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Randomized resolvent analysis
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Performing global resolvent analysis for high-Reynolds-number turbulent flow calls for
the handling of a large discrete operator. Even though such a large operator is required in
the analysis, most applications of resolvent analysis extracts only a few dominant resolvent
response and forcing modes. Here we consider the use of randomized numerical linear
algebra to reduce the dimension of the resolvent operator for achieving computational
speed up and memory saving compared to the standard resolvent analysis. To accomplish
this goal, we utilize sketching of the linear operator with random test matrices with a
Gaussian distribution and with insights from the base flow incorporated to perform singular
value decomposition on a low-rank matrix holding dominant characteristics of the full
resolvent operator. The strength of the randomized resolvent analysis is demonstrated on a
turbulent separated flow over an airfoil. This randomized approach clears the path towards
tackling resolvent analysis for higher-Reynolds-number bi- and triglobal base flows.

DOI: 10.1103/PhysRevFluids.5.033902

I. INTRODUCTION

One of the central questions in turbulence and flow control is concerned with the evolution of
perturbations. Gaining detailed understanding of the perturbation dynamics in turbulent flows is a
daunting task, due to the complex nonlinear dynamics that takes place over a broad range of spatial
and temporal scales. To modify the global flow characteristics with control, it is necessary that
the nonlinear interactions involving the actuation input (perturbation) become appropriately large
to alter the base flow. For flow control, we do not need to track all possible ways in which the
actuation input can modify the flow, but instead we can focus on the dominant directions in which
the perturbation can be amplified. This notion has led to the modal analysis-based approaches [1–4],
including global stability analysis [5] and resolvent analysis [6].

In the presence of sustained perturbations or forcing inputs, the linear system response can be
described by the transfer function from control theory. This linear analysis is greatly simplified
when the input to the system is sinusoidal and leads to the well-known Bode plots that reveal the
gain and phase response of the system over a range of forcing frequencies. The transfer function
that relates the system input to the output is called the resolvent, and its analysis has been extended
to fluid flows by Trefethen et al. [6]. The resolvent analysis is based on the pseudospectral analysis
and has been used to study the transient energy growth [6] as well as the harmonic response of the
system [7]. These initial studies of resolvent analysis were performed for stable laminar flows.

An extension to resolvent analysis to study turbulent flows was presented by McKeon et al.
[8]. They considered the nonlinear advection term to be the self-sustained input within the natural
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feedback loop of the fluid flow. This viewpoint has enabled the use of time-averaged base flows to
reveal the input-output dynamics of turbulent flows. Moreover, discounting or finite-time horizon-
based extension of the resolvent analysis has enabled resolvent analysis to study flows with unstable
base states [9,10]. Because resolvent analysis can determine the most amplified forcing and response
directions, it serves as a powerful analytical tool to find effective active and passive flow control
techniques [10,11].

The resolvent analysis needs two key ingredients: (i) the base flow and (ii) the linearized Navier-
Stokes operator. It is known that the accuracy of the base flow and the spatial discretization of
the linear operators is critical for extracting response characteristics correctly [10]. The need for
accurate discretization of the linearized Navier-Stokes operators calls for sufficient grid resolution
and appropriate computational domain size. As such, the discrete resolvent operator becomes large
with size m × m. Here m is essentially the number of variables times the size of the grid, which
can easily be upward of O(106) for turbulent flows [12]. For resolvent analysis, the singular value
decomposition (SVD) needs to be performed on the large resolvent operator with a taxing operation
count of O(m3). To enable resolvent analysis at high Reynolds numbers, we must find a relief to
perform SVD of the resolvent operator.

Although the resolvent analysis is performed on a very large matrix, only the leading forcing and
response modes are generally sought. Based on the amount of necessary matrix data used to perform
the analysis, the desired output is only a very small fraction of the input data size. For this reason, it
would be natural to consider that all elements of the resolvent matrix are not necessary to determine
the leading resolvent modes. Within the resolvent framework, the core of the computations lies with
the SVD. In order to handle a large operator for SVD to find the leading modes, we can consider
subsampling the matrix of interest and perform the SVD on the low-order representation of this
large matrix. Randomized numerical linear algebra has recently emerged as an effective technique
to reduce a large matrix to its low-order representation [13–15], for applications including big data
compression and data transfer. The key idea is to pass a randomly generated low-rank test matrix
through the large matrix to obtain the so-called sketch of the full matrix. This sketch is low-rank
but holds key information about the full matrix and can be used to derive appropriate bases to
represent the full matrix in a low-dimensional manner [13,15–17]. Randomized techniques can be
incorporated into SVD to achieve tremendous computational and memory savings [13,16,18].

In recent years, modal analyses are tackling flows over complex geometries and high-Reynolds-
number flows with increasingly large degrees of freedom [3,4,19–23]. To further aid this endeavor,
randomized SVD has been incorporated into data-based modal analysis techniques, including
the proper orthogonal decomposition [18] and dynamic mode decomposition [24]. For global
operator-based analyses of high-Reynolds-number flows [19,22,23], the leading singular values
and modes can be determined with significant reduction in computational costs with the aid of
randomized techniques. The randomized technique presented in this study can greatly expand the
applicability of the resolvent analysis to high-Reynolds-number flows with multiple inhomogeneous
spatial directions.

