSIONS

Pore-scale simulations of density-driven instability (DI) with reaction A + B — C and differ-
ential diffusion have been conducted in a porous medium with a partially miscible top boundary
using an MRT LB model. Numerical results demonstrate eight types of DI depending on Rag,
Rag/Rac, and Dp/Dc, which generally confirm previous theoretical classifications. Compared
with our recent equal diffusivity simulations in Ref. [27], the inclusion of differential diffusion
brings in the double-diffusive (DD) and the diffusive-layer convection (DLC) mechanisms and
subsequently gives rise to four new DI dynamics. On the one hand, when Dg/D¢ > 1 and Rag/Ra¢
is small, the DD mechanism can produce a local species-depleted (SD) area below the reaction
front (RF) and then brings in a local minimum density layer at SD. In case P3 with Ras > 0,
this minimum can suppress fingering development, even it can be penetrated by finger tips finally.
Note that fingering becomes narrow below the minimum but large above. On the other hand, if
Dg/Dc < 1 and Rag/Rac is large, the DLC can introduce a local SD area at RF followed by a
local species-rich (SR) region and subsequently brings in a local density maximum layer at SR.
This DLC-caused maximum thus leads to the second DI and the antenna-shaped fingers in case
P2 with Ray > 0. In the meantime, for cases PS5 and P6 with Ras < 0, the corresponding equal
diffusivity cases are stable, but the DD-induced minimum and DLC-caused maximum can trigger
the development of DI. In these four cases with obvious differential diffusion effects, density curves
are initially similar to theoretical results but generally tend to decrease monotonically (P2 and P3) or
increase nonmonotonically with a local maximum (P6 and P7). In addition, different from previous
theoretical studies, local SD and SR regions can be captured in the present simulations to better
define the locations of local minimum or maximum density layers.

Finally, the role of differential diffusion has been highlighted by a series of parametric simu-
lations and quantitative comparisons. It is concluded that with increasing Dp/Dc, fingering tips
progress into the host fluid more slowly during the initial diffusion stage but finally tend to grow
more rapidly and reach the bottom much earlier. In terms of the storage of species A in the host fluid,

033903-14



DIFFERENTIAL DIFFUSION EFFECTS ON ...

it changes nonlinearly with increasing Dg/Dc: the largest amount of A can be stored in the host fluid
when Dg = D¢, and the storage efficiency decreases with increasing difference between Dg and
Dc¢. Thus differential diffusion tends to suppress the dissolution of A from the top boundary. The
present pore-scale results suggest that understanding the effects of differential diffusion is of great
importance for related applications. Specifically, in the context of CO, sequestration, comparing
chemical compositions in different geological storage sites, and selecting those where reaction
and differential diffusion can enhance the dissolution of CO; is crucial to improving the storage
efficiency and safety.
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APPENDIX: THE MRT LB MODEL

In this Appendix, the two-dimensional nine-velocity MRT LB model for the above pore-scale
simulations is introduced. It should be emphasized that this model is generally similar to the one
developed in our recent work [27], except for the different diffusion rates D, of species A, B, and C.
Specifically, the LB equations for the NS equations (3) and (4) and the CDR equations (5)—(7) are
introduced as [24,27,30]

Fj,
ij

(Al)

fix +eid, 1+8) — fitx, 1) = —(M"'SM);[ fi(x, 1) = f{'(x, D] + 6, [M“ (1 - ;)M}

_ 82
gir(x+ed, 1 +8) = gir(x, )= —(M"'Se,M)ij[gj,(x, 1) = 5,06, O] + Ry + -0 R,

(A2)

for i, j=0, 1, ..., 8, where fi(x, t) and g;,(x,7) are the distribution functions for the
hydrodynamics and the concentration field of species r, respectively. The time derivative term is
treated by the backward scheme as 9,R; ,(x, t) = [R; ,(x, t) — R; -(x, t — &)]. The transformation
matrix M can map the distribution functions from the physical space to the moment space. S and S, ,
are the diagonal relaxation matrix of relaxation rates s; and s;. , in the moment space, respectively.
In the following simulations, the relaxation rates are chosen as those in Refs. [30,32], and the
corresponding discrete velocities e; and weight coefficients w; are set as in Ref. [24].

To recover the incompressible NS equations correctly, the equilibrium distribution functions f;?
and g;?. are given as [24,27]

2
eq ei-u uu:(ee —c)
= w; , A3
fit=w [perpo( p + 23 (A3)
. e;-u uu:(ee —cll)
g =wC | 1+ —+ — | (A4)
’ c; 2cy

Here p, is a variable related to the fluid pressure as p = c? Pp, With ¢, = e/ V3 being the lattice
sound velocity. To avoid discrete lattice effects in the LB model, the forcing and reactive distribution
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functions F; and R; , are [24,27]

_ e;-F uF : (ee;— )
Fi=wi| ——+ | (AS5)
CS CS
_ e,-ut.,—0.5
Ri,=wR |1+ —F—|, (A6)
Cs Te,r

with R, being the reaction rate in the CDR equation for species r.
Finally, the macroscopic variables can be obtained from the distribution functions as

pp=_ i pou=Ze,»ﬁ+%’F, C=) e (A7)

Through the Chapman-Enskog analysis on the present LB equations, the governing equations (3)—
(7) can be recovered with the relaxation times t and ., as follows:

v—czr—lS D, =2t —13 (A8)
— G5 2 T r — bLg c,r 2 1

In addition, the characteristic parameters in Eq. (11) are set as

L=1=1, U=+/gfulCs =0.177, T =L/U =5.65, C4=Cq =1, (A9)

and they are all in lattice units. Based on these characteristic numbers, the relevant parameters in
LB simulations can be calculated as

LU LU
Ve ——2 . Dy=——2— Dy=D.Ds, Dc=D:Dy,
JRai/Sc T JRagse, BT A TOTHema
Coo =C vl b 1 UDa (A10)
= s T=—S5c ) Teor = S ) - .
B0 = a0l s, 2 T s T2 LCio
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