In fact, randomized SVD has been adopted in the one-dimensional resolvent analysis of turbulent
channel flow by Moarref et al. [25]. Since the details on the use of the randomized techniques
for large-scale resolvent analysis are not available, one of our objectives is to provide detailed
guidance on the use of randomized resolvent analysis for multidimensional turbulent base flows.
Moreover, the error bound of randomized SVD is generally not guaranteed and needs to be further
characterized. We also note that the sketching strategy can be further improved with insights from
the base flow. In the present study, we aim to address these issues on the use of randomized SVD in
the context of resolvent analysis for fluid flows.

In what follows, we present the randomized resolvent analysis and demonstrate its use for
turbulent flow over a canonical airfoil. In Sec. II we introduce the randomized resolvent analyses
and discuss how randomized SVD can be implemented without the explicit generation of inverse
matrices. We also propose an alternative route of recovering the response modes (left singular
vectors) with significantly enhanced accuracy. In Sec. III the present randomized technique is
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applied to the resolvent analysis of turbulent flow over a NACA 0012 airfoil. We assess the level
of error and the convergence behavior with respect to resolvent modes and gains obtained from
the use of randomized SVD. To further enhance the accuracy of randomized resolvent analysis, we
introduce a physics-informed sampling technique that leverages the insights from the base flow.
Finally, we provide concluding remarks in Sec. IV.

II. APPROACH

A. Full resolvent analysis

Let us consider the flow state q ∈ Rm as a sum of the time-invariant base state q̄ and the
statistically stationary fluctuating component q′. With this Reynolds decomposed flow variable and
appropriate discretization, we can express the discrete Navier-Stokes equations as

∂q′

∂t
= Lq̄q′ + f ′, (1)

where Lq̄ ∈ Rm×m is the linearized Navier-Stokes operator about the base state q̄ and f ′ collects the
nonlinear terms and the external forcing inputs. We gather the nonlinear terms as external forcing in
the turbulent mean flow following the perspective of McKeon et al. [8], Farrel et al. [26], and Schmid
et al. [27]. For the traditional resolvent analysis, q̄ is chosen to be the stable laminar equilibrium state
such that f ′ can be considered as the forcing input to the system with the nonlinear term neglected
[7]. More recently, turbulent mean flows have been used for q̄ with f ′ representing the nonlinear
terms as sustained forcing input within the natural feedback system [8].

We can consider the Fourier transform [q′(x, t ), f ′(x, t )] = ∫ ∞
−∞ [q̂ω(x), f̂ ω(x)]e−iωt dω and

express the relationship between q′ and f ′ in frequency space as

−iωq̂ω = Lq̄q̂ω + f̂ ω, (2)

where ω is the frequency. Note that spatial Fourier transform can also be incorporated if directional
homogeneity is present. For stable base flows, ω can be chosen to be real. To extend resolvent
analysis to unstable base flows, we can consider the use of finite-time/discounted analysis [9,10]
by choosing a complex frequency ω = ωr + iβ, where both ωr and β are real and β discounts the
modal growth rate of Lq̄. The input-output relationship between f̂ and q̂ can be found from (2) as

q̂ω = A f̂ ω, (3)

where

A = [−iωI − Lq̄]−1 ∈ Cm×m (4)

is referred to as the resolvent operator [6–8]. It serves as a transfer function that amplifies (or
attenuates) the harmonic forcing input f̂ ω and maps it to the response q̂ω. The goal of resolvent
analysis is to identify the dominant directions along which f̂ ω can be most amplified through A to
form the corresponding responses in q̂ω. This question is addressed by the SVD of

A = U�V ∗, (5)

where V ∗ denotes the Hermitian of V . Resolvent analysis interprets left and right singular vectors
U = [û1, û2, . . . , ûm] ∈ Cm×m and V = [v̂1, v̂2, . . . , v̂m] ∈ Cm×m, respectively, as response modes
and forcing modes, with the magnitude-ranked singular values � = diag(σ1, σ2, . . . , σm) ∈ Rm×m

being the amplification (gain) for the corresponding forcing-response pair. For unstable base flows,
it is important that a finite-time window is chosen with β larger than the highest growth rate such
that the resolvent analysis reveals the input-output relationship on a shorter timescale than that of
the base flow instability [9,10].

Performing the SVD of A ∈ Cm×m requires an theoretical operation count of O(m3). In practice,
some algorithms can reduce this operation count when only a few singular values are to be
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recovered, while still being computationally taxing for large m [28]. Such cases are encountered
in high-Reynolds-number flows and bi/triglobal analysis settings. However, we note that many
applications of resolvent analysis call only for the dominant forcing and response modes [v̂1, û1]
associated with the highest gain σ1. This is appropriate when the first gain σ1 is much larger than
the rest of the gains σ j>1 and shows a quick roll off. Such a condition is related to nonnormality of
linear operator Lq̄, which is encountered for flows with strong shear and separation [29].

When the contributions from the higher-order modes are neglected, it is referred to as the
rank-1 assumption for which the flow response from forcing f̂ is approximated as q̂ ≈ û1σ1〈v̂1, f̂ 〉,
provided that σ1 	 σ2 and f̂ has reasonable magnitude along v̂1. For seeking only the dominant
modal insights from resolvent analysis, we discuss a remedy for performing large-scale resolvent
analysis [19,22] in a computationally tractable manner below.

B. Randomized resolvent analysis

For a flow that has dominant structures, we consider a low-rank representation of the resolvent
operator A. That is, instead of directly performing SVD of A and obtaining the leading-mode
representation, we seek a low-rank representation of A and perform the SVD of the low-rank version
of A. We can consider finding an appropriate low-dimensional basis to project the large resolvent
operator on a suitable subspace to derive the low-rank resolvent approximation.

The action of a full matrix on a vector should reveal some insights on which components are
modified in the dominant directions. In the case of flow that can be described with the rank-1
approximation, there should be a low number of dominant directions. This very point can be taken
advantage of through what is known as sketching in numerical linear algebra. Sketching refers to
a procedure in which a tall and skinny test matrix � ∈ Rm×k (or Cm×k), where k 
 m, is passed
through A:

Y = A�. (6)

Here matrix Y ∈ Cm×k is called the sketch of the input matrix A [13,15,16]. The test matrix �

can be constructed using random values with Gaussian distribution [30] and be weighted by any
input matrix insight, as will be discussed in Sec. III D for a physics-inspired random test matrix.
As the sketch holds the dominant influence of A, we can consider orthonormalizing Y using a QR
decomposition to form the orthonormal basis with Q ∈ Cm×k upon which we can project the full
matrix A to derive its low-rank approximation. In this way, it is possible to approximate A for a rank
k 
 m as long as this approximation preserves the features of the leading modes.

Given this Q, a low-rank approximation of A can be found as A ≈ QQ∗A [13]. We can view this
as a low-rank decomposition of A ≈ QB, where B = Q∗A ∈ Ck×m. It is this reduced matrix B upon
which we can perform the SVD:

B = Ũ�V ∗. (7)

Hence, as a low-rank approximation, we now have

A ≈ QŨ�V ∗ (8)

where we can consider U ≈ QŨ . This process is the randomized SVD [13], where the
sketch Y was used to derive Q. This approximation almost always satisfies ‖A − QQ∗A‖ �
(1 + 9

√
k + p

√
m)σk+1, where p is the oversampling parameter, which is applied to build an

approximation of rank k while projecting the matrix A to the low-dimensional subspace with (k + p)
vectors. With this overall approach, the computational cost for SVD is reduced to O(mk2) instead of
O(m3) for the full SVD. In our implementation, we use v1 from (8) and retrieve the leading singular
value and left singular vector through

Av̂1 = û1σ1. (9)
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The singular value and vector can be separated by noticing that ‖û1‖ = 1. Applied to resolvent
analysis, the last equation provides more accurate leading singular value σ1 and left singular vector
û1 compared to the original randomized SVD algorithm [13]. The same operation can be used
to recover the higher-order modes, with better accuracy than using the original algorithm [13].
For applications where high-order modes and orthogonality are desired, we can solve for U� and
compute its SVD. In the present randomized resolvent analysis, we emphasize that only the discrete
linear operator Lq̄ is needed for sketching Y and to find the reduced matrix B. Unlike the original
resolvent method, matrix linear solvers are used to avoid calling for the inverse within the resolvent
operator. The resulting algorithm constitutes the randomized resolvent analysis summarized in
Algorithm 1.

To utilize the randomized SVD for resolvent analysis, we must be aware that the resolvent
operator A = [−iωI − Lq̄]−1 contains an inverse operation in its definition, which need not be
numerically performed. We do not intend to perform an inverse operation within A in the present
work. In the full resolvent analysis, when the matrices become too large and the inverse can not be
performed (which is likely the case for 2D and 3D problems), one can focus on modes corresponding
to the smallest singular values of A−1 to find those for the largest singular values of A. Similar
approaches have avoided the inverse computation, including the work by Jeun et al. [19].

Both full resolvent and randomized resolvent analyses are shown schematically in Fig. 1. Notice
that we are not interested in all singular values and vectors of [−iωI − Lq̄]−1, but only in a few
subset of the largest σ j and their corresponding û j and v̂ j . In the randomized resolvent analysis, we
can approximate a low-rank representation of it using [−iωI − Lq̄]. Figure 1 shows an adaptation of
the procedure from Halko et al. [13] in order to compute the largest singular values of the resolvent
without performing its inverse. In the randomized resolvent analysis, we solve a linear system with
[−iωI − Lq̄], the columns of the random matrix � form the right-hand side, and the sketch columns
of Y are the unknowns. By doing so, we sketch [−iω − Lq̄]−1 without finding the actual inverse
matrix. The same procedure is performed to project the matrix to the low-dimensional subspace.
The matrices are re-arranged in a way that the projection is performed using [−iωI − Lq̄] but results
in the low-dimensional projection of [−iω − Lq̄]−1 instead. Figure 1 also illustrates the procedures
for recovering the left singular vectors and the singular values from the original algorithm [13] and
from the present implementation.

Algorithm 1: Randomized Resolvent Analysis.

Require : Discrete linear operator Lq̄ ∈ Cm×m

Function randomized_resolvent (ω, k) :
1 � ← randn(m, k) // Random normal matrix generator. For scaling, see Section III D
2 Y ← [−iωI − Lq̄]\� // Solve linear system for Y , O(m2k)
3 (Q, ∼) ← qr(Y , 0) // Economy-sized QR decomposition, O(mk2)
4 B ← Q∗/[−iωI − Lq̄] // Solve linear system for B, O(m2k)
5 (∼,∼,V ) ← svd(B, ‘econ’) // Reduced SVD decomposition, O(mk2)
6 U� ← [−iωI − Lq̄]\V // solve linear system to recover U�, O(m2k)
7 For j ← 1 to k do
8 � j, j ← norm(U�

1:m, j, 2) // Recover singular values �

9 U 1:m, j ← U�
1:m, j/� j, j // Normalize U

10 end
11 (U ,�, Ṽ ) ← svd(U�, ‘econ’) // (Optional) Recover U and �, O(mk2)
12 V ← VṼ // (Optional) Recover improved V , O(mk)
13 return (U ,�,V )
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(b) Randomized Resolvent Analysis

(a) Full Resolvent Analysis

FIG. 1. Schematics of the (a) full resolvent and (b) randomized resolvent analyses. For the full resolvent
analysis, a direct SVD is applied. For the randomized resolvent analysis, the orthogonal basis Q is computed to
project the operator into the low-dimensional subspace, where the SVD is performed on the reduced matrix B.
Two options to recover the left singular vectors and singular values are provided, using the original randomized
approach [13] and the present implementation. Orthogonal vectors are represented by long bars.

1. Oversampling and power iteration schemes

Randomized algorithms can incorporate two additional procedures to improve performance and
accuracy: oversampling [31] and power or subspace iterations [13,18,32]. Oversampling sketches
the input matrix using (k + p) vectors (with p extra vectors) and increases the low-dimensional
subspace to accurately recover a smaller quantity of singular values k. For the randomized resolvent
analysis, oversampling has the same outcome, in practice, of selecting a larger k, and the influence
of k will be discussed at the end of Sec. III B. When k becomes large, it should be noticed that
the memory consumption increases. Even for large sparse matrices, the sketch matrix and the
subsequently reduced matrices that are formed are generally dense, which adds a computational
burden.
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The second procedure is the power or subspace iterations. These methods are a powerful tool
when the singular values of the matrix decay slowly. For example, this type of spectral behavior
appeared in the input-output analysis performed by Jeun et al. [19] for jet flows. The method
consists of performing additional iterations after the sketch Y is evaluated. It should, however, be
realized that such a procedure calls for additional linear solvers, which is the most time-consuming
operation in Algorithm 1. For power iterations, one must compute the adjoint AA∗, where A∗ is
the Hermitian of A, q times and solve the linear system k times. For subspace iterations, additional
QR decompositions are necessary, and the number of additional linear systems to be solved will
be q times k. In practice, small values of q improve the accuracy of the results substantially. More
information on the general applicability of the subspace and power iterations is discussed by Halko
et al. [13] and Erichson et al. [31]. In Sec. III D we present another option for improving accuracy of
the overall technique in a computationally inexpensive manner by constructing a physics-informed
random test matrix �.

2. Test matrix �

The standard choice for the test matrix � is the random matrix generated with a normal
distribution. Such a matrix is known to present excellent performance and accuracy [15]. For some
cases, especially for very large matrices or when the singular values present slow decay, larger values
of k may be necessary to better approximate the matrix in the low-dimensional subspace. When
large values of k are used, orthonormalization of the columns of the test matrix can be considered
to improve numerical stability [13,33]. The test matrix can also be generated using a Rademacher
distribution [17]. It is also possible to build an ultrasparse matrix with Rademacher distribution in
the nonsparse entries which allows for the control of cost, stability, and reliability in the operations
[15,17].

When randomized SVD is applied, there is no a priori knowledge of the structure of the matrix.
However, in the present application, we know how the resolvent operator is constructed. This
theoretical insight can be used to build a random test matrix that outperforms the standard normal
distribution matrix. We later propose a physics-informed test matrix � that can focus our sketching
operation for regions of physical importance. In our application, the dominant directions are related
to regions with the presence of high shear. The results from this approach will be discussed in
Sec. III D.

III. RANDOMIZED RESOLVENT ANALYSIS OF TURBULENT POSTSTALL FLOW

We demonstrate the use of randomized resolvent analysis on turbulent flow over a NACA 0012
airfoil. In this example, the randomized resolvent analysis will be applied to a resolvent operator
of size m × m, where m � 7 × 105, to reveal the dominant gain and modal structures with a thin
sketching matrix having as few as k = 10 columns. The convergence of the gain and resolvent
modes will also be reported with respect to the size of the sketching matrix. Influence of the ratio
between the first and the second singular values of the resolvent operator will also be examined.

A. Problem setup

We consider the spanwise-periodic turbulent flow over a NACA 0012 airfoil at an angle of attack
of 9◦, a chord-based Reynolds number of ReLc ≡ v∞Lc/ν∞ = 23 000, and a free stream Mach
number of M∞ ≡ v∞/a∞ = 0.3. Here v∞ is the free-stream velocity, Lc is the chord length, a∞
is the free-stream sonic speed, and ν∞ is the kinematic viscosity. The time- and spanwise-averaged
turbulent flow is considered as the base flow for the full and randomized resolvent analyses. For this
2D base flow, we adopt the biglobal setting that decomposes q′ into spanwise Fourier modes with
the wave number kz.

To obtain the base flow, large-eddy simulation (LES) is performed using a finite-volume
compressible flow solver CharLES [34,35], which is second-order accurate in space and
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v̄x/v∞

v̄y/v∞

vx/v∞

FIG. 2. The instantaneous (left) and time/spanwise-averaged (right) flows over a NACA 0012 airfoil
at ReLc = 23 000. The instantaneous flow visualization shows the isosurface of Q criterion (QL2

c /v
2
∞ = 50)

colored by the instantaneous streamwise velocity.

third-order accurate in time. Vremen’s subgrid scale model [36] is utilized in the LES. The LES
is performed on a C-shaped mesh with the domain extent of x/Lc ∈ [−19, 26], y/Lc ∈ [−20, 20]
and z/Lc ∈ [−0.1, 0.1] in the streamwise, transverse, and spanwise direction, respectively, with
the airfoil leading edge at x/Lc = y/Lc = 0. The Dirichlet boundary condition is specified at the
far-field boundary as (ρ, vx, vy, vz, T ) = (ρ∞, v∞, 0, 0, T∞), where ρ is the density, vx, vy, and vz

are, respectively, the streamwise, transverse, and spanwise velocity, and T is the temperature. Over
the airfoil, the no-slip adiabatic boundary condition is prescribed. Along the outlet boundary, a
sponge layer [37] is applied with a running-averaged state being the target state. The simulation
has been validated with respect to the time-averaged pressure, lift, and drag over the airfoil. The
turbulent separated flow over the airfoil is visualized in Fig. 2. The visualization of the instantaneous
flow shows the laminar separation from the leading edge. We have found that the shear layer physics
dominates the pseudospectral behavior of the linearized Navier-Stokes operator, as shear is the
main source of nonnormality in the operator. Further details regarding the computational setup,
flow physics, and resolvent analysis-based flow control of this setup are reported in Yeh et al. [10].

The full and randomized resolvent analyses are performed on a separate mesh from that used in
the LES. This mesh has a 2D rectangular domain with the extent of x/Lc ∈ [−15, 16] and y/Lc ∈
[−12, 12], comprising approximately 0.15 million cells. Compared to the LES mesh, the mesh for
resolvent analysis is coarser over the airfoil and in the wake, but is much finer in the upstream of
the airfoil in order to resolve the forcing mode structures. The time- and spanwise-averaged flow
q̄ obtained from LES is interpolated onto this mesh. At the far-field boundary and over the airfoil,
Dirichlet conditions are set for density and velocities, and the Neumann condition is prescribed for
pressure in q′. At the outlet boundary, the Neumann condition is set for all flow variables. With these
boundary conditions for q′ and the base flow q̄, we construct the linearized Navier-Stokes operator
Lq̄(kz ) for a chosen kz. The size of Lq̄ and the resolvent operator is approximately 0.75 million
×0.75 million.

For this large operator, we summarize in Table I the computational costs of performing resolvent
analysis using the Krylov-based Arnoldi-iteration method with a range of parameter setups (i.e.,
number of singular values (nev), Krylov subspace dimension [dim(S )], and tolerance) and compare
them with those for the present randomized algorithm. The former was conducted by simply calling
the svds command in MATLAB. It requires almost 80 GB of memory and takes approximately
30 to 70 min (single-core) for each SVD. The high-memory demand necessitates the use of
high-performance computing resources to conduct the full resolvent analysis. In contrast, the
randomized resolvent approach (Algorithm 1) achieves significant reductions in computational time
and memory consumption. The present method only requires a third of the memory usage of the
Arnoldi iteration and cuts the computational time by an order of magnitude. We also note that, in
Algorithm 1, the linear systems solvers are the operations with higher computational cost. Since
all three linear systems solvers are conducted for the same operator, the LU decomposition of
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TABLE I. Comparison of the computational time and memory consumption for the implicitly restarted
Arnoldi iteration (svds in MATLAB) with the present randomized approach for different parameter setups
with the number of singular values (nev), Krylov subspace dimension [dim(S )], and tolerance.

Iteratively restarted Arnoldi method (MATLAB svds)
nev dim(S ) Tolerance Time (sec) Memory (GB)

10 30 10−14 4185 78.6
5 15 10−14 2764 78.6
2 6 10−14 1486 78.6
10 30 10−5 2245 78.6
10 15 10−14 4194 78.6

Randomized resolvent (present)
nev k Time (sec) Memory (GB)

2 2 354 28.2
5 5 462 28.4
10 10 615 28.8

[−iωI − Lq̄] is performed in the beginning of the algorithm and is passed through the three solvers.
This decomposition becomes the main source of the memory consumption.

B. Results

We perform the full and randomized resolvent analyses for spanwise wave numbers of kzLc = 0
and 20π . Since the base flow is found to be unstable [10], the finite-time approach is adopted with
v∞/βLc = 3 to ensure that the resolvent analysis is performed on a shorter timescale than that
associated with the leading growth rate of the instability. Initially, for the randomized analysis, we
consider k = 10 for the width of the test matrix � with random Gaussian distribution. Later in
Sec. III D we show that this value of k can be further reduced without compromising accuracy.

The leading response and forcing modes obtained from both full and randomized analyses are
compared in Fig. 3 for representative frequencies St and spanwise wavelength kzLc. Although
k/m = 1.3 × 10−5, we observe excellent agreement between the modes from the full resolvent
analysis and the randomized algorithm. We observe that randomized forcing and response modes
are very similar to full resolvent ones. Only at St = 1 and kzLc = 20π do we observe the appearance
of spatially distributed errors in the background, which we refer to as background noise.

The forcing modes are recovered directly from the SVD of the low-dimensional subspace
projection. As they are used to recover the response modes using the linear operator, the accuracy
of the forcing modes affects the results of the response ones. In the particular case of St = 1 and
kzLc = 20π , when the forcing mode is affected by noise, the randomized approach returns some
structures emanating from the trailing edge in the response mode ûrand

1 , which was not present in
the full resolvent analysis. This behavior is related to leakage from high-order modes, as σ1 and
σ2 are close in the energy spectrum. This remarkable level of agreement over all frequencies and
spanwise wave numbers ensures that the randomized approach presented in Algorithm 1 can help
extract insights into the spatial structures to identify regions of sensitivity and guide flow control
efforts.

These results were obtained using the present implementation that extends the original random-
ized SVD algorithm. In Fig. 4 using the original randomized algorithm [13] within the resolvent
analysis to recover the left singular vectors and singular values, the response modes contain
background noise. Here we use Algorithm 1 up to line 5, then SVD is performed as B = Ũ�V ∗

and U is recovered a posteriori using the original procedure for the randomized SVD with the
resolvent analysis [13,25], by U = QŨ . Yeh et al. [10] showed that the present problem setup
presents a peak in the singular values near St = 6 for both spanwise wave numbers, influenced by the
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FIG. 3. The leading response (û1) and forcing (v̂1) modes from the full and randomized resolvent analyses,
using Algorithm 1, for kzLc = 0 and 20π at representative frequencies St. Modes are visualized with the
streamwise velocity component with contour levels of [−0.6, 0.6].

eigenmodes associated with the shear-layer structure over the separation bubble. These eigenmodes
are highly nonnormal and induce high-energy amplification through pseudoresonance [6]. For the
frequencies in a narrow region near St = 6, both implementations present similar results. Far from
this band, the response modes obtained by the original procedure [13] are contaminated by random
background noise or leakage from higher-order modes, as shown in Fig. 4 for St = 0.5 and 15 and
kzLc = 0. In these critical cases, the original randomized approach may not provide meaningful
insights into flow physics. The present implementation shown in Algorithm 1 improves solving for
the response modes. Algorithm 1 does not enhance the forcing modes, as they are already accurate.
When utilizing this technique to generate reduced-order models, one may perform steps 11 and 12
in Algorithm 1 to orthogonalize the left singular vectors. Considering the results obtained by our
implementation, the modes are found very accurately for almost all frequencies and wave numbers.
To provide a concrete assessment, we quantitatively assess the accuracy of the randomized resolvent
analysis.

The agreement between the full and randomized analyses with respect to the gain (leading
singular value) and modes over a range of frequencies is presented in Fig. 5. When Algorithm 1
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Full resolvent analysis U = QŨ (Halko et al.) U = AV Σ−1 (present)

St Response mode ûuufull
1 Response mode ûuurand

1 Response mode ûuurand
1

0.5

15

FIG. 4. Comparison of the leading response modes (û1) recovered from the randomized resolvent analyses
using U = QŨ (the original approach in Halko et al. [13]) and U = AV�−1 [present; see Eq. (9)]. The
response modes from the full analysis are also shown for reference. Results are shown for kzLc = 0 at
representative frequencies St. Modes are visualized with the streamwise velocity component with contour
levels of [−0.6, 0.6].

is applied to recover left singular vectors and singular values, the randomized analysis accurately
captures the trend of gain distribution over 1 � St � 15 in Figs. 5(a) and 5(b) for both wave
numbers. At the low- and high-frequency ends, the gain shows deviations. The resemblance of
the modal structure is quantified in Figs. 5(c) and 5(d) with the cosine similarities, i.e., the inner
products, 〈ûfull

1 , ûrand
1 〉 and 〈v̂full

1 , v̂rand
1 〉. As singular vectors are normalized, the cosine similarity of

1 suggests that perfect match is attained between the modes from full and randomized resolvent
analyses. Since these modes are complex, the cosine similarity removes dependence on the phase
difference. For almost the entire range of frequencies the cosine similarities are near unity, which
means the agreement between full and randomized modes is excellent. When this value is reduced,
the modes may be affected by noise, as seen for v̂rand

1 at St = 1 and kzLc = 0 in Fig. 4. For the
original approach, using the randomized SVD algorithm [13], the modes have good agreement for
a narrow band of frequencies only. By comparing the results from Figs. 3 and 4 to the values in
Fig. 5(c) and 5(d), we observe that the noise affects the modes when cosine similarity is below 0.5.
For frequencies and wave numbers with cosine similarity up to 0.8 or higher, there is no noise and
the results for full and randomized resolvent agree well. For this reason, it is desirable to search for
solutions that provide a reliable agreement up to this scale to a broad range of frequencies and both
wave numbers. With the high-gain frequency range well captured, randomized resolvent analysis
has demonstrated its capability of predicting the dominant pathway for energy amplification over
the spectral space with reduced computational cost.

As stated in Sec. II B, the use of low-rank approximation in the randomized approach is built
upon the assumption of the low-rank nature of the resolvent operator. The randomized resolvent
analysis shows its strength when the singular values exhibit fast decay, as evident from Fig. 6.
The accuracy of the modal structured captured by randomized analysis is examined with respect to
the ratio of the leading and second singular values, (σ1/σ2)full from the full resolvent analysis. The
error in the modal structures exhibits a decreasing trend as this ratio increases. When this ratio is
close to unity, the randomized technique may not accurately separate the first and second modes. In
fact, the aforementioned trailing edge structure that appeared in the randomized response mode for
kzLc = 20π and St = 1 is caused by the leakage of the structures from the second response mode
(see Fig. 3). When the ratio (σ1/σ2)full is above 30, the error decreases to �10−5 for forcing modes
and �10−8 for response modes.

Next, we study the influence of the width of the test matrix k on the error in the leading singular
values and modes, as presented in Fig. 7. When the value of k is varied from 2 to 500, the error from
the use of randomized analysis decreases. For three representative frequencies, we observe the same
rate of convergence ≈O(k) for both the gain and cosine similarity. As stated in Sec. II B, increasing
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FIG. 5. (a) and (b) The leading amplification for the full and randomized resolvent analyses. (c)–(d) Cosine
similarities for the leading response 〈ûfull

1 , ûrand
1 〉 and forcing 〈v̂full

1 , v̂rand
1 〉 modes. Improvements of accuracy in

the present randomized analysis can be observed by comparing the σ rand
1 and ûrand

1 recovered from Eq. (9) to
those from the original approach of Halko et al. [13] (note that forcing modes obtained from both approaches
are identical). Results for spanwise wave number of kzLc = 0 and 20π are shown in the left and right columns,
respectively.

k has the same practical effect of oversampling, in the present application. For this flow, we observe
that k = 10 is sufficient to achieve sufficient accuracy with �1% error, which is remarkably low
when compared to the high dimensionality of the resolvent operator.

The computational cost of the randomized resolvent technique can be further reduced. For
instance, the biconjugate gradient stabilized (BiCGStab) or the generalized minimum residual
(GMRES) methods can be utilized to solve linear systems with appropriate preconditioners (e.g.,
incomplete LU and Jacobian).

C. Higher-order modes

Let us discuss the performance of the randomized technique with respect to the high-order
modes. For some cases, the second largest singular value may also be spaced apart from the
higher-order singular values and be determined accurately. In Fig. 8 we show for kzLc = 0 and
St = 4 a case where both the leading and second singular values are spread from the rest of the
singular values. In this case, the randomized algorithms accurately capture the second modes. The
flow structures at the trailing edge are perceived in the response modes. The forcing modes appear

033902-12



RANDOMIZED RESOLVENT ANALYSIS

100 101 102 103
10-12

10-8

10-4

100

100 101 102 103
10-15

10-10

10-5

100

0

18

)b()a(

1
v̂v v
fu

ll
1

,v̂v v
ra

n
d

1

1
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over the pressure side near the trailing edge. For the results obtained from Algorithm 1, the modes
are the same for randomized resolvent and for the full resolvent. However, for the resolvent analysis
using the randomized SVD algorithm [13] within the resolvent analysis, the secondary singular
values are poorly captured, and the modes are polluted by background noise and leakage from
other modes (not shown here). For this reason, when applying randomized resolvent, the present
implementation shown in Algorithm 1 must be considered as they can approximate the detached
high-order modes accurately.

D. Choice of the test matrix �

For the randomized resolvent analysis with a test matrix size of k = 10, Gaussian, orthonormal,
Rademacher, and ultrasparse Rademacher test matrices provide similar results and no observable
difference in computational savings. By using the implementation shown in Algorithm 1, all test
matrices present similar accuracy as shown in Figs. 5 and 6. For very low and very high St numbers
in the range of frequencies analyzed in this work, where the singular values decay slowly, one can
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,û

ra
n
d

1

kkk

St = 2

St = 6

St = 12

FIG. 7. Influence of test matrix size k on the accuracy of (a) leading singular value, (b) forcing mode, and
(c) response mode at kzLc = 20π . All exhibit O(k) convergence.
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increase the size k or apply subspace or power iterations. However, it is possible to obtain more
accurate results by constructing a random test matrix � that incorporates physical insights from the
base flow.

While the random test matrix is effective in yielding accurate results, we can consider construct-
ing a test matrix that can generate the entries in a smart manner by incorporating the knowledge
of the base flow. We know that regions of strong shear are important in amplifying forcing inputs.
Moreover, regions with minimal velocity gradients are not that important. For these reasons, the
velocity gradient at each grid point can be used to scale the test matrix. Here we propose a
physics-informed test matrix, �p, scaled by the 2-norm of the velocity gradient, ||∇v||2, where v

is the velocity vector. We construct a scaling factor � j = ||∇v j ||2 at each grid point j. The scaling
vector � has to be stacked according to the number of variables to reach the size m of the linear
operator. The physics-informed test matrix then becomes

�p = diag(�)�. (10)

The results based on the physics-informed test matrix are shown in Fig. 9. While the results
obtained from the use of a normal distribution test matrix have shown excellent accuracy, the use
of physics-informed test matrix further improves the accuracy by a few orders of magnitude for
the considered frequencies and spanwise wave numbers. More importantly, we achieve results with
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FIG. 9. Influence of test matrices on the relative error for (a) gain distribution and cosine similarities for
(b) forcing and (c) response modes, v̂1 and û1, at kzLc = 20π . Results are shown for Gaussian random normal
distribution test matrix � and physics-informed random test matrices �p = diag(�)� with sizes k = 10 and
k = 2.
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comparable or higher level of accuracy using an extremely low width of the test matrix of k = 2.
This results in a considerable reduction in computation time (see Table I). Using k = 10, linear
systems are solved at least 30 times. Now, using k = 2, only six linear solvers are needed to obtain
the same accuracy, which is achieved only with a physics-informed scaling of the test matrix. By
combining randomized numerical linear algebra and some physical insights, we are now empowered
to perform the input-output analysis for ever more complex 2D and 3D turbulent base flows on a
standard computer, or on a high-performance computing cluster to expand the envelope of resolvent
analysis.

IV. CONCLUSION

Resolvent analysis has proven to be a powerful technique to reveal the input-output characteris-
tics of fluid flows. However, the computational cost and memory allocation of the resolvent analysis
can be taxing for high-Reynolds-number flows, making it prohibitive to be applied to complex
turbulent base flows. The major computational cost of the analysis is associated with the SVD of
the resolvent operator. To remove this bottleneck, the randomized approach has been adopted to
reduce the computational cost of SVD by considering the low-rank approximation of the resolvent
operator. This was achieved by constructing the low-rank basis based on the insights gained from the
sketch of the resolvent, which is obtained from a linear system solver. For flows with fast singular
value decays, e.g., flows with strong shear and separation, the randomized resolvent analysis reveals
its power to accurately capture the response and forcing modes as well as the gain. Moreover, we
consider the use of the velocity gradient to scale the random test matrix. Such scaling enhanced the
accuracy of the randomized resolvent analysis. The necessary computation time was significantly
reduced as the number of linear systems to be solved is considerably smaller. To demonstrate the
capability of the randomized resolvent analysis, we analyzed the turbulent separated flow over a
NACA 0012 airfoil. Excellent agreement of the leading forcing and response modes and the gains
was shown between the full and randomized resolvent methods. By incorporating the knowledge
of the base flow in terms of its velocity gradient into the randomized test matrix, additional speed
up and accuracy enhancement were achieved. With the computational cost and memory allocation
being relieved with the randomized approach, the application of the resolvent analysis can be
significantly extended to higher-Reynolds-number 2D and 3D base flows.
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[9] M. R. Jovanović, Modeling, analysis, and control of spatially distributed systems, Ph.D. thesis, University
of California at Santa Barbara, Dept. of Mechanical Engineering, 2004.

[10] C.-A. Yeh and K. Taira, Resolvent-analysis-based design of airfoil separation control, J. Fluid Mech. 867,
572 (2019).

[11] S. Nakashima, K. Fukagata, and M. Luhar, Assessment of suboptimal control for turbulent skin friction
reduction via resolvent analysis, J. Fluid Mech. 828, 496 (2017).

[12] T. Kajishima and K. Taira, Computational Fluid Dynamics: Incompressible Turbulent Flows (Springer,
Cham, Switzerland, 2017).

[13] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions, SIAM Rev. 53, 217 (2011).

[14] P. Drineas and M. W. Mahoney, RandNLA: Randomized numerical linear algebra, Comm. ACM 59, 80
(2016).

[15] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for low-rank matrix
approximation, SIAM J. Matrix Anal. Appl. 38, 1454 (2017).

[16] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the approximation of
matrices, Appl. Comput. Harmon. Anal. 25, 335 (2008).

[17] K. L. Clarkson and D. P. Woodruff, Numerical linear algebra in the streaming model, in Proceedings of
the 41st Annual ACM Symposium on Theory of Computing (ACM, New York, 2009), pp. 205–214.

[18] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component analysis, SIAM
J. Matrix Anal. Appl. 31, 1100 (2009).
